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Abstract 

Disaster response robots are expected to perform complicated tasks such as traveling over unstable terrain, climbing 
slippery steps, and removing heavy debris. To complete such tasks safely, the robots must obtain not only visual-
perceptual information (VPI) such as surface shape but also the haptic-perceptual information (HPI) such as surface 
friction of objects in the environments. VPI can be obtained from laser sensors and cameras. In contrast, HPI can be 
basically obtained from only the results of physical interaction with the environments, e.g., reaction force and defor-
mation. However, current robots do not have a function to estimate the HPI. In this study, we propose a framework 
to estimate such physically interactive parameters (PIPs), including hardness, friction, and weight, which are vital 
parameters for safe robot-environment interaction. For effective estimation, we define the ground (GGM) and object 
groping modes (OGM). The endpoint of the robot arm, which has a force sensor, actively touches, pushes, rubs, and 
lifts objects in the environment with a hybrid position/force control, and three kinds of PIPs are estimated from the 
measured reaction force and displacement of the arm endpoint. The robot finally judges the accident risk based on 
estimated PIPs, e.g., safe, attentional, or dangerous. We prepared environments that had the same surface shape but 
different hardness, friction, and weight. The experimental results indicated that the proposed framework could esti-
mate PIPs adequately and was useful to judge the risk and safely plan tasks.
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Introduction
For engaging in disaster response work in emergencies 
caused by earthquakes, tsunamis, and volcanic eruptions, 
disaster response robots are required to have a high abil-
ity to quickly and safely perform debris disposal and life-
saving work on complicated terrains and in narrow places 
[1]. In response to these needs, various kinds of robots 
have been developed with special hardware suited to 
disaster response work [2–5], like the electrically-driven 

OCTOPUS (e-OCTOPUS) we have developed [5] 
(Fig. 1). As disaster sites are often unknown and unstruc-
tured, many of these robots have been operated by fully 
manual teleoperation with video support [3, 6] or a semi-
automatic remote-control system [7–10]. Ultimately, it 
would be desirable for the robots to have a fully auto-
mated system, including prominent sensing, inference, 
and planning capabilities, to control them safely and 
efficiently. To establish such automated systems, the 
environmental recognition technologies must be more 
sophisticated because environmental information is 
essential as inputs for automated systems. Improving 
such technologies would also increase the performance 
of the current teleoperation and semiautomated systems 
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[9]. At present, laser range finders (LRFs) and RGB-D 
(red, green, blue, and depth) cameras are widely used for 
object recognition [11, 12] and simultaneous localization 
and mapping (SLAM) [13–15]. Such visual information 
can greatly help to make a control plan for movement 
and manipulation [14]. For instance, visual information 
can provide robots with information on the surface shape 
of the environment, such as whether it is a slope, rough 
terrain, step, and object (Fig. 2a).

However, by only visual information, the robot can-
not know the physical attributes, such as the material 
constituting the surface and what exists under the sur-
face, which means that disaster response robots relying 
on only visual information will be less safe, less effective, 
and less adaptable. As an example of a dangerous case, 
we give a situation where the robot tries to pass along a 
rough road (Fig.  2b-ii). From visual information (i.e., a 
surface survey), the robot recognizes that the rough road 

has sufficiently low roughness to traverse it and does not 
have any large holes where the robot would fall. However, 
the road was just an apparent road incidentally made by 
wooden or steel debris, and a large unfilled space existed 
under the surface. If the robot moves along the road, 
the debris will collapse, and the robot will fall into the 
pit made by the collapse of the debris. In this case, if the 
robot can estimate the hardness of the road in advance, 
it can take an alternative safer route. Consequently, to 
ensure the safety and efficiency of disaster response 
work, it is quite important to obtain physical attribute 
parameters.

Here, we analyze the physical parameters to be esti-
mated while referring to the typical types of accidents 
in disaster sites. The ground and objects to be collected 
(hereinafter, target objects) with less hardness would be 
deformed by physical interaction with the robot. This 
would make the robot fall into a pit and crush a target 
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Fig. 1  Electrically-driven OCTOPUS (e-OCTOPUS)

Fig. 2  Importance of estimating physically interactive parameters (PIPs)
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object, so the robot must know the hardness (Fig. 2b-ii, 
iii, iv). Moreover, the ground and target objects might 
be slippery due to water or oil. This would make the 
robot rollover by slipping on slopes and drop a grasped 
object, so the robot must estimate the friction (Fig.  2b-
i, iii, iv). The robot must manipulate many objects, such 
as target objects (to be safely collected) and obstacles (to 
be removed to make a path). If the robot cannot gener-
ate enough force to transport a target object, the robot 
may drop and damage it, so the robot must estimate the 
weight (Fig. 2b-iv). From the analysis, we found that the 
hardness, friction, and weight can greatly affect the safety 
of the robot tasks, but these parameters cannot be basi-
cally obtained from visual-perceptual sensors since they 
can only be revealed from the results of physical interac-
tion with the environment, e.g., reaction force and defor-
mation [16] (Fig.  2b). Here, we call them the physically 
interactive parameters (PIPs).

Some studies estimate the hardness, friction, or weight 
to predict the traversability and effective manipulation 
for robot hands (details are in Sect. “Related and required 
work”). But, to our best knowledge, there are no studies 
on estimating all these parameters before executing tasks 
in a unique system by using the physical touch of disaster 
response robots. In this study, we thus propose a funda-
mental framework to estimate PIPs, including the hard-
ness, friction, and weight, by active environmental touch. 
For the experiments, we used e-OCTOPUS with four 
arms, four flippers, and two crawlers [5] (Fig.  1c), as a 
disaster response robot equipped with one or more arms. 
We developed an estimation system by making full use of 
the benefit of the hardware of e-OCTOPUS, but we also 
made the system so that it can be applied to any kind of 
robot with one or more arms and crawlers, like Quince 
[17] and PackBot [18].

Related and required work
This study falls into the category of environmental recog-
nition, and which can be roughly divided into non-touch 
(visual-perception) and touch (haptic-perception) meth-
ods [19]. Here, we investigate the related works on esti-
mating PIPs and derive the required works.

Related works on environmental recognition
We investigate the related works on estimating PIPs and 
analyze the advantages and limitations.

Visual‑perceptual methods
As stated in Sect.  “Introduction”, a limited number of 
studies have tried to estimate PIPs by the visual per-
ception method. In [20], real-time road friction esti-
mation was achieved by using convolutional neural 
networks based on camera images from vehicles. In [21], 

visually-classified terrain types based on a Gaussian pro-
cess were proposed for slip prediction in planetary rov-
ers. In [22], a friction prediction method was proposed 
based on image features, material class, and text mining. 
In [23], the weight of pigs was detected by using signifi-
cant features, such as color, texture, and centroid, based 
on statistics from the original database. These methods 
have large constraints, including that they needed many 
datasets, the target environments were simpler compared 
with disaster sites, and they focused on estimating only 
one out of three parameters. PIP estimation based on 
visual-perceptual methods has been expected to imple-
ment for robots since it can remotely detect PIPs without 
physical contacts, but this is still a big challenging issue.

Haptic‑perceptual methods
Since physical touch can directly elicit information 
about PIPs, there are many studies on haptic-perceptual 
methods. For hardness-related estimation, the hard-
ness, elasticity, and stiffness were estimated by knock-
ing on a surface with an accelerometer-equipped device 
[24], and a shape-independent estimation method was 
proposed based on deep learning and a gel-based tactile 
sensor [25]. For friction-related estimation, the slippage 
was predicted based on the force distribution for legged-
robot locomotion [26]. For weight-related estimation, 
the mass, center of mass, and friction coefficient of the 
objects were estimated based on force and position infor-
mation for object manipulation [27]. For applications 
using PIP estimation, a method for setting the grasping 
force without knowing the object’s weight, static fric-
tion coefficient, and stiffness was proposed based on the 
moment of deformation and deflection of a mechanical 
passive element [28]. Most conventional studies focused 
on estimating only one out of three parameters [29, 30]. 
Some of the above studies focused on estimating multi-
ple parameters [27, 28], but the robot and/or the environ-
ment were less complex compared with those for disaster 
response robots and disaster sites.

Required works for disaster response robots
From the analysis in the previous section, we derived 
the requirements for PIP estimation methods and a total 
environmental recognition system for disaster response 
robots.

PIP estimation for disaster response robots
As mentioned above, disaster sites are typically com-
plicated, so PIP estimation methods should be robust 
toward the disturbance and simple for ease of imple-
mentation. To achieve this, it is desirable for the system 
to use common parameters in estimating three PIPs 
by not using special sensors and special ways of active 
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environmental touch. For hardness estimation, there are 
two types of tests: the indentation test, where a probe 
is pushed into an object, and the rebound test. Some 
studies adopted the rebound test [24], but this needs 
an accelerative motion, which is unsuitable for unstable 
environments. Thus, we adopt the indentation test due 
to its high robustness and implementability. For fric-
tion estimation, we adopt a rubbing method as humans 
do. We estimate the static friction coefficient to judge if 
an object is liftable and the dynamic friction coefficient 
to judge if a ground or slope is traversable. For weight 
estimation, we adopt a lifting-up method as the simplest 
way of measuring weight. These three methods could 
estimate three PIPs, commonly from the reactive nor-
mal and shear forces applied to the contact point as well 
as the displacement of the contact point. Note that each 
measurement principle is not novel, but the contribution 
is that we integrate hardness, friction, and weight estima-
tion methods into one framework in a simpler and more 
robust way.

Environmental recognition system
For safer and more efficient work, the robot must obtain 
not only the shape information of the environment, but 
also PIPs such as hardness, friction, and weight. The 
PIPs are estimated through active environmental touch 
by the robot, but performing this manually requires tel-
eoperators to exert a huge amount of physical and mental 
effort, so we introduce a semiautomatic control system. 
Active environmental touch applied to shape recogni-
tion is called ‘groping’ [31–33]. By reference to this, we 
call active environmental touch for estimating PIPs ‘grop-
ing’ too. The purpose of PIP estimation is to estimate the 
degree of the accident risk, so the system must output 

the accident risk in several classes. By considering these 
requirements, we develop an environmental recognition 
system consisting of the following four functions (Fig. 3).

•	 Surface recognition. The system obtains point clouds 
around the robot from a visual sensor and precisely 
measures the ground coordinates by using haptic 
information (Sect. “Surface recognition”).

•	 Groping control. The system semi-automatically per-
forms active environmental touches with the robot 
arms, considering preciseness and time efficiency 
(Sect. “Groping control”).

•	 PIP estimation. The system then estimates three PIPs, 
based on data obtained from groping control, i.e., the 
normal and shear force and displacement of the arm 
endpoint (Sect. “Estimation of PIPs”).

•	 Accident risk judgement. Based on the estimated 
PIPs, the system finally outputs the accident risk, 
i.e., safe, attentional, or dangerous, for safe disaster 
response tasks (Sect. “Accident risk judgement”).

Method
In this section, we explain a method of PIP estimation by 
performing active environmental touch with obtained 
point cloud information (the left lower of Fig. 3).

Surface recognition
The vertical coordinate of the surface position in the 
robot coordinate system Pg can be obtained from visual 
sensors, but floating gas or dust would generate noise 
in the signal. Thus, the robot corrects it based on haptic 
information. Here, we explain the two-step procedures.

Fig. 3  System diagram of physically interactive parameter and risk estimation
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Surface shape recognition by visual perception
To estimate an approximate surface shape, SLAM is per-
formed; the robot first measures the travel distance (x, y, 
z) and rotation angle (yaw, pitch, roll) per unit time from 
point clouds obtained from three-dimensional (3D) light 
detection and ranging (LiDAR) based on the iterative 
closest point (ICP) algorithm, and the point group for 
surface shape mapping is selected. Here, to reduce the 
error of the measured self-position due to the error of the 
calculated rotation angle, which is a weakness of the ICP 
algorithm, we correct the pitch and roll angle by using 
data from the inertial measurement unit installed on the 
robot. Moreover, LiDAR specializes in obtaining a wide 
range of distance information, so the number of point 
clouds is sometimes insufficient to estimate the object 
shape. We thus use a depth sensor to obtain more point 
clouds for a closer range.

Surface coordination estimation by haptic perception
To accurately measure the surface position, the robot sets 
the visual perception-based surface position as an ini-
tial value and corrects it by touch with its arm. From the 
analysis in Sect.  “Required works for disaster response 
robots”, combining position and force data is essential 
to estimate PIPs. Thus, we adopted the hybrid position/
force control for obtaining the surface position [34]. To 
measure the contact force, we implemented a 3-axis force 
sensor inside the end-effector of the arm (Fig. 1b) (details 
are in Sect. “Design of end-effector”). Regarding the ver-
tical coordinate in the robot coordinate system, as shown 
in Fig. 1a, P is the position of the arm endpoint, Pd is the 
target endpoint position, F  is the measured force, and Fd 
is the target force. Mp is the inertia matrix of the arm, Dd 
is the virtual viscosity coefficient, Kd is the virtual spring 
coefficient, Kf  is the force feedback gain, and α is the 
control mode setting parameter (0 < α ≤ 1). The control 
equation is thus given by

α =1 ( α= 0) means a complete force (near-complete 
position) control. We dynamically change α according to 
the target PIPs to provide a suitable control. The system 
knows the surface position obtained from point clouds 
Ps , so we set α to 0.2, which is close to the position con-
trol, and target position Pd to Ps . We set Kd=200 and Kf

=250 from the exploratory experiments. The robot arm 
reaches Pd and continues to push the surface from the 
above. The endpoint displacement when F  becomes Fd 

(1)
MpP̈ + Dd

(

Ṗ − Ṗd
)

+ Kd(P − Pd)

= −F + αFd − αKf (F − Fd).

(= 5 N, as a value to surely confirm the existence of a sur-
face) is Pg.

The hybrid position/force control is also used for grop-
ing control, as explained in Sect. “Groping control”.

Groping control
Disaster response work can be divided into movement, 
e.g., traversing and climbing up, and manipulation tasks, 
e.g., removing and transporting objects, so we classify 
the groping into the ground groping mode (GGM) and 
object groping mode (OGM).

Design of end‑effector
For groping, the arm touches, pushes, rubs, and lifts 
objects with various types of surfaces. Thus, the end-
effector should be common in all groping controls. As a 
preliminary design, we developed an end-effector with 
a 3-axis force sensor (USL08-H6-1kN, Tec Gihan). The 
end-effector was hemispherical so that the force could 
be uniformly detected even if it was received from the 
normal and shear directions (Fig. 1b). Currently, the opti-
mum material, which greatly affects the performance 
of the friction estimation, is not known, so we adopted 
acrylonitrile butadiene styrene (ABS) resin because it is a 
3D printable, lightweight, and disposable material. More-
over, to make the robot successfully lift an object (by 
increasing the payload and stability), a rectangular pad 
with a rubber surface was added to the side of the end-
effector (Fig. 1b). When the two arms hold an object, the 
robot can obtain both the normal and shear force from 
the force sensor.

Ground groping mode (GGM)
It is impractical to grope the whole range of environ-
ments by the arm, so the robot only gropes the area 
needed for confirming safe movement. As shown in 
Fig. 4a, the region made by extending the turning radius 
of the robot (1100  mm at the tip of the crawler) that is 
the largest movable region of the robot is set as a GGM 
search area. To execute GGM efficiently, we divide the 
GGM search area into the internal search area AI and 
external search area AE

AI in front of the robot is inspected with two front 
arms to check the safety of the crawler tracks. From the 
specifications of e-OCTOPUS, AI is 500  mm in width 
in total (250  mm for each arm). AE (outside the robot’s 
crawler) is inspected with two rear arms to expand the 
safety margin. AE is 600 mm in width in total (300 mm 
for each arm). The four arms simultaneously grope 
within the search area, respectively. To precisely measure 

(2)Pg = P[whenF = Fd(α = 0.2)].
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the reaction force, the endpoint touches the surface from 
the above. From the arm configuration and robot rollover 
stability, we set the anteroposterior distance for the grop-
ing areas for AI and AE to 500 mm. In this preliminary 
study, we investigate the PIPs thoroughly in the search 
area, so the depth of the groping area was set to 50 mm 
since the diameter of the end-effector is 48 mm. Thus, we 
defined the groping areas for AI and AE (the green area of 
Fig. 4a).

Here, we explain the groping control for each PIP. For 
hardness estimation, each arm pushes down in the grop-
ing area. The minimum inspectable area is 50 × 50 mm, 
as stated above, so we can define five groping points in 
AI (the right side of Fig. 4a). AE should have six groping 
points, but the groping in AI and AE must be simultane-
ously finished. Thus, we also set five groping points in AE . 
As shown in the left side of Fig. 4b, the robot pushes each 
groping point from left to right based on the hybrid con-
trol presented in (1) (details are in Sect. “Hardness”). For 
the friction detection (the right part of Fig. 4b), the robot 
rubs the surface in a round trip from left → right → left, 
while applying a force to the surface by using (1) (details 
are in Sect. “Friction”). After finishing groping by pushing 
at all five points or rubbing a round trip with four arms, 
the robot moves forward 50 mm, and gropes again at the 
next groping area (Fig.  4c). The groping at one groping 
area (50 × 500 mm) is defined as one set.

Object groping mode (OGM)
Image segmentation to identify the semantic things from 
an image has been implemented in automobiles [35] and 
surveillances, but disaster sites include more complex 
situations, so the implementation of these technolo-
gies is not easy. Actual operations require teleoperators 
and they (humans) are good at object segmentation, so 

we assume that the humans find where objects exist and 
judge the object type. Target objects and obstacles have 
different properties, so we adopted different groping 
methods. Also, actual objects have complex shapes, but 
for the simplicity of evaluating the PIP estimation system, 
we assume that the objects are simple rectangular, the 
center of gravity is the geometric center, and the friction 
coefficient of each side is the same. After the designation 
of the target object or obstacle by the human, the robot 
recognizes its shape and each side of the object (Fig. 5a) 
and measures the surface position in the same way as in 
Sect. “Surface recognition”.

Figure 5b shows the groping process for a target object. 
Target objects must be transported by lifting them with 
the arms. To avoid crushing and dropping them, the 
robot carefully estimates the hardness, friction, and 
weight before transporting them. The robot first pushes 
the center of the left and right sides of an object with two 
arms and estimates the hardness once by using control 
(1) (Fig. 5b-i). If the object is not hard enough, the robot 
selects other ways to collect the object (e.g., using a spe-
cial tool). If the object is hard enough, the robot lifts it a 
little. From the normal and shear force measured by the 
force sensor, the robot estimates the weight and friction 
(Fig. 5b-ii). If the object slips from the grasp of the robot 
or is not lifted, the robot also selects other ways to collect 
the object. If the object is successfully lifted, the robot 
starts to transport it (Fig.  5b-iii). This groping process 
including these steps is defined as one set.

Figure  5c shows the groping process for an obsta-
cle. The obstacles should be removed from the mov-
ing path of the robots. It is reasonable to remove an 
obstacle to the side, so the robot first tries to push 
it from the either left or right side (Fig.  5c-i). If it is 
moved to a position outside the path, the groping 

Fig. 4  Design of ground groping mode (GGM). Groping order of right and left arm are the same
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process is completed. If it is not moved sufficiently, the 
robot then tries to drag it in the longitudinal direction 
or get over it. These actions must be selected depend-
ing on the surrounding environments, so the human 
selects a suitable action. If dragging is selected, the 
robot pushes (Fig.  5c-ii) or pulls the front side of the 
obstacles (Fig. 5c-iii). If getting over it is selected, the 
robot estimates the hardness and friction of the top 
side by using the same way as for the GGM (Fig.  5c-
iv). The robot pushes once at the center of the top side 
(hardness estimation) and rubs in a round trip in the 
lateral direction at the center of the top side (friction 
estimation). If the hardness and friction are enough, 
the robot gets over it. If the obstacle is not successfully 
dragged and its hardness and friction are not enough, 
the robot selects other ways to remove the obstacle 
or other routes. This groping process including these 
steps is defined as one set.

Estimation of PIPs
We here explain the method for estimating three PIPs 
on the basis of the GGM and OGM.

Hardness
As stated above, the arm pushes at all the groping 
points on the ground for GGM and pushes once at the 
center of the target side of the target object or obsta-
cle for OGM by using (1). After confirming the ground 
position by the method explained in Sect. “Surface rec-
ognition”, the robot sets α in (1) to 0.5, which is close to 
the force control. For hardness in the vertical direction 
(the left part of Fig. 6a), Fd was set to 80 N (the maxi-
mum force for the vertical direction), and for hardness 
in the lateral direction (the left part of Fig. 6a), Fd was 
set to 10  N (the maximum force for the lateral direc-
tion). We denote the position where the target force 
was obtained by pushing the arm as P and the ground 
surface coordinate as Pg (Fig.  6a). The difference dg 
between them is defined as the hardness at a groping 
point, and it is given by

The range of dg is 0–200 mm (due to the link length). 
A smaller (larger) dg means harder (softer). Environ-
ments with a large dg are easily deformed when apply-
ing an external force. In this study, one groping area has 
five groping points, so we use their mean value as the 
hardness of the groping area.

(3)dg = P − Pg .

Fig. 5  Design of object groping mode (OGM)
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Friction
To estimate the dynamic friction coefficient µd , the robot 
makes the arms rub one round trip in the lateral direction 
on the ground surface for GGM or on the obstacle surface 
for OGM by using (1) ( α= 0.5). To precisely estimate µd , 
the mixture of the static friction and stick–slip phenom-
ena should be removed. According to \* MERGEFOR-
MAT [36], the sliding speed v and normal force N(= Fd ) 
should be adequately selected to avoid stick–slip. Here, v 
should be as fast as possible in terms of time efficiency, so 
we set v to 7 mm/s, which is the maximum stable speed 
of the endpoint. Then, we explored suitable N  in various 
surfaces and finally set it to 15  N. As shown in the left 
part of Fig.  6b, we measured the shear force when rub-
bing the groping area, calculated FS as the mean value in 
the round trip, and derived µd from FS = µdN  . Here, the 
materials differ between the end-effector (resin) and the 
crawler (rubber). In this study, we assume that the fric-
tion coefficient of the crawler shoe µrubber (0.5) and that 
of the end-effector µresin (0.38) are known in advance. By 
using the scaling factor µrubber/µresin , the approximaly-
converted dynamic friction coefficient for the crawler µ′

d 
is obtained by

To estimate the static friction coefficient µs , the robot 
makes the arm lift a target object while applying a hold-
ing force to its lateral sides for OGM. As shown in the 
right part of Fig. 6b, on the basis of the force applied in 
the vertical (shear) direction of the left arm FgL , right arm 
FgR , and the holding force in the normal direction FH , the 
static friction coefficient is given by

Here, the holding force FH is set to 10 N, which is the 
same as in the hardness estimation.

(4)µ
′

d =
µrubber

µresin
µd .

(5)µs =
FgL + FgR

2FH
.

Weight
In the manipulation task for target objects, the robot 
needs information to judge whether the robot can lift 
the object. First, as shown in the right part of Fig. 6a, the 
hardness is estimated by applying FH=10 N. If the hard-
ness was enough, while still applying 10 N, the robot lifts 
the object 50 mm in the vertical direction (Fig. 6c). The 
system knows from (5) if the surface has enough static 
friction coefficient for stable grasping by the two arms. If 
the object was successfully lifted, the weight M is simply 
given by

If M is heavier than the payload of the robot, it must 
be unstable because the object slid from the end-effector, 
which means that Fg frequently reached zero. We use the 
mean value in 10 s as the weight of the object.

Experimental settings
We define the accident risk based on the estimated PIPs 
and perform three kinds of experiments (Figs. 7, 8). The 
control system was built by Robot Operating System 
(ROS).

Environmental conditions
We prepared three conditions of ground surface and 
object, including safe, attentional, or dangerous. The rela-
tionship between the value of each PIP and the state of 
the robot (absolutely-executable, marginally-executable, 
or non-executable) was already obtained from our prepa-
ration experiments. Thus, we here evaluate if the estima-
tion system could output the correct category of accident 
risk state according to each environmental condition.

•	 Hardness: The ground situation varies with the loca-
tion. We thus prepared the flat ground composed of 

(6)M = FgL + FgR.

Fig. 6  Method of estimating PIPs
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wood board (safe), polyurethane on the wood board 
(attentional), or polyurethane only (dangerous) 
(Fig. 7a).

•	 Friction: When the robot moves up a slope, the fric-
tion is quite important to prevent slip-fall. We thus 
prepared a slope of 15◦ , with a surface a wood board 
(safe), iron plate coated with lubricant (attentional), 
or steel plate with Teflon (dangerous) (Fig. 7b).

•	 Weight: When transporting and removing objects, 
the robot must know their weights. The arm payload 
of e-OCTOPUS is 3 kg, so we prepared 1 kg (safe), 
2.5  kg (attentional), or 5  kg (dangerous) weights in 
the same cardboard box (Fig. 7c).

For hardness and friction estimation, as shown in 
Figs.  7a, b, the robot gropes two groping areas in front 

(a) Flat ground (hardness) (b) Slope (fric�on) (c) Box (weight)

Hard/medium/so�

15°

Non-slip/medium/slippery Light/medium/heavy

Wood Wood 5 kg1 kg 2.5 kg

(Weights inside box)

PolyurethaneWood + Polyurethane Oiled steel Teflon steel

Groping area for le� arm

Groping area for right arm

Groping area 
for le� arm

Groping area 
for right arm

Fig. 7  Experimental setup

Fig. 8  Groping actions to estimate PIPs including hardness, friction, and weight



Page 10 of 15Kamezaki et al. Robomech J            (2021) 8:22 

of the robot by using the left and right arms, respectively. 
To evaluate fundamental measurement performance, 
i.e., accuracy and preciseness, the robot gropes the same 
groping area ten sets. For weight estimation, as shown in 
Fig. 7c, the robot gropes an object in front of the robot 
by cooperatively using the left and right arms. To evalu-
ate fundamental measurement performance, the robot 
gropes the same object ten sets.

Accident risk judgement
One of the purposes of estimating PIPs is to judge 
whether the robot can safely perform the task. Thus, the 
risk (safe, attentional, or dangerous) was defined by using 
ThS−A (the boundary of safe and attentional) and ThA−D 
(the boundary of attentional and dangerous).

For the hardness, ThA−D was derived from the maxi-
mum safe roll angle of the robot θm_Roll (= 7◦ ) and the lat-
eral width of the flipper LFlipper (= 500 mm), as shown in 
Fig. 7a. The risk depends on environments or tasks, so it 
is difficult to theoretically define. In this study, for simpli-
fication, ThS−A was set to half of ThA−D and we obtained 
ThA−D = 60.93 mm and ThS−A = 30.47 mm. The catego-
ries of accident risk are thus given by:

For the friction, ThA−D is derived from the possibil-
ity of preventing slip-fall on the slope concerned θSlope 
(= 15◦ , in our setup). To keep a safety margin, ThS−A was 
set to the dynamic friction coefficient µ′

d . Like the hard-
ness, the risk depends on the environments or tasks, so it 
is difficult to theoretically define. For simplification, ThD 

(7)
Dangerous :
Attentional :
Safe :

dg ≥ LFlipper × sin(θm_Roll)

dg ≥ LFlipper × sin
(

θm_Roll

)

× 0.5
dg < LFlipper × sin(θm_Roll)× 0.5.

was set to half of ThA and we obtained ThA−D = 0.1339 
and ThS−A = 0.2679. The risk is thus given by:

For the weight, ThA−D was set based on the maximum 
holding force of the arm Fm_Hold (= 20  N (= 10  N × 2)) 
and the friction coefficient µhand (= µs=0.8 (rubber)) 
of the end-effector to prevent dropping the object. Like 
hardness and friction, the risk depends on environments 
or tasks, so ThS−A was simply set to half of ThD and we 
obtained ThA−D = 16 N and ThS−A = 8 N. The risk is thus 
given by:

Results and discussion
Figures 9, 10, 11 show the experimental results. We dis-
cuss them in terms of precise categorization of the risk 
accident and the time spent for groping.

Hardness
Figure 9 shows the estimated hardness dg for the left and 
right arms in three situations, and we found from the fig-
ure that the hardness could be estimated stably and the 
difference among the materials could be clearly seen. The 
colored solid lines show the means for each condition. 
The dotted line shows ThS−A and ThA−D , respectively, 
which were derived from (7). On the basis of the judged 

(8)
Dangerous :
Attentional :
Safe :

µ
′

d ≤ tan
(

θSlope

)

× 0.5

µ
′

d ≤ tan
(

θSlope

)

µ
′

d > tan
(

θSlope

)

.

(9)
Dangerous :
Attentional :
Safe :

M ≥ µhand × Fm_Hold

M ≥ µhand × Fm_Hold × 0.5
M < µhand × Fm_Hold × 0.5.

Fig. 9  Estimated hardness and accident risk
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accident risk, the robot on the wooden ground can pass 
safely, the robot on the polyurethane on the wooden 
ground must be careful, and the robot on the polyure-
thane ground is at high risk for rollover. In the last case, 
the robot should change the route to be safe. We con-
firmed that the system could estimate the hardness ade-
quately. Moreover, we found that the groping in one set 
took about 90 s (safe), 150 s (attentional), and 250 s (dan-
gerous) because the time taken was directly related to the 
traveled vertical distance of the endpoints. We also con-
firmed that the hardness was determined by just one set 
of groping, so the robot can obtain the hardness in 250 s 
at the longest.

Friction
Figure  10a shows the estimated dynamic friction coef-
ficient µ′

d for the left and right arms in three situations. 
The colored solid lines show the means for each condi-
tion. The dotted line shows ThS−A and ThA−D , respec-
tively, which were derived from (8). We found that each 

value was not stable although the varied range could be 
seen. This seems due to the slippage, stick–slip, and min-
ute vibration of the arm although we have considered 
ways to deal with them. Thus, the accident risk could not 
be clearly identified. For surfaces with higher friction, the 
friction force tends to dynamically change, so the esti-
mated µ′

d varies. Therefore, for a stable output, we cal-
culated the mean of the friction µ′

d(n) , which is given by

where n is the number of groping sets, and µ′

d_i is µ′

d at 
the i-th groping. Figure  10b shows the mean, and we 
found that, in our case, µ′

d ( n=2), the mean at the 2nd 
groping, could be used as the dynamic friction coeffi-
cient considering the stability of the outputs. From the 
accident risk judgement, the robot can climb the wooden 
ground safely, requires attention to climb the iron plate 
with the oil, and cannot climb the iron plate with the Tef-
lon due to there being less friction. The groping in one set 

(10)µ
′

d(n) =
(

∑n

i=1
µ

′

d_i

)

/n,
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(b) Mean

Fr
ic

�o
n 

co
effi

ci
en

t 
′

0.4

0.3

0.2

0.1

0

Number of sets

Safe

0.1

0.2

0.3

0.4

0.5

0.6
Fr

ic
�o

n 
co

effi
ci

en
t 

′

Safe

Wood Oiled steel Teflon steel

Number of sets

(a) Raw data

ℎ − ℎ −

ℎ −

ℎ −

1      2      3      4      5      6      7      8      9     10             1      2      3      4      5      6      7      8      9     10

1      2      3      4      5      6      7      8      9     10             1      2      3      4      5      6      7      8      9     10

A�en�onal

Dangerous

A�en�onal

Dangerous

Fig. 10  Estimated friction and accident risk



Page 12 of 15Kamezaki et al. Robomech J            (2021) 8:22 

took about 40 s independently of the conditions because 
the arm could rub the surfaces at a constant speed. We 
confirmed that the friction could be determined by 2-set 
groping, so the robot can obtain the friction in about 
80 s.

Weight
Figure 11a shows the estimation result of the weight M 
with three situations. The dotted line shows ThS−A and 
ThA−D , respectively, which were derived from (9). For 1 
and 2.5  kg objects, the system could output the weight 
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stably because the static friction force was larger than 
the weight of the object. However, for the 5 kg object, the 
result was instability because the slip occurred between 
the end-effector and object even with applying the maxi-
mum holding force. Specifically, in this slipping situation 
in the vertical direction, the robot cannot estimate if the 
weight of the object is over the payload of the robot arm 
because the weight of the object is calculated from the 
dynamic friction force [37]. Then, we calculated the mean 
of the estimation result in the same way as the friction 
estimation (Fig.  11b). For the 1 and 2.5  kg objects, the 
outputs were stable, but for the 5  kg object, the output 
was still unstable. To evaluate the stability of the meas-
ured value, we calculated the standard deviation σ of 
raw data (Fig.  11c). For the 1 and 2.5  kg objects, σ was 
extremely small, which means that the physical interac-
tion was reproducible and high-reliability estimation 
was possible. On the other hand, for the 5  kg object, σ 
became larger than the others. In our ease, we found that 
the system could estimate whether the object could be 
grasped (for example, by using Tg<2 N for graspable and 
Tng>5.5 N for not-graspable) by groping twice. The grop-
ing in one set took about 90 s independently of the condi-
tions because the arm just held and lifted the object. We 
confirmed that the weight can be determined by two-sets 
groping at least, so the robot can obtain the weight in 
180 s.

Discussion: contribution and limitation
The proposed framework is simple in terms of each tech-
nique but highly integrated as a framework consisting 
of sensing, groping control, and PIP estimation, while 
considering practical implementation. The experimental 
results showed that the proposed system could estimate 
PIPs and distinguish grounds and objects with differ-
ent physical properties. The framework of active envi-
ronmental touch is an important strategy to understand 
closer surrounding situations, in particular, where exter-
nal sensors cannot properly work (due to smoke, etc.) 
and unknown environments. We believe that the simplic-
ity could bring the robot controls the robustness requir-
ing in disaster response works. Moreover, in disaster 
sites, these pieces of information are useful for not only 
themselves but also other robots and even human rescue 
teams, with a different weight and friction coefficient for 
interacting parts. However, the proposed framework has 
some limitations that are needed to be addressed in the 
future as follows.

•	 Accuracy. For accident risk estimation, friction and 
weight were necessary to process the raw data (by 
using mean and standard deviation). Moreover, the 
accuracy of the weight estimation was not high. 

This would be mainly caused by unmodeled fric-
tion occurring between the robot end-effector and 
ground/object. This can be solved by modifying the 
shape and material of the end-effector for groping as 
well as modifying the control strategy to optimize the 
stability of the contact state between them. We need 
to consider an adaptive groping system to adjust the 
groping parameters such as the target force and grop-
ing speed, according to the result of initial groping.

•	 Time efficiency. The groping took 80–250 s for each 
groping area. In terms of ensuring safety in disas-
ter response works where the failures such as rollo-
ver are not allowed, the completion time might be 
acceptable, but faster estimation is of course desira-
ble. This would be achieved by more integrating force 
obtained from groping and surface information from 
visual sensors to optimize a groping strategy includ-
ing the number of groping points (groping resolu-
tion) and groping areas. As the accuracy of groping 
increases, the time efficacy naturally increases due to 
decreasing the number of groping sets.

•	 Environmental complexness and more automation. 
In this study, we assumed that the ground was a flat 
surface and objects were rectangular. However, actual 
disaster sites have an uneven, jagged, and ragged sur-
face and are made up of a complex mixture of dif-
ferent materials. Moreover, we assumed that teleop-
erators designate the type of environments, such as 
the ground, target object, or obstacles. In the future, 
thus, we will incorporate a high-level object shape 
recognition, automatic object segmentation, and 
adaptive groping system, as stated above, to adapt to 
more complex environments.

Conclusion and future works
We proposed a fundamental framework to estimate the 
hardness, friction, and weight by active environmental 
touch (groping motion), as physically interactive param-
eters (PIPs) between a robot and an environment that 
cannot be obtained from only visual-perceptual meth-
ods (surface survey). The robot actively touched, pushed, 
rubbed, and lifted objects in the environment based on 
the hybrid position/force control, and estimated the PIPs 
from the measured force and the position of the end-
effector of the arm. We designed the ground and object 
groping mode for effective PIP estimation. The robots 
judged the accident risk as safe, attentional, or dangerous 
based on estimated PIPs. In the experiment, we prepared 
environments that had the same surface shape but differ-
ent hardness, friction, and weight. The results indicated 
that the proposed framework could estimate PIPs and 
be useful to judge the accident risk. Moreover, we could 
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derive effective information processing for improving the 
PIP estimation accuracy and robustness.

In the future, we will more increase the estimation 
accuracy by improving the material and shape of the 
end-effector. We will also optimize the number of grop-
ing points and groping speed to increase the time effi-
ciency. Using both visual and haptic information would 
increase the capability of environmental recognition, so 
we will also further consider an integration method. We 
investigate more on the relationship between each PIP 
and accident risk (e.g., traversability, graspablility, etc.) by 
defining individual criteria to achieve safer and more effi-
cient disaster response work.
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