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Abstract 

Background and problem statement:  Model-free or learning-based control, in particular, reinforcement learning 
(RL), is expected to be applied for complex robotic tasks. Traditional RL requires that a policy to be optimized is state-
dependent, that means, the policy is a kind of feedback (FB) controllers. Due to the necessity of correct state observa-
tion in such a FB controller, it is sensitive to sensing failures. To alleviate this drawback of the FB controllers, feedback 
error learning integrates one of them with a feedforward (FF) controller. RL can be improved by dealing with the FB/
FF policies, but to the best of our knowledge, a methodology for learning them in a unified manner has not been 
developed.

Contribution:  In this paper, we propose a new optimization problem for optimizing both the FB/FF policies simul-
taneously. Inspired by control as inference, the proposed optimization problem considers minimization/maximization 
of divergences between trajectories, one is predicted by the composed policy and a stochastic dynamics model, and 
others are inferred as optimal/non-optimal ones. By approximating the stochastic dynamics model using variational 
method, we naturally derive a regularization between the FB/FF policies. In numerical simulations and a robot experi-
ment, we verified that the proposed method can stably optimize the composed policy even with the different learn-
ing law from the traditional RL. In addition, we demonstrated that the FF policy is robust to the sensing failures and 
can hold the optimal motion.

Keywords:  Feedback-feedforward policies, Control as inference, Variational lower bound of stochastic dynamics, 
Sensing failures
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Introduction
In the last decade, the tasks (or objects) required of 
robots have become steadily more complex. For such 
next-generation robot control problems, traditional 
model-based control like [1] seems to reach its limit due 
to the difficulty of modeling complex systems. Model-
free or learning-based control like [2] is expected to 
resolve these problems in recent year. In particular, rein-
forcement learning (RL) [3] is one of the most promising 

approaches to this end, and indeed, RL integrated with 
deep neural networks [4], so-called deep RL [5], achieved 
several complex tasks: e.g. human–robot interaction [6]; 
manipulation of deformable objects [7]; and manipula-
tion of various general objects from scratch [8].

In principle, RL makes an agent to optimize a policy 
(a.k.a. controller) to stochastically sample action (a.k.a. 
control input) depending on state, result of interaction 
between the agent and environment [3]. Generally speak-
ing, therefore, the policy to be optimized can be regarded 
as one of the feedback (FB) controllers. Of course, the 
policy is more conceptual and general than traditional FB 
controllers such as for regulation and tracking, but it is 
still a mapping from state to action.
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Such a FB policy inherits the drawbacks of the tradi-
tional FB controllers, i.e. the sensitivity to sensing fail-
ures [9]. For example, if the robot has a camera to detect 
an object, pose of which is given to be state of RL, the 
FB policy would sample erroneous action according to 
a wrong pose by occlusion. Alternatively, if the robot 
system is connected with a wireless TCP/IP network 
to sense data from IoT devices, communication loss or 
delay due to poor signal conditions will occur at irregular 
intervals, causing erroneous action.

To alleviate this fundamental problem of the FB policy, 
filtering techniques have often been integrated with the 
FB controllers. Famous examples (e.g. in aircraft) use 
redundant sensor and/or communication systems to 
select the normal signals and ignore the wrong signals 
in order to be robust to the sensing failures [10, 11]. In 
addition, Kalman filter, the most popular filtering meth-
odology, relies on a state-space model that can predict 
the next observation and can replace the sensed values 
into the predicted ones at the sensing failures [12, 13]. 
Although the state-space model is not given in RL, recent 
developments in deep learning technology would make it 
possible to acquire this in a data-driven manner [14].

In contrast to the above input processing, previous 
studies have developed the policies that do not depend 
only on state. In a straightforward way, time-dependent 
policy has been proposed by directly adding the elapsed 
time to state [15] or by utilizing recurrent neural net-
works (RNNs) [16, 17] for approximation of that policy 
[18]. If the policy is computed according to the phase and 
spectrum information of the system, instantaneous sens-
ing failures would be ignored [19, 20]. In an extreme case, 
if the robot learns to episodically generate the trajectory, 
the adaptive behavior to state is completely lost, but it is 
never affected by the sensing failures. We focus on these 
approaches as the output processing.

From the perspective of the traditional control the-
ory and biology, it has been suggested that this prob-
lem of the FB policy can be resolved by a feedforward 
(FF) policy with feedback error learning (FEL) [9, 21–
23], which can also be regarded as the output process-
ing. FEL is a framework in which the FF controller is 
updated based on the error signal of the FB controller, 
and finally the control objective is achieved only by the 
FF controller. In other words, instead of designing only 
the single policy as in the previous studies above, FEL 
has both the FB/FF policies in the system and com-
poses their outputs appropriately to complement each 
other’s shortcomings: the sensitivity to the sensing fail-
ures in the FB policy; and the lack of adaptability to the 
change of state in the FF policy. The two separated poli-
cies are more compact than the integrated one. In addi-
tion, although the composition of the outputs in the 

previous studies is a simple summation, it creates a new 
room for designing different composition rules, which 
makes it easier for designers to adjust which of the FB/
FF policies is preferred.

The purpose of this study is to take over the benefits of 
FEL to the RL framework, as shown in Fig. 1. To this end, 
we have to solve two challenges as below. 

1.	 Since RL is not only for tracking problem, which is 
the target of FEL, we need to design how to compose 
the FB/FF policies.

2.	 Since the FB policy is not fixed unlike FEL, both of 
the FB/FF policies are required to be optimized 
simultaneously.

For the first challenge, we assume that the composed 
policy is designed as mixture distribution of the FB/FF 
policies since RL policy is stochastically defined. A simi-
lar approach is to weight each policy according to its 
corresponding value function, as in the literature [24]. 
However, in the proposed framework, this method can-
not be adopted because the FB/FF policies are learned 
by a common value function. Therefore, we heuristically 
design its mixture ratio depending on confidences of the 
respective FB/FF policies so that the higher confident 
policy is prioritized. As a specific implementation of the 
confidence, this paper uses the negative entropy of each 
probability distribution.

For the second challenge, inspired by control as infer-
ence [25, 26], we derive a new optimization problem to 
minimize/maximize the divergences between trajec-
tories, one is predicted by the composed policy and a 
stochastic dynamics model, and others are inferred as 
optimal/non-optimal ones. Furthermore, by designing 
the stochastic dynamics model with variational approxi-
mation [27], we heuristically find that the regularization 
between the FB/FF policies is given. This regularization 
expects us that skill of the FB policy, which can be opti-
mized faster than the FF policy, will be transferred into 
the FF policy.

To verify that the proposed method can optimize the FB/
FF policies in a unified manner, we conduct numerical sim-
ulations for statistical evaluation and a robot experiment 
as demonstration. Through the numerical simulations, we 
show the capability of the proposed method, namely, stable 
optimization of the composed policy even with the differ-
ent learning law from the traditional RL. However, the pro-
posed method occasionally fails to learn the optimal policy. 
We analyze this reason as the extreme updating of the FF 
policy (or RNNs) to wrong direction. In addition, after 
training on the robot experiment, we clarify the value of 
the proposed method that the optimized FF policy robustly 
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Fig. 1  Proposed RL framework: it contains both the FB/FF policies in parallel; policies outputted from them are composed to sample action; 
according to reward, both the FB/FF policies are optimized in a unified manner; with the appropriate combination of the FB/FF policies, this 
framework is expected to achieve both robustness to sensing failures and adaptiveness to changes of state

Fig. 2  Loop of RL with sensing failures: in general RL (left), an agent interacts with environment by action sampled from policy depending on the 
current state; according to state transition probability, the new state is observed with related reward; however, in practice (right), state observation 
is probably with risk of sensing failures like occlusion and packet loss
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samples valuable actions to the sensing failures even when 
the FB policy fails to achieve the optimal behavior.

Preliminaries
Reinforcement learning
In RL [3], Markov decision process (MDP) is satisfied as 
shown in the left of Fig. 2. Specifically, an agent interacts 
with unknown environment using action a ∈ A sampled 
from policy π . The environment returns the result of the 
interaction as state s ∈ S (or the next state s′ ) and evalu-
ates it according to reward function, which represents the 
degree of accomplishment of the desired task, r(s, a) ∈ R . 
Here, s is sampled from the black-box state transition prob-
ability of the environment s′ ∼ pe(s

′ | s, a) (and s ← s′ ). In 
that time, the policy π can be given as a probability con-
ditional to only s (i.e. a stochastic FB controller), π(a | s) , 
theoretically. The optimization problem of RL is to find the 
optimal policy π∗ that maximizes the sum of rewards in the 
future from the current time t (or, called return), defined as 
Rt =

∑∞
k=0 γ

krt+k with γ ∈ [0, 1) discount factor.
However, in practical use, the state from the environment 

must be observed using internal/external sensors, and 
measurement of state causes delay (e.g. due to overload in 
the communication networks) and/or loss (e.g. occlusion in 
camera sensors), suggested in the right of Fig. 2. With these 
sensing failures, π(a | s) is no longer enough to acquire the 
task represented by the reward function because the meas-
ured (and lost/delayed) state cannot hold MDP. To solve 
this problem, this paper therefore proposes a new method 
to optimize the FB/FF policies in a unified manner by for-
mulating them without necessarily requiring MDP.

In the conventional RL under MDP, the expected value 
of R is functionalized as V(s) as (state) value function 
and Q(s, a) as (state-)action value function, and V can be 
learned by the following equation.

Note that Q can also be learned with the similar equa-
tion, although we do not use Q directly in this paper.

Based on δ , an actor-critic algorithm [28] updates π 
according to the following policy gradient.

where Epeπ [·] is approximated by Monte Carlo method.

Introduction of optimality variable in control as inference
Recently, RL can be regarded as inference problem, so-
called control as inference [25]. This extension of inter-
pretation introduces a optimality variable, o = {0, 1} , 

(1)δ = Q(s, a)− V (s) ≃ r(s, a)+ γV (s′)− V (s)

(2)Lvalue =
1

2
δ2

(3)∇Lπ = −Epeπ [δ∇ ln π(a | s)]

which represents whether a pair of s and a is optimal 
( o = 1 ) or not ( o = 0 ). Since it is defined as random vari-
able, the probability of o = 1 , p(o = 1 | s, a) , is parameter-
ized by reward r to connect the conventional RL with this 
interpretation.

where c = max(r) to satisfy er(s,a)−c ≤ 1 , and τ denotes 
the hyperparameter to clarify uncertainty, and can be 
adaptively tuned.

Furthermore, supposing the optimality in the future as 
O = {0, 1} , the following formulations can be defined with 
the value functions.

where C = max(V ) = max(Q) theoretically, although its 
specific value is generally unknown.

In this way, the optimality can be treated in probabilis-
tic inference problems, facilitating integration with such 
as Bayesian inference and other methods. This paper uti-
lizes this property to derive a new optimization problem, as 
derived later.

Inference of optimal/non‑optimal policies
With the optimality variable O, we can infer the optimal 
policy and the non-optimal policy (details are in [26]). With 
Eqs. (5) and (6), the policy conditioned on O, π∗(a | s,O) , 
can be derived through Bayes theorem.

where b(a | s) denotes the sampler distribution (e.g. the 
composed policy with old parameters or one approxi-
mated by target networks [29]).

By substituting {0, 1} for O, the inference of the optimal 
policy, π+ , and the non-optimal policy, π− , is given as 
follows:

(4)p(o = 1 | s, a) = exp

(

r(s, a)− c

τ

)

(5)p(O = 1 | s) = exp

(

V (s)− C

τ

)

(6)p(O = 1 | s, a) = exp

(

Q(s, a)− C

τ

)

(7)π∗(a | s,O) =
p(O | s, a)b(a | s)

p(O | s)

(8)

π+(a | s) = π∗(a | s,O = 1) =
exp

(

Q(s,a)−C
τ

)

exp
(

V (s)−C
τ

) b(a | s)

(9)

π−(a | s) = π∗(a | s,O = 0) =
1− exp

(

Q(s,a)−C
τ

)

1− exp
(

V (s)−C
τ

) b(a | s)
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Although it is difficult to sample action from these poli-
cies directly, they can be utilized for analysis later.

Variational recurrent neural network
To reveal state transition probability (i.e. pe ) as stochas-
tic dynamics model, we derive the method to learn it 
based on variational recurrent neural network (VRNN) 
[27]. Therefore, in this section, we briefly introduce the 
VRNN.

The VRNN considers the maximization problem of 
log-likelihood of a prediction model of observation (s in 
the context of RL), pm . s is assumed to be stochastically 
decoded from lower-dimensional latent variable z, and z 
is also sampled according to the history of s, hs , as time-
dependent prior p(z | hs) . Here, hs is generally approxi-
mated by recurrent neural networks, and this paper 
employs deep echo state networks [30] for this purpose. 
Using Jensen’s inequality, a variational lower bound is 
derived as follows:

(10)

ln pm(s | h
s) = ln

∫

p(s | z)p(z | hs)dz

= ln

∫

q(z | s, hs)p(s | z)
p(z | hs)

q(z | s, hs)
dz

≥ Eq(z|s,hs)[ln p(s | z)]

− KL(q(z | s, hs)�p(z | hs))

= −Lvrnn

where p(s | z) and q(z | s, hs) denote the decoder and 
encoder, respectively. KL(·�·) is the term for Kullback-
Leibler (KL) divergence between two probabilities. Lvrnn 
is minimized via the optimization of pm , which consists 
of p(s | z) , q(z | s, hs) , and p(z | hs).

Note that, in the original implementation[27], the 
decoder is also depending on hs , but that is omitted in the 
above derivation for simplicity and for aggregating time 
information to z, as well as the literature [31]. In addition, 
the strength of regularization by the KL term can be con-
trolled by following β-VAE [32] with a hyperparameter 
β ≥ 0.

Derivation of proposed method
Overview
The outputs of FB/FF policies should eventually coincide, 
but it is unclear how they will be updated if we directly 
optimize the composed policy according to the con-
ventional RL. In other words, if the composed policy is 
trained using a policy-gradient method, the gradients for 
the FB/FF policies would be different from each other, 
making the FB/FF policies not coincide. In this paper, we 
propose a unified optimization problem in which the FB/
FF policies naturally coincide and the composed one is 
properly optimized. To this end, we heuristically find that 
it is required to be able to generate similar trajectories 
for both FB/FF policies by extending the optimization 
problem from the optimization of the composed policy 

Time

S
ta

te

Optimal state

Optimal trajectory 
w/ real dynamics + optimal policy

One of the non-optimal trajectories 
w/ real dynamics + non-optimal policy

Predicted trajectory 
w/ predicted dynamics + policy

Attraction

Repulsion

Fig. 3  Trajectory optimization problem: the trajectory can be predicted with the composed policy and the stochastic dynamics model; the 
optimal/non-optimal trajectories can be inferred with the optimal/non-optimal policies and the true state transition probability; the predicted 
trajectory is desired to be close to the optimal trajectory, while to be away from the non-optimal trajectory; the divergence between trajectories 
can be represented by the KL divergence
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alone to the optimization of the trajectory generated by 
the policy, as shown in Fig. 3. This requirement leads to 
simultaneous learning of the FB/FF policies and match-
ing of their outputs. In other words, the key points in the 
proposed method are two folds: 

1.	 The trajectory predicted with the stochastic dynam-
ics model and the composed policy is expected to be 
close to/away from optimal/non-optimal trajectories 
inferred with the optimality variable.

2.	 The stochastic dynamics model is trained via its vari-
ational lower bound, which naturally generates a soft 
constraint between the FB/FF policies.

However, please keep in mind that this approach is heu-
ristically obtained, and therefore, a more straightforward 
method may be existed, although it is not easily found.

Here, as an additional preliminary preparation, we 
define the FB, FF, and composed policies mathematically: 
πFB(a | s) ; πFF(a | ha) ; and the following mixture distri-
bution, respectively.

where w ∈ [0, 1] denotes the mixture ratio of the FB/FF 
policies. That is, for generality, the outputs of the FB/FF 
policies are composed by a stochastic switching mecha-
nism, rather than a simple summation as in FEL [21]. 
Note that since the history of action, ha , can be updated 
without s, the FF policy is naturally robust to sensing 
failures.

Optimization problem for optimal/non‑optimal 
trajectories
With the composed policy, π , and the stochastic dynam-
ics model, given as pm(s′ | s, a, hs, ha) , a fragment of 
trajectory is predicted as pmπ . As a reference, we can 
consider the fragment of optimal/non-optimal trajectory 
with π∗ in Eq. (7) and the real environment, pe , as peπ∗ . 
Note that the original derivation of π∗ has only the state 
s (and the optimality variable O) as its conditions, but as 
described above, we need to treat the history of action ha 
explicitly, so we consider π∗ = π(a | s, ha,O) . The degree 
of divergence between the two can be evaluated by KL 
divergence as follows:

(11)π(a | s, ha) = wπFB(a | s)+ (1− w)πFF(a | ha)

(12)

KL(peπ
∗�pmπ)

= Epeπ∗ [(ln pe + ln π∗)− (ln pm + ln π)]

= Epeb

[

p(O | s, a)

p(O | s)
{(ln pe + ln π∗)− (ln pm + ln π)}

]

∝ −Epeb

[

p(O | s, a)

p(O | s)
(ln pm + ln π)

]

where the term ln peπ∗ inside the expectation opera-
tion is excluded since it is not related to the learnable pm 
and π . The expectation operation with pe and b can be 
approximated by Monte Carlo method, namely, we can 
optimize pm and π using the above KL divergence with 
the appropriate conditions of O.

As the conditions, our optimization problem considers 
that pmπ is expected to be close to peπ+ (i.e. the optimal 
trajectory) and be away from peπ− (i.e. the non-optimal 
trajectory), as shown in Fig. 3. Therefore, the specific loss 
function to be minimized is given as follows:

where 1− exp{(V − C)τ−1} and τ are multiplied to elim-
inate unknown C and to scale the gradient at δ = 0 to be 
one, respectively. Note that the derived result is similar to 
Eq. (3), but with a different coefficient from δ and a differ-
ent sampler from π.

Stochastic dynamics model with variational lower bound
In Eq.  (13), ln pm , i.e. the stochastic dynamics model, is 
included and it should be modeled. Indeed, inspired by 
the literature [31], we found that the model based on the 
VRNN [27] shown in Eq. (10) can naturally yield an addi-
tional regularization between the FB/FF policies. In addi-
tion, such a method is regarded as one for extracting latent 
Markovian dynamics in problems for which MDP is not 
established in the observed state, and is similar to the lat-
est model-based RL [33, 34].

Specifically, we consider the dynamics of latent variable z 
as z′ = f (z, a) with f learnable function, and a can be sam-
pled from time-dependent prior (i.e. the FF policy). In that 
time, Eq. (10) is modified through the following derivation.

(13)

Ltraj = KL(peπ
+ | pmπ)− KL(peπ

− | pmπ)

∝ −Epeb











exp
�

Q−C
τ

�

exp
�

V−C
τ

� −
1− exp

�

Q−C
τ

�

1− exp
�

V−C
τ

�







(ln pm + ln π)





= −Epeb





exp
�

Q−V
τ

�

− 1

1− exp
�

V−C
τ

� (ln pm + ln π)





∝ −Epeb

�

τ

�

exp

�

δ

τ

�

− 1

�

(ln pm + ln π)

�

(14)

ln pm(s
′ | hs, ha) = ln

∫∫

p(s′ | z′)p(z | hs)πFF(a | ha)dzda

= ln

∫∫

q(z | s, hs)π(a | s, ha)p(s′ | z′)

×
p(z | hs)

q(z | s, hs)

πFF(a | ha)

π(a | s, ha)
dzda

≥ Eq(z|s,hs)π(a|s,ha)[ln p(s
′ | z′)]

− KL(q(z | s, hs)�p(z | hs))

− KL(π(a | s, ha)�πFF(a | ha))

= −Lmodel
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Since we know the composed policy π is mixture of the 
FB/FF policies defined in Eq. (11), the KL term between π 
and πFF can be decomposed using variational approxima-
tion [35] and Jensen’s inequality.

where we use the fact that KL(p�q) = H(p�q)−H(p) 
with H(·�·) cross entropy and H(·) (differential) entropy. 
By eliminating the negative KL term and the negative 
entropy term, which are unnecessary for regularization, 
only the cross entropy remains.

The general case of VAE omits the expectation opera-
tion by sampling only one z (and a in the above case) 
according to s. In addition, as explained before, the 
strength of regularization can be controlled by adding β 
[32]. With this fact, we can modify Lmodel as follows:

where z ∼ q(z | s, hs), a ∼ π(a | s, ha), z′ = f (z, a) , and 
βz,a denote the strength of regularization for each. Finally, 
the above Lmodel can be substituted into Eq.  (13) as 
− ln pm.

As can be seen in Eq. (16), the regularization between the 
FB/FF policies is naturally added. Its strength is depend-
ing on w2 , that is, as the FB policy is prioritized (i.e. w 
is increased), this regularization is reinforced. In addi-
tion, since Lmodel is now inside of Ltraj , the regulariza-
tion becomes strong only when δ > 0 enough, that is, the 
agent knows the optimal direction for updating π . Usu-
ally, at the beginning of RL, the policy generates random 
actions, which make optimization of the FF policy diffi-
cult; in contrast, the FB policy can be optimized under 
weak regularization (if the observation is sufficiently 
performed). Afterwards, if w is adaptively given (as intro-
duced in the next section), the FB policy will be strongly 

(15)

KL(π�πFF) ≥ w ln
we−KL(πFF�πFF) + (1− w)e−KL(πFB�πFF)

e−KL(πFB�πFF)

+ (1− w) ln
we−KL(πFF�πFB) + (1− w)e−KL(πFF�πFF)

e−KL(πFF�πFF)

= w ln{weKL(πFB�πFF) + (1− w)}

+ (1− w) ln{we−KL(πFF�πFB) + (1− w)}

≥ w2KL(πFB�πFF)− (1− w)wKL(πFF�πFB)

= w2{H(πFB�πFF)−H(πFB)} − (1− w)wKL(πFF�πFB)

∝ w2H(πFB�πFF)

(16)

Lmodel =− ln p(s′ | z′)+ βzKL(q(z | s, h
s)�p(z | hs))

+ βaw
2H(πFB�πFF)

(17)

Ltraj = −Epeb

[

τ

{

exp

(

δ

τ

)

− 1

}

(−Lmodel + ln π)

]

connected with the FF policy. In summary, with this for-
mulation, we can expect that the FB policy will be opti-
mized first while regularization is weakened, and that its 
skill will gradually be transferred to the FF policy as like 

FEL [21].

Additional design for implementation
Design of mixture ratio based on policy entropy
For the practical implementation, we first design the 
mixture ratio w ∈ [0, 1] heuristically. As its require-
ments, the composed policy should prioritize the pol-
icy with higher confidence from the FB/FF policies. In 
addition, if the FB/FF policies are similar to each other, 
either can be selected. Finally, even for arbitrary distri-
bution model of the FB/FF policies, w must be comput-
able. Note that the similar study has proposed a method 
of weighting the policies according to the value func-
tion corresponding to each policy [24], but this method 
cannot be used in this framework because there is only 
a single value function.

As one of the solutions for these requirements, we 
design the following w with the entropies for the FB/FF 
policies, HFB,HFF , and the L2 norm between the means 
of these policies, d = �µFB − µFF�2.

where βT > 0 denotes the inverse temperature param-
eter, i.e. w tends to be deterministic at 0 or 1 with higher 
βT ; and vice versa. Note that as lower entropy has higher 
confidence, the negative entropies are applied into soft-
max function.

If one of the entropies is sufficiently smaller than 
another, w will converge on 1 or 0 for prioritizing the FB/
FF policies, respectively. However, if these policies out-
put similar values on average, the robot can select action 
from either policy, so the inverse temperature is adap-
tively lowered by d to make w converge to w ≃ 0.5.

(18)w =
exp(−HFBdβT )

exp(−HFBdβT )+ exp(−HFFdβT )
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Partial cut of computational graph
In general, VAE-based architecture holds the computa-
tional graph, which gives paths for backpropagation, of 
latent variable z by reparameterization trick. If this trick 
is applied to a in our dynamics model as it is, the policy 
π will be updated toward one for improving the predic-
tion accuracy, not for maximizing the return, which is the 
original purpose of policy optimization in RL.

To mitigate the wrong updates of π while preserv-
ing the capability to backpropagate the gradients to the 
whole network as in VAE, we partially cut the computa-
tional graph as follows:

where η denotes the hyperparameter and ·̂ cuts the com-
putational graph and represents merely value.

Auxiliary loss functions
As can be seen in Eq. (17), if δ < 0 , −Lmodel will be mini-
mized, reducing the prediction accuracy of dynamics. 
As for the policy, it is desirable to have a sign reversal of 
its loss according to δ to determine whether the update 
direction is good or bad. On the other hand, since the 
dynamics model should ideally have a high prediction 
accuracy for any state, this update rule may cause the fail-
ure of optimization.

In order not to reduce the prediction accuracy, we 
add an auxiliary loss function. We focus on the fact 
that the lower bound of the coefficient in Eq.  (17), 
τ (exp(δτ−1)− 1) , is bounded and can be found analyti-
cally to be −τ when δ → −∞ . That is, by adding τLmodel 
as the auxiliary loss function, the dynamics model should 
be updated toward one with higher prediction accuracy, 
while its update amount is still weighted by τ exp(δτ−1).

To update the value function, V, the conventional RL 
uses Eq.  (2). Instead of it, the minimization problem of 
the KL divergence between p(O | s, a) and p(O | s) is 
derived in the literature [26] as the following loss func-
tion similar to Eq. (17).

Note that, in this formula (and Eq.  (17)), δ has no com-
putational graph for backpropagation, i.e. it is merely 
coefficient.

Finally, the loss function to be minimized for updat-
ing π (i.e. πFB and πFF ), V, and pm can be summarized as 
follows:

where Ltraj , Lvalue , and Lmodel are given in Eqs.  (17), 
(20), and (16), respectively. This loss function can be 

(19)a ← ηa+ (1− η)â

(20)Lvalue = −Epeb

[

τ

{

exp

(

δ

τ

)

− 1

}

V

]

(21)Lall = Ltraj + Lvalue + τLmodel

minimized by one of the stochastic gradient descent 
(SGD) methods like [36].

Results and discussion
Objective
We verify the validity of the proposed method derived 
in this paper. This verification is done through a numeri-
cal simulation of a cart-pole inverted pendulum and an 
experiment of a snake robot forward locomotion, which 
is driven by central pattern generators (CPGs) [37].

Four specific objectives are listed as below. 

1.	 Through the simulation and the robot experiment, 
we verify that the proposed method can optimize the 
composed policy, optimization process of which is 
also revealed.

2.	 By comparing the successful and failing cases in the 
simulation, we clarify an open issue of the proposed 
method.

3.	 We compare two behaviors with the decomposed 
FB/FF policies to make sure there is little difference 
between them.

4.	 By intentionally causing sensing failures in the robot 
experiment, we illustrate the sensitivity/robustness of 
FB/FF policies to it, respectively.

Note that the purpose of this paper is to analyze the 
learnability of the proposed method and its character-
istics, since it is difficult to make a fair comparison with 
similar studies that are robust to sensing failures [15, 18–
20] due to differences in their inputs, network architec-
tures, and so on.

Setup of proposed method
The network architecture for the proposed method is 
designed using PyTorch [38], as illustrated in Fig.  4. 
All the modules (i.e. the encoder q(z | s, hs) , decoder 
p(s′ | z′) , time-dependent prior q(z | hs) , dynamics f(z, a), 
value function V(s), and the FB/FF policies πFB(a | s) , 
πFF(a | ha) ) are represented by three fully connected lay-
ers with 100 neurons for each. As nonlinear activation 
functions for them, we apply layer normalization [39] 
and Swish function [40]. To represent the histories, hs 
and ha , as mentioned before, we employ deep echo state 
networks [30] (three layers with 100 neurons for each). 
Probability density function outputted from all the sto-
chastic model is given as student-t distribution with ref-
erence to [41–43].

To optimize the above network architecture, a robust 
SGD, i.e., LaProp [36] with t-momentum [44] and 
d-AmsGrad [45] (so-called td-AmsProp), is employed 
with their default parameters except the learning rate. 
In addition, optimization of V and π can be accelerated 
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by using adaptive eligibility traces [46], and stabilized by 
using t-soft target network [29].

The parameters for the above implementation, includ-
ing those unique to the proposed method, are summa-
rized in Table 1. Many of these were empirically adjusted 
based on values from previous studies. Because of the 
large number of parameters involved, the influence 
of these parameters on the behavior of the proposed 
method is not examined in this paper. However, it should 
be remarked that a meta-optimization of them can be 

easily performed with packages such as Optuna [47], 
although such a meta-optimization requires a great deal 
of time.

Simulation for statistical evaluation
For the simulation, we employ Pybullet dynamics engine 
wrapped by OpenAI Gym [48, 49]. A task (a.k.a. environ-
ment), InvertedPendulumBullet-v0, where a cart tries 
to keep a pole standing on it, is tried to be solved. With 
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Fig. 4  Network architecture of the proposed method: it contains seven modules for the encoder q(z | s, hs) , decoder p(s′ | z′) , time-dependent 
prior q(z | hs) , dynamics f(z, a), value function V(s), and the FB/FF policies πFB(a | s) , πFF(a | ha) with two RNN features, hs and ha ; πFB and πFF are 
composed as π , while being regularized between each other

Table 1  Parameter configuration

Symbol Meaning Value

|Z| Dimension size of latent space 6

βT Inverse temperature 10

βz Weight of regularization in z 1e−2

βa Weight of regularization in a 1e−4

η Remaining computational graph 1e−4

γ Discount factor 0.99

α Learning rate 3e−4

ρ Echo state property [30] 0.5

(τ , ν) Hyperparameters for t-soft update [29] (0.5, 4.0)

(�1max, �
2
max, κ) Hyperaparameters for adaptive eligibility traces [46] (0.5, 0.95, 10)
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different random seeds, 30 trials involving 300 episodes 
for each are performed.

First of all, we depict the learning curves about the 
score (a.k.a. the sum of rewards) and the mixture ratio 
in Fig.  5. Since five trials were obvious failures, for fur-
ther analysis, we separately depicted Failure (5) for the 
five failures and Success (25) for the remaining successful 
trials. We can see in the successful trials that the agent 
could solve this balancing task stably after 150 episodes, 
even with stochastic actions. Furthermore, further stabi-
lization and making the composed policy deterministic 
were accelerated, and in the end, the task was almost cer-
tainly accomplished by the proposed method in the suc-
cessful 25 trials.

Focusing on the mixture ratio, the FB policy was domi-
nant in the early stages of learning, as expected. Then, as 
the episodes passed, the FF policy was optimized toward 
the FB policy, and the mixture ratio gradually approached 
0.5. Finally, it seems to have converged to around 0.7, 
suggesting that the proposed method is basically domi-
nated by the FB policy under stable observation.

Although all the trials obtained almost the same curves 
until 50 episodes in both figures, the failure trials sud-
denly decreased their scores. In addition, probably due to 
the failure of optimization of the FF policy, the mixture 
ratio in the failure trials fixed on almost 1. It is neces-
sary to clarify the cause of this apparent difference from 
the successful trials, i.e. the open issue of the proposed 
method.

To this end, we decompose the mixture ratio into the 
distance between the FB/FF policies, d, and the entropies 
of the respective policies, HFB and HFF , in Fig. 6. Extreme 

behavior can be observed around 80th episode in d and 
HFF . This suggests that the FF policy (or its base RNNs) 
was updated extremely wrong direction, and could not 
be reverted from there. As a consequence, the FB policy 
was also constantly regularized to the FF policy, i.e. the 
wrong direction, causing the failures of the balancing 
task. Indeed, HFB was gradually increased toward HFF . In 
summary, the proposed method lacks the stabilization of 
learning of the FF policy (or its base RNNs). It is how-
ever expected to be improved by suppressing the amount 
of policy updates like the latest RL [50], regularization 
of RNNs [51], and/or promoting initialization of the FF 
policy.

Robot experiment
The following robot experiment is conducted to illustrate 
the practical value of the proposed method. Since the sta-
tistical properties of the proposed method are verified 
via the above simulation, we demonstrate one successful 
case here.

Setup of robot and task
A snake robot used in this experiment is shown in Fig. 7. 
This robot has eight Qbmove actuators developed by 
QbRobotics, which can control the stiffness in hardware 
level, i.e. variable stiffness actuator (VSA) [52]. As can be 
seen in the figure, all the actuators are serially connected 
and on casters to easily drive by snaking locomotion. 
On the head of the robot, an AR marker is attached to 
detect its coordinates using a camera (ZED2 developed 
by Stereolabs).

50 100 150 200 250 300
Episode

200

400

600

800

1000

Sc
or

e 
(s

um
 o

f r
ew

ar
ds

)

Failure (5) Success (25)

(a) Score

50 100 150 200 250 300
Episode

0.2

0.4

0.6

0.8

M
ix

tu
re

 ra
tio

Failure (5) Success (25)

(b) Mixture ratio
Fig. 5  Simulation results: 30 trials were divided into 5 failure and 25 successful cases; around 150 episodes, the proposed method mostly 
succeeded in balancing the pole on the cart, mainly using the FB policy shown in the mixture ratio close to 1; afterwards, the composed policy was 
made deterministic with further stabilization; in that time, the skill of the FB policy was probably transferred into the FF policy, as can be seen in the 
decrease of the mixture ratio
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To generate the primitive snaking locomotion, we 
employ CPGs [37] as mentioned before. Each CPG fol-
lows Cohen’s model with sine function as follows:

where ζi denotes the internal state, and θi is consistent 
with the reference angle of i-th actuator. α , uri  , u

η
i  , and uAi  

denote the internal parameters of this CPG model. For all 
the CPGs (a.k.a. actuators), we set the same parameters, 
α = 2 , uri = 10 , uηi = 1 , and uAi = π/4 , respectively. dt is 
the discrete time step and set to be 0.02 sec.

Even with this CPG model, the robot has room 
for optimization of the stiffness of each actuator, ki . 

(22)ζi = ζi +







uri +
�

ij

α(ζj + ζi − u
η
i )







dt

(23)θi = uAi sin(ζi)

Therefore, the proposed method is applied to the opti-
mization of ki ∈ [0, 1] ( i = 1, 2, . . . , 8 ). Let us introduce 
the state and action spaces of the robot.

As for the state of the robot s, the robot observes the 
internal state of each actuator: θi angle; θ̇i angular veloc-
ity; τi torque; and ki stiffness (different from the com-
mand value due to control accuracy). To evaluate its 
locomotion, the coordinates of its head, x and y, are addi-
tionally observed (see Fig. 8). In addition, as mentioned 
before, the action of the robot a is set to be ki . In sum-
mary, 34-dimensional s and 8-dimensional a are summa-
rized as follows:

For the definition of task, i.e. the design of reward func-
tion, we consider forward locomotion. Since the primi-
tive motion is already generated by the CPG model, this 
task can be accomplished only by restraining the side-
ward deviation. Therefore, we define the reward function 
as follows:

The proposed method learns the composed policy for the 
above task. At the beginning of each episode, the robot 
is initialized to the same place with θi = 0 and ki = 0.5 . 
Afterwards, the robot starts to move forward, and if 
it goes outside of observable area (including a goal) or 
spends 2000 time steps, that episode is terminated. We 
tried 100 episodes in total.

(24)
s = [θ1, θ̇1, τ1, k1; θ2, θ̇2, τ2, k2; . . . ; θ8, θ̇8, τ8, k8; x, y]

⊤

(25)a = [k1, k2, . . . , k8]
⊤

(26)r(s, a) = −|y|

50 100 150 200 250 300
Episode

0.5

1.0

1.5

2.0

D
is

ta
nc

e 
be

tw
ee

n 
FB

/F
F 

po
lic

ie
s

Failure (5) Success (25)

(a) Distance d

50 100 150 200 250 300
Episode

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

En
tro

py
 o

f F
B 

po
lic

y

Failure (5) Success (25)

(b) Entropy of the FB policy
HFB

50 100 150 200 250 300
Episode

−0.5

0.0

0.5

1.0

1.5

2.0

En
tro

py
 o

f F
F 

po
lic

y

Failure (5) Success (25)

(c) Entropy of the FF policy
HFF

50 100 150 200 250 300
Episode

0.5

1.0

1.5

2.0

D
is

ta
nc

e 
be

tw
ee

n 
FB

/F
F 

po
lic

ie
s

Failure (5) Success (25)

(a) Distance d

50 100 150 200 250 300
Episode

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

En
tro

py
 o

f F
B 

po
lic

y

Failure (5) Success (25)

(b) Entropy of the FB policy
HFB

50 100 150 200 250 300
Episode

−0.5

0.0

0.5

1.0

1.5

2.0

En
tro

py
 o

f F
F 

po
lic

y

Failure (5) Success (25)

(c) Entropy of the FF policy
HFF

50 100 150 200 250 300
Episode

0.5

1.0

1.5

2.0

D
is

ta
nc

e 
be

tw
ee

n 
FB

/F
F 

po
lic

ie
s

Failure (5) Success (25)Failure (5)Failure (5)Failure (5) Success (25)Success (25)Success (25)Failure (5) Success (25)

(a) Distance d

50 100 150 200 250 300
Episode

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

En
tro

py
 o

f F
B 

po
lic

y

Failure (5) Success (25)Failure (5)Failure (5)Failure (5) Success (25)Success (25)Success (25)Failure (5) Success (25)

(b) Entropy of the FB policy
HFB

50 100 150 200 250 300
Episode

−0.5

0.0

0.5

1.0

1.5

2.0

En
tro

py
 o

f F
F 

po
lic

y

Failure (5) Success (25)Failure (5)Failure (5)Failure (5) Success (25)Success (25)Success (25)Failure (5) Success (25)

Fig. 6  Decomposition of mixture ratio: 30 trials were divided into 5 failure and 25 successful cases; around 80th episode on the five failure cases, 
d and HFF were suddenly jumped to higher values; this suggests the wrong updates of the FF policy (or its base RNNs); according to this erroneous 
behavior, HFB was pulled into the wrong direction by the FF policy, thereby resulting in the failures of the balancing task

Fig. 7  Snake robot with eight VSAs serially connected: as its actuator, 
we use Qbmove developed QbRobotics, which can control its 
stiffness; this robot is on casters to easily drive forward by snaking 
locomotion, base of which is generated by CPGs
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Learning results
We depict the learning curves about the score (a.k.a. the 
sum of rewards) and the mixture ratio in Fig. 9. Note that 
the moving average with 5 window size is applied to make 
it easier to see the learning trends. From the score, we say 
that the proposed method improved straightness of the 
snaking locomotion. Indeed, Fig. 10, which illustrates the 
snapshots of experiment before and after learning, clearly 
indicates that the robot could succeeded in forward loco-
motion only after learning.

As well as the successful trials in Fig. 5, this experiment 
also increased the mixture ratio at first, and afterwards, 
the FF policy was optimized, reducing the mixture ratio 
toward 0.5 (but converged on around 0.7). We found the 

additional feature that during 10–30 episodes, probably 
when the transfer of skill from the FB to FF policies was 
active, the score temporarily decreased. This would be 
due to the increased frequency of use of the non-optimal 
FF policy, resulting in erroneous behaviors. After that 
period, however, the score became stably high, and we 
expect that the above skill transfer was almost complete 
and the optimal actions could be sampled even from the 
FF policy.

Demonstration with learned policies
To see the accomplishment of the skill transfer, after the 
above learning, we apply the decomposed FB/FF poli-
cies individually into the robot. On the top of Fig. 11, we 
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y

Camera to detect AR marker

Fig. 8  Experimental field: on the top of this field, a camera to detect the robot head by the AR marker is placed; by controlling the stiffness of each 
actuator, the robot tries to move forward, i.e. x-direction
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Fig. 9  Experimental results: for visibility of learning trends, moving average with 5 window size is applied; the proposed method successfully 
improved the straightness of the snaking motion by optimizing the stiffness; we found the skill transfer from the FB policy to the FF policy, as can 
be seen in the mixture ratio as well as Fig. 5; as a remarkable point, during this transfer (10–30 episodes), the score temporarily decreased probably 
due to the increased frequency of use of the non-optimal FF policy
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shows the overlapped snapshots (red/blue robots cor-
respond to the FB/FF policies, respectively). With the 
FF policy, of course, randomness in the initial state were 
gradually increased and accumulated, namely the two 
results can never be completely consistent. However, the 
difference at the goal was only a few centimeters. This 
result suggests that the skill transfer from the FB to FF 
policies has been achieved as expected, although there is 
room for further performance improvement.

Finally, we emulate occlusion as a sensing failure for 
detecting the AR marker on the head. When the robot 
is in the left side of the video frame, the detection of the 
AR marker is forcibly failed, and returns wrong (and con-
stant) x and y. In that case, the FB policy would collapse, 
while the FF policy is never affected by this emulated 
sensing failure. On the bottom of Fig. 11, we shows the 
overlapped snapshots, where the left side with the sens-
ing failure is shaded. Until the robot escaped the left side, 
the locomotion obtained by the FB policy drifted to the 
bottom of the video frame, and it was apparent that the 
robot could not recovered by the goal (Additional file 1).

In detail, Fig. 12 illustrates the stiffness during this test. 
Note that the vertical axis is the unbounded version of ki , 
and can be encoded into the original ki through sigmoid 
function. As can be seen in the figure, the sensing failure 
absolutely affected the outputs by the FB policy, while the 
FF policy ignored it and outputted periodically. Although 
this test is a proof-of-concept, it clearly shows the sensi-
tivity/robustness of the FB/FF policies to sensing failures 
that may occur in real environment. We then conclude 
that a framework that can learn both the FB/FF policies 
in a unified manner, such as the proposed method, is use-
ful in practice.

Conclusion
In this paper, we derive a new optimization problem of 
both the FB/FF policies in a unified manner. Its point is 
to consider minimization/maximization of the KL diver-
gences between the trajectories, one is predicted by the 
composed policy and the stochastic dynamics model, 
and others is inferred as the optimal/non-optimal ones 
based on control as inference. With the composed policy 

Fig. 10  Snapshots before and after learning: the yellow horizontal dashed lines represents the target where y = 0 ; before learning, the initial policy 
failed to make the snaking locomotion forward; in contrast, the proposed method yielded the forward locomotion using the optimized composed 
policy

Fig. 11  Snapshots with/without the sensing failures: the yellow horizontal dashed lines represents the target where y = 0 ; the robot was 
controlled by the decomposed FB (red) or FF (blue) policy; without the sensing failures, both the policies generated almost the same forward 
locomotion, which indicates the proper skill transfer; with the sensing failures to detect the AR marker, indicated as the shaded area, the FB policy 
drifted the robot to the side due to the wrong signal; in contrast, the FF policy could achieve the forward locomotion by ignoring the wrong signal 
in principle
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as mixture distribution, the stochastic dynamics model 
that is approximated by variational method yields the 
soft regularization, i.e. the cross entropy between the FB/
FF policies. In addition, by designing the mixture ratio 
to prioritize the policy with higher confidence, we can 
expect that the FB policy is first optimized since its state 
dependency can easily be found, then its skill is trans-
ferred to the FF policy via the regularization. Indeed, 
the numerical simulation and the robot experiment veri-
fied that the proposed method can stably solve the given 
tasks, that is, it has capability to optimize the composed 
policy even with the different learning law from the tra-
ditional RL. In addition, we demonstrated that using our 
method, the FF policy can be appropriately optimized to 
generate the similar behavior to one with the FB policy. 

As a proof-of-concept, we finally illustrated the robust-
ness of the FF policy to the sensing failures when the AR 
marker could not be detected.

However, we also found that the FF policy (or its base 
RNNs) occasionally failed to be optimized due to the 
cause of extreme updates toward wrong direction. To 
alleviate this problem, in the near future, we need to 
make the FF policy conservatively update, for example, 
using a soft regularization to its prior. Alternatively, 
we will seek the other formulations for the simultane-
ous learning of the FB/FF policies, which can avoid this 
problem. With more stable learning capability, the pro-
posed method will be applied to various robotic tasks 
with potential for the sensing failures. Especially, since 
the demonstration in this paper only focused on the 

Fig. 12  Stiffness of each actuator when the sensing failures were intentionally caused: the vertical axis depicts the unbounded version of ki , 
which can be encoded by sigmoid function; during the sensing failures, the FB policy outputted obviously erroneous stiffness; in contrast, the FF 
policy could hold the periodic outputs; note that the phase and amplitude deviations in the area without the sensing failures can be attributed to 
incomplete skill transfer and recovery attempts from lateral deviation
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sensing failure by occlusion, we need to investigate the 
robustness to the other types of sensing failures (e.g. 
the packet loss). As part of this evaluation, we will also 
consider the system in combination with the conven-
tional techniques such as filtering, and show that they 
can complement each other.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40648-​022-​00232-w.

Additional file 1. Experimental video. This video summarized all the 
experiments using the snake robot for forward snaking locomotion. At 
first, we confirmed that the constant (maximum, more specifically) stiff-
ness failed the forward locomotion to clarify the necessity of its optimiza-
tion. At the beginning of learning, the robot could not keep the forward 
locomotion naturally. By learning with the proposed method, the robot 
could achieve the forward locomotion by using the composed policy. 
Even with the decomposed FB (red) or FF (blue) policy, we found almost 
the same motion. However, when the detection failure was intentionally 
applied, the FB policy failed to keep the locomotion forward, while the FF 
policy could do so.
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