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Abstract 

People with disabilities, such as patients with motor paralysis conditions, lack independence and cannot move most 
parts of their bodies except for their eyes. Supportive robot technology is highly beneficial in supporting these types 
of patients. We propose a gaze-informed location-based (or gaze-based) object segmentation, which is a core mod-
ule of successful patient-robot interaction in an object-search task (i.e., a situation when a robot has to search for and 
deliver a target object to the patient). We have introduced the concepts of gaze tracing (GT) and gaze blinking (GB), 
which are integrated into our proposed object segmentation technique, to yield the benefit of an accurate visual seg-
mentation of unknown objects in a complex scene. Gaze tracing information can be used as a clue as to where the 
target object is located in a scene. Then, gaze blinking can be used to confirm the position of the target object. The 
effectiveness of our proposed method has been demonstrated using a humanoid robot in experiments with different 
types of highly cluttered scenes. Based on the limited gaze guidance from the user, we achieved an 85% F-score of 
unknown object segmentation in an unknown environment.
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Introduction
There are many patients who suffer from devastating 
conditions, such as amyotrophic lateral sclerosis (ALS) 
[1], brain stroke, and muscular dystrophy [2]. These 
patients usually retain full consciousness but can only 
blink or move their eyebrows. As it is assumed that 
humanoid robots will coexist in human environments in 
the near future, the ability of a humanoid robot to assist 
such patients is in high demand. The most common situ-
ation in which patients need assistance from a robot is an 
object search application, where the robot is expected to 
deliver a specific object in the environment according to 

the user’s needs. Even the most common application of 
object segmentation is a very challenging problem.

To autonomously segment objects in a cluttered envi-
ronment, many techniques, such as active contour model 
or snake [3], level sets [4], and the graph cuts [5] method 
have been proposed in the computer vision field. In 
extending the graph cut method, many researchers have 
tried to use predefined information, such as shape [6], or 
using kernel methods [7]. Recently, many learning-based 
approaches [8], in which the robot has previously learned 
object categories, have been introduced. However, it is 
still hard to achieve high accuracy from passive obser-
vation. Learning-based methods are hard to apply in 
practical situations, in which new objects are introduced 
every day. It is not practical to register all new objects in 
a database.

Interaction with a user makes object segmentation 
feasible for practical situations. Based on the interactive 
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capability of a patient, we can use facial engagement, 
head pose commands, and Brain Machine Interface 
(BMI) to interact with the robots [9]. Recently, BMI 
played an important role in helping patients control elec-
tronic appliances and the movements of robotic or pros-
thetic limbs [10]. However, to give a command about an 
object’s position and set boundaries in a cluttered envi-
ronment is difficult, as transmitting a precise command 
via these interaction methods is complicated.

To interact with a robot in an object segmentation task, 
we introduced a Gaze Tracking Device (GTD) to disabled 
patients. This gaze-interaction task was primarily divided 
into three steps. First, the patient gazes at the target 
object using their own vision or visual feedback from the 
robot’s vision and then give a command by blinking to 
select the target object. Next, the robot navigates to the 
target object, sending visual feedback to the user’s moni-
tor, which allows the user to select and confirm the tar-
get object with another gaze. Finally, the robot grasps the 
object and brings it back to the user (Fig. 1).

In this paper, we proposed a gaze-based object segmen-
tation method, based on gaze interaction from users, to 
optimize image labels and segment mixed, multicolored, 
and occluded objects in a cluttered environment. As the 
objects in an image are multicolored with noise and low 
resolution, we investigated a transformation of the origi-
nal image to a higher dimensional kernel space using 
an iterative image segmentation as well as proposed a 
method to filter target object label from the image based 
on gaze information. Specifically, we proposed two types 
of gazes interaction for object segmentation:

•	 Gaze Tracing (GT): in which the user passively gazes 
into the area surrounding the object in an image.

•	 Gaze Blinking (GB): in which the user blinks at the 
center of the object for confirmation.

These two types of gazes can be integrated with visual-
based object segmentation to achieve accurate object 
segmentation in cluttered environment.

System architecture
This section briefly explains the object-search system 
architecture (Fig. 2 ) [11], which allows a robot to navi-
gate to the target location according to the user’s gaze 
command. The calibration of the GTD is initially con-
ducted with the method described in [12]. Then, a 
Kalman filter [13] is applied for gaze position ( gpx  , gpy  ) 
smoothing. Finally, our proposed gaze-based object seg-
mentation is applied for target object segmentation.

Blink detection
We can also detect a user’s eye blinks using [14]. There-
fore, voluntary long blinks and involuntary short blinks 
can be classified. Different types of blinks instruct differ-
ent robot commands as follows:

•	 Location command: This command specifies a tar-
get’s location. This can be done by performing two 

Fig. 1  The overall concept of an object search using a Gaze Tracking 
Device (GTD). The patient gazes at the target object and then the 
robot autonomously navigates the environment to search for the 
object while providing visual feedback to the patient

Fig. 2  Flowchart of object search by service robot and our proposed method
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consecutive blinks at the target’s location in the real 
environment.

•	 Object confirmation command: After gaze tracing, 
we can confirm an object’s location by gaze blinking, 
in which the user performs three consecutive blinks.

Each blink interval must be around 300  ms. This blink 
pattern is clearly not natural human eye motion and 
clearly separated from involuntary short blinks, so it 
does not increase cognitive load and does not disturb the 
user’s natural gaze pattern.

Robot teleoperation using gaze
The user can teleoperate the robot by performing a loca-
tion command in which the user gazes directly at the 
goal location in the environment. Our robot platform 
can independently navigate to that target location based 
on prior map and indirect search algorithms [15]. Once 
the robot arrives at the target location, it streams visual 
data of the target object to the user for gaze interaction. 
Since the robot has a limited field of view, it can adapt 
its observation point to provide different perspectives of 
the object which is based on the approach of the author’s 
previous work [11].

Methods
This section presents our proposed gaze-based object 
segmentation. Our strategy is to use gaze-interaction to 
enhance vision-based target-object segmentation. The 
gaze interaction was designed so that object segmenta-
tion can be performed as few gaze interactions as possi-
ble. Firstly, the user applies only a few examples of gaze 
tracing (GT) and gaze blinking (GB) to the target object. 
Afterward, we apply image segmentation to segment an 
image into different labels with parameter optimization 
from obtained gaze information. Finally, we filter target 
object label based on gaze tracing (GT) and gaze blinking 
(GB) approach.

Image segmentation
Label creation
The goal is to segment Image I into different K regions 
(rl=1, rl=2 . . . , rl=K ) that are smooth and consistent for 
the user to perform gaze interaction. This problem is 
a labeling problem, in which we utilize the graph cut 
method [7] to find a label f that minimizes the energy.
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where ct is a constant of the truncated squared absolute 
distance.

Kernel mapping
A data term Dp
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)

 of an image data is converted via a 
kernel function so that the system is suitable to seg-
ment nonlinearly separable data. Therefore, Eq.  1 is 
transformed to:

where φ(.) is a nonlinear mapping from image space to a 
higher dimensional feature space depending on the num-
ber of segmentation regions NR . Based on a kernel trick 
[7], we can derive the kernel function as:

where we use the radial basis function (RBF) kernel, 
which is suited for pattern data clustering. The RBF ker-
nel is defined as:

Optimization
To achieve an optimized image label, Eq.  5 was opti-
mized with an iterative two-step optimization method. 
The first step is performed by updating the centroid 
data of each label based on the following condition:
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The second step consists of finding the optimal label of 
the image from label centroid data provided by the first 
step. Each step updates the centroid data and creates a 
new optimal label. The algorithm iterates these two steps 
until the energy converges to a local minima.

Target object selection by gaze interaction
Even though the image was segmented into different 
labels, the target-object label needs to be defined by the 
user and we aim to use gaze interaction to assist in object 
selection. There are several existing gazed based user 
interfaces. Rivu et al. [16] propose to use gaze from the 
user to gradually reveal information on demand. Also, in 
Augmented Reality and Virtual Reality, instead of using 
mouse or gestures, we can confirm targets using gaze 
selection [17]. Gaze is also used to select objects in 3D 
environments based on hybrid gaze and controller tech-
niques [18]. Recently, a combination of gaze and gestures 
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is an active field with several applications such as object 
manipulation [19] or gaze-enhanced menu interfaces 
[20].

In this work, we focus on gaze-only as a potentially 
implicit and effortless method for selecting object from 
cluttered environment. The user can provide the robot 
with a clue about the target object’s boundaries by gaze 
tracing and blinking at the target object on a computer 
screen. The gaze interaction process is divided into:

Gaze tracing (GT)
The user is asked to gaze at the target object on the label 
image (Fig.  3a). This step is defined as a passive gaze. 
Based on the position of the gaze tracing, we then build 
the heat map [21] which is an ellipsoid distribution cen-
tered at gaze position ( gpx  , gpy ):

where whm is the weight of the heat map and x and y is 
the position of each pixel in an image. p indicates gaze 
points index which is arranged in chronological order. 
A single ellipsoid heat map from each gaze point will be 
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Fig. 3  a Label creation from kernel-based image segmentation, b heat map created by the user’s GT and selected region by GB, c Gaussian mixture 
prediction of GT points where white dot determined the centroid of cluster and red dot line show boundary of cluster, d selected label with only GT 
interaction, e selected label with GT and GB interaction
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superposed to generate the final heat map, presented in 
Fig. 3b. This model enables the fixation duration and the 
number of fixations to be integrated into one map.

For the gaze tracing, it is hard to conclude which labels 
the user gazed at that should be assembled as object 
labels, since the user can easily be distracted and look at 
other spots. As presented in Fig.  3b, we asked the user 
to look at the scissors, which was the target object. How-
ever, the user also unintentionally gazed at other points. 
Including all gaze-tracing points yields an error in the 
object-label selection.

We apply a Gaussian Mixture Prediction (GMP) [22] 
approach to fit Gaussian distribution to GT data as 
shown in Fig. 3c. The number of clusters has been set to 
2 since we want to classify GT points at target location 
and GT points at non-target location. The co-variance of 
Gaussian distribution determines the contour of the clus-
ter. GMP uses Expectation Maximization (EM) algorithm 
[23] to optimize the separation of soft clustering. In our 
case, we set a non-negative regularization of 10−6 added 
to the diagonal of co-variance and The convergence 
threshold to stop EM iterations is set to 10−3.

Gaze blinking (GB)
Label selection based only on gaze tracing yields an 
object label with noise, as presented in Fig. 3d. To con-
firm the target object, the user is required to give three 
consecutive blinks at the center of the target object. GB 
will be used to confirm the cluster that belongs to the tar-
get object and we select the label within 2 standard devia-
tions (the size of the ellipsoid) where a mask is centered 
on the confirmation location (presented as a red ellip-
soid in Fig.  3b), which will be created to filter out only 
the local maximum points of the heat map and used to 
integrate the corresponding label to the object label as 
presented in Fig.  3e. The instances that are out of the 
ellipsoid will be considered outliers.

Smoothness and number of region optimization
We use gaze pattern information to choose the smooth-
ing parameter ( α ) and a number of segmented region (K). 
From our observation, we found that the user tends to 
have more gazing points (GT) when they select complex 
or multicolored objects while having low number of gaz-
ing points on a simple object. As a result, we proposed 
to choose a number of segmented region parameter K as 
follow

where P is number of the local maximum points of the 
heat map from gaze tracing (GT) lies within ellipsoid 
defined by GB. Wo and Ho are lengths of major and minor 

(11)K = wK

(

P

WoHo

)

axes of ellipsoid derived from GT and GB. wK  is the 
weight of the number of region adaptation. Furthermore, 
we update α which is the smoothing term of region by

where wa is the weight of the alpha adaptation. From 
observation, we found wK  to be 1.2 and wa is set to 1 
for best performance on our dataset and TOSD dataset. 
With K and α optimization, we can achieve high accuracy 
and low recall rate of object segmentation while reducing 
the segmentation time of a simple object.

Experiments and results
Experiment setup
We developed and tested the system on a humanoid 
robot called ENON [24]. The robot was equipped with 
two RGB-D sensors (Kinect V1 sensor), one for navi-
gation and another on its head at a height of 1.8 m to 
stream visual data to the user. Users were asked to wear 
GTDs and accelerometers (to measure the user’s head 
orientation), as presented in Fig. 4.

Our experiments were conducted in an office environ-
ment, as presented in Fig. 4. We asked five users which 
are master students from Osaka University, Japan. Their 
age ranged from 23 to 31 years (M = 27.20, SD = 3.35), 3 
participants were male and 2 were female. All users have 
no prior experience using GTDs. Users use our system 
to guide the robot to a target location and perform gaze 
interaction with objects on a table.

Each user individually performed a calibration exer-
cise to confirm gaze precision. The subject was required 
to look at different reference points from different 
ranges. Overall, an acceptable average error was found 
to be 1.51° with variance of 0.77°. The robot sent a visual 
stream with an image size of 640 * 480 pixels, which was 
then processed on MATLAB running on Windows 10 on 
a personal computer (PC) (E5-1620 3.50 GHz Xeon CPU, 
16384 MB RAM, NVIDIA Quadro K2200 graphics card). 
The processing time varied depending on the number of 
iterations, segmentation regions, and resolution sets for 
kernel graph cuts segmentation.

Ten objects of different shape, size, and appearance 
were prepared. The experiment was conducted 10 times 
for each object, modifying the object’s appearance from 
being strongly occluded with textured sides, to sparsely 
or partially textured, non-textured, multicolored, or with 
unicolored sides.

Evaluation
We evaluated our proposed segmentation algorithm on 
two datasets: our dataset and TOSD datasets [25]. We 
selected TOSD as a comparison dataset since it consists 

(12)α = 1− wa
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P
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of scenes with varied object-configuration complexi-
ties. It is composed of images with complex and clut-
tered scenes, as well as scenes where only several boxes 
or other simple objects are presented. The TOSD data-
set consists of 111 scenes for training and 131 scenes 
for testing.

For comparison, we also compare our object-seg-
mentation method with the active [26] and the saliency 
segmentation [25] methods for GT, GB, as well as the 
combination of GT and GB for segmentation. The qual-
ity of segmentation was measured based on the recall 
and precision of segmentation, i.e., how many points in 
the final object label corresponded to the ground truth 
(the object being manually selected by the user). We 
compared by using the F-measure defined by

where calculated precision P is the fraction of the seg-
mentation mask overlapping with the ground truth and 

(13)F =
2PR

(P + R)

recall R is the fraction of the ground truth overlapping 
with segmentation mask.

Result
Object label segmentation analysis
As a piecewise constant model, the system starts by seg-
menting an image into different regions based on K-mean 
clustering. The result is presented in Fig. 5, in which the 
initial label image is not smooth and consistent. The tar-
get object selected using the gaze interaction from this 
initial label will still result in an object label with noise 
from the areas both inside and outside the label. For 
example, consider an initial object label calculated from 
K-mean clustering in which the number of labels is set to 
four. The initial label is converted via RBF kernel func-
tion to a higher dimension of four different images. As 
a result, each label characteristic is represented in each 
kernel image.

Next, each kernel image is applied to an iterative graph 
cut algorithm. The algorithm interactively merges the 
small noise inside the label while preserving the minimal 

Fig. 4  The experiment setup

Fig. 5  Left: the example of the initial object label is based on K-mean clustering, in which the number of labels is set to 4. The initial label is not 
smooth and consistent, so it is converted via RBF kernel function to a higher dimension of four different images in which the distribution of each 
kernel is changed based on each label characteristic
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energy of each label. The advantage of each kernel image 
is that it is resilient to noise from Gaussian assumption of 
the RBF kernel function. From our observation, the algo-
rithm converges within five iterations, as presented in 
Fig. 6. With the label image, only one gaze point at each 
label is sufficient to include that label as part of the object 
label.

Gaze‑based object segmentation result
Based on an optimized label obtained from the iterative 
graph cut, the user can select the region by GT point 
and confirm it with GB. Example results are presented in 
Fig. 7, in which the second and third columns show the 
optimized boundaries and labels, respectively. The user 
viewed the object label image and performed GT and GB 
interaction. The result of gaze tracing is presented in the 
fourth column of Fig. 7, in which the target label is only 
gazed at, but noise remains. The final object, in which the 
noise is removed by GB, is presented in the fifth column 
of Fig. 7. The result confirms that this system is applicable 
for the object segmentation of multicolored objects (as 
shown in the first row) and occluded objects (as shown in 
the second and third rows).

Figure  8 shows a comparison of the proposed seg-
mentation performance with an active segmentation 
approach. For GB only, active segmentation is performed 
at an average of 38.7%, since the algorithm only works 
when the object has a linear color distribution. However, 
objects 1, 2, and 3 were multicolored and had noise, so 
the active segmentation algorithm performance dropped 
to an average of 19%. Furthermore, the kernel-based 
method handled noise and nonlinear data more robustly, 
with an average precision of 45%.

By integrating GT and GB to the object-segmentation 
algorithm, as presented in Fig. 8, the robot achieved bet-
ter segmentation, and the performances of the kernel-
based and active segmentation approaches improved to 
86.9% and 80.3% precision, respectively. This was due to 
the GT and GB clues from the user, helping the system 
integrate multicolor labels into the same object.

Interaction analysis
Since each interaction possibly leads to a different seg-
mentation for an object, we also analyzed the results of 
four different F-scores. First refers to the segmentation 

Fig. 6  The result of energy optimization of iterative kernel segmentation. At each iteration, the algorithm updates the kernel image and output 
label. Therefore, the final label at the last iteration has a smooth and consistent label with a minimum energy guarantee. This optimizes the label 
(where all the holes are filled), allowing the user to easily interact with the label
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from the first interaction, Best refers to the best segmen-
tation WRT ground truth, All refers to the average score 
over all the segmentations for an object, and Worst refers 
to the worst score among all the segmentations for an 
object.

Ideally, we would like each interaction to yield the 
best segmentation. However, the segmentation algo-
rithm depends a lot on the position of the GT and GB 
points. Therefore, an algorithm that is resilient to differ-
ent interactions (i.e., different sets of GT and GB points) 
is expected. To show how GT and GB interaction can 
improve segmentation to other traditional approaches 
(Active and Saliency), we also implemented 3 types of 
interaction which are GT-only, GB-only, and GT + GB 

to conventional approaches. For GB-only interaction, 
without GT points, GMP will use the centroid of label 
that has a similar color (± 5 of hue value) to be points for 
clustering. For example, if the GB point is located at the 
green label, all the centroids of the green labels will be 
used in the GMP process. If the target object has a single 
color or similar color, the GB-only can assist segmenta-
tion well. However, GB-only interaction is not robust to 
multi-color object segmentation. For GT-only interac-
tion, since there is no object confirmation from the GB 
point, the system will select the cluster that has more GT 
points as a target object. This approach can fail when the 
user wants to select a tiny object since the GT points at a 
small object usually less than the distraction point.

We present all F-scores in Table  1 for all cases (All, 
First, Worst, and Best), for all objects, and all scenes. 
GT + GB interaction generally improve overall perfor-
mance in all approaches and on average, our proposed 
gaze-based object segmentation outperformed Active 
segmentation, Saliency segmentation and Kernel seg-
mentation by 24%, 15% and 10% respectively.

Comparison with state of the art methods
We also evaluated our segmentation algorithm with 
other state-of-the-art object segmentation approaches 
using publicly available datasets: the Table Object Scene 
Dataset (TOSD) [25]. Table  2 compares our results to 
state-of-the-art object segmentation.

With GT and GB interaction, our method achieves an 
F-score of 0.75, which is an over 10 % relative improve-
ment from the previous best entry (SGN [27]) and is also 

Fig. 7  Original image (first row), boundary of each label overlay on the original image (second row), example of object segmentation (third row), 
image label result from image segmentation (fourth row), object segmentation result from only gaze-tracing (GT) (fifth row), and the final object 
label from GT and GB

Fig. 8  The comparison of average precision of each object 
segmentation based on the proposed gaze-based method
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better than the concurrent work from MASK R-CNN 
[28] with 7%. Compared to the best entry, using fine data 
only, we achieve 15% improvement. We also performed 
evaluation within each individual category. Our method 
shows massive improvement of each category over other 
approaches (relatively 15% improvement over Glass and 
Bottle and 20% improvement on Plate, Book and Mug).

Discussion
As only color information from a monocular camera was 
used, we analyzed and discussed the characteristics of 
object segmentation and how smoothness and a number 
of regions affect the accuracy of segmentation. Typically, 
the image segmentation algorithm [7] was robust enough 
to segment image into fine piece of image label and it can 
filter out noise in higher kernel space. However, as it is 
typical unsupervised learning, some parameter such as 
the number of regions and the smoothness must be pre-
defined. A single-color object and multi-color required 
different sets of parameters to achieve high accuracy. In 
our study, we not only use GT and GB to directly seg-
ment target object label, but we also proposed to adapt 
smoothness and a number of regions based on gaze clues 

from the user which is another factor to achieve high 
accuracy (Fig. 9).

For a single-color object, the user usually performs only 
a few gaze tracing. If the label segmentation is too fine, 
the same color label can be separated into several labels. 
There is a chance some target object labels might not be 
selected by gaze tracing. As a result, the low number of 
the region and a high degree of smoothness should be set 
so that the object label is not too fine. On the other hand, 
the user usually performs more gaze tracing points on 
different regions of a multi-color object. To achieve high 
precision of multicolor objects, a high number of regions 
and a low degree of smoothness parameter should be 
set. As a result, object labels are more distinct from 
other object labels and can be matched with gaze tracing 
points.

Conclusion
There are many patients who suffer from locked-in 
syndrome and an inability to live independently. We 
proposed object segmentation based on gaze interac-
tion for patients to interact with a robot for the appli-
cation of an object search in a cluttered environment. 

Table 1  F-score for different segmentation algorithms evaluated on our datasets

Interaction All First Worst Best

Mean SD Mean SD Mean SD Mean SD

Active segmentation [26] GT only 0.41 0.02 0.21 0.02 0.18 0.02 0.75 0.02

GB only 0.52 0.03 0.20 0.03 0.22 0.01 0.71 0.01

GT + GB 0.61 0.04 0.42 0.02 0.33 0.01 0.83 0.01

Saliency segmentation [25] GT only 0.50 0.03 0.46 0.02 0.34 0.02 0.79 0.02

GB only 0.42 0.06 0.31 0.03 0.33 0.02 0.74 0.02

GT + GB 0.71 0.02 0.55 0.04 0.40 0.01 0.86 0.03

Kernel segmentation [7] GT only 0.50 0.07 0.36 0.03 0.21 0.04 0.88 0.03

GB only 0.40 0.06 0.33 0.02 0.22 0.03 0.70 0.02

GT + GB 0.75 0.03 0.61 0.02 0.32 0.04 0.81 0.02

Gaze segmentation GT only 0.54 0.09 0.43 0.03 0.31 0.02 0.87 0.02

GB only 0.44 0.02 0.34 0.02 0.34 0.01 0.72 0.04

GT + GB 0.85 0.03 0.66 0.02 0.41 0.02 0.91 0.02

Table 2  F-score for different segmentation algorithms evaluated on TOSD [25] datasets

Method All Glass Bottle Plate Book Mug

Mask RCNN [28] 0.68 0.72 0.62 0.61 0.68 0.81

DWT [29] 0.74 0.63 0.82 0.72 0.75 0.82

InstanceCut [30] 0.69 0.52 0.84 0.62 0.64 0.85

SGN [31] 0.65 0.66 0.72 0.70 0.67 0.52

Kernel segmentation [7] 0.70 0.62 0.74 0.64 0.65 0.86

Gaze segmentation 0.75 0.72 0.75 0.68 0.68 0.87
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To interact with the label in an image, we introduced 
the concepts of GT and GB to help the robot determine 
its target object. The patient can perform GT by freely 
gazing at the area around a target object. Later, the user 
provides the robot with the object location from GB, 
which involves three consecutive blinks. Afterwards, 
the kernel-based segmentation algorithm with param-
eter selection from gaze information was performed 
with the purpose of image labeling. The result of this 
interaction will be integrated with the image labeling to 
confirm the final object label.

Our experiment results show that the proposed gaze-
based method overcomes the conventional method (with 
an F-score of 85% for a combination of GB and GT) for 
noisy multicolor and occluded object segmentation with 
an average precision of 54.8% for GT and 86.9% for a 
combination of GB and GT, respectively.

Our future work will focus on integrating this sys-
tem with autonomous navigation for autonomous 
wheelchairs.
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