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Abstract 

In this study, a method for a robot to recall multiple grasping methods for a given object is proposed. The aim of this 
study was for robots to learn grasping methods for new objects by observing the grasping activities of humans in 
daily life without special instructions. For this setting, only one grasping motion was observed for an object at a time, 
and it was never known whether other grasping methods were possible for the object, although supervised learning 
generally requires all possible answers for each training input. The proposed method gives a solution for that learning 
situations by employing a convolutional neural network with automatic clustering of the observed grasping method. 
In the proposed method, the grasping methods are clustered during the process of learning of the grasping position. 
The method first recalls grasping positions and the network estimates the multi-channel heatmap such that each 
channel heatmap indicates one grasping position, then checks the graspability for each estimated position. Finally, 
the method recalls the hand shapes based on the estimated grasping position and the object’s shape. This paper 
describes the results of recalling multiple grasping methods and demonstrates the effectiveness of the proposed 
method.
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Introduction
Recently, several studies have been conducted on robots 
grasping objects. For a robot to perform a grasping 
motion, a massive amount of information is needed, 
which includes object shape, grasping hand shape, and 
arm motion information. Providing such a large amount 
of information can be difficult for users. Therefore, it is 
desirable for the robot to automatically generate the 
actions of grasping an object. Considering that the grasp-
ing method depends on the succeeding manipulation, it 
is important to generate multiple patterns of grasping 
methods.

The final goal of this study is to realize a robot that 
manipulates objects based on the human’s object manip-
ulation. When controlling the pose and motion of the 
robot hand, the goal was for the robot to mimic the 
human’s grasping based on the recalled grasping shape 
of human. In this paper, the recall of multiple grasping 
methods as the previous step of it is investigated. The 
hand shapes will be used as a clue to determine the pos-
ture of the robot hand in the next step.

Past studies have explored a variety of approaches to 
recall the object grasping method. Ekvall et  al. [1] pro-
posed a method to select the grasping type with the 
highest grasping quality for the object shape, which is 
approximated by shape primitives among the multiple 
grasp types based on the prior database. To use the prior 
database of the grasping type, it is necessary to prepare 
the object shape and grasping type patterns in advance 
and define the relationship between them. Nagata et  al. 
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[2] proposed to approximate an object by shape primi-
tives and find multiple grasping methods that are pre-
sented to the user. To use shape primitives as in [1, 2], 
it is necessary to prepare shape primitives for expressing 
various object shapes.

As a method that does not require the shape primitives, 
there is a method of recalling the grasping method from 
a realistic object shape using machine learning. Several 
studies have been performed for estimating the various 
grasping methods and its confidence score using a neu-
ral network (NN) [3, 4]. Additionally, investigations have 
been performed to estimate the grasping method from 
the features of the posture and the color information of 
the object using the random forest classification algo-
rithm which recalled only one type of grasping method 
for an object [5, 6]. However, there are several ways to 
manipulate the object after grasping. For example, when 
carrying a cup, the upper part of the cup is grasped, and 
during drinking, the side of the cup is grasped. Due to the 
grasping method being determined by the manipulation 
after grasping the object, it is necessary to learn to recall 
multiple types of grasping methods for a given object. 
Huebner et  al. [7] estimates a suitable grasping method 
for post-grasping manipulation from among multiple 
grasping methods for the object shape approximated 
by the box primitive. However, this study requires prior 
knowledge of the number and type of grasping method 
and the relationship between the grasping method and 
the manipulation. This study aims to learn multiple 
grasping methods by observing the grasping motion of 
a person without prior information such as the number 
and type of grasping methods.

Korkmaz [8] proposed to learn the optimal grasping 
method using reinforcement learning. However, since 
reinforcement learning generally learns the optimal 
action for a single problem, it is difficult to learn mul-
tiple types of grasping methods. Mueller et  al. [9] and 
Cao et  al. [10] used supervised learning to learn mul-
tiple outputs for a single input. Generally supervised 
learning requires one correct data for one answer. Cor-
rect data of the grasping method can be obtained by the 
actual or simulated grasping of the object. For simulat-
ing the grasping, a precise and realistic simulation envi-
ronment with 3D models of the hand and the object is 
required. It is difficult to implement complex physics 
enough to simulate realistic correct data. In actual grasp-
ing, correct data are obtained by observing the grasping 
motions of a person. Once the object and hand interac-
tion are observed in daily life, visual information (i.e. 
an object shape, a grasping hand shape, and a grasping 
position on the object) can be obtained as correct data 
of grasping method. However, only one grasping motion 
can be observed in a single observation at a time, and it is 

not possible to obtain other grasping methods from the 
observed motion. Therefore, there is a need for a method 
to solve the problem “there are multiple answers for a 
single input, but only one of them is given at a time for 
each training sample”. Multiple grasping methods for the 
similar object shape is automatically learned by cluster-
ing the grasping methods during the learning process.

In this study, a model to obtain and learn multiple 
grasping methods by automatic clustering the grasp-
ing methods through the observation of human’s grasp-
ing motions is proposed. The model was constructed by 
cascaded convolutional neural networks (CNNs). Since 
grasping methods are often determined by the shape of 
the object part that is indicated by the grasping position, 
they can be accurately clustered based on the grasping 
position. The proposed method to recall the grasping 
method consists of two submodules: one for recalling the 
grasping position and the other for recalling the grasp-
ing hand shape. Therefore, the learning of the grasping 
method is divided into two steps: learning of the grasp-
ing position for the given object shape and learning of the 
grasping hand shape for the pair of the given object shape 
and the estimated grasping position. These steps are per-
formed using different networks. To cluster the grasp-
ing methods in the learning process, the network for the 
grasping position is designed to output multiple grasp-
ing positions for a single input. Grasping positions are 
clustered by giving the correct position for each learn-
ing sample only to the network channel that the position 
closest to the correct position.

When different objects have similar shapes such as 
a cup with and without a handle, the learned grasping 
method for one object might be recalled for a similar 
object with a different shape. This is because the number 
of grasping positions estimated by the grasping position 
network is set to a fixed number. Therefore, a grasping 
method may fail in some cases. For instance, grasping 
the side of a cup may fail due to the interference of the 
handle. When a person grasps an unknown object, the 
person recalls multiple grasping methods, and it simu-
lates these grasping methods to judge the graspability. 
Even when the robot recalls different grasping methods, 
an approach is needed to determine the graspability of 
the object and the recalled grasping positions. Whether 
or not it can be physically grasped at the recalled grasp-
ing position depends on the physicality of the person or 
the robot. Therefore, it is desirable to identify the grasp-
ability by performing grasping or a simulation. However, 
it takes time to perform grasping or simulating each 
grasping positions. We learned the NN to estimate the 
graspability of multiple grasping positions as a certainty. 
This network can estimate the certainty from the object 
shape and the specified grasping position and is used to 
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select only the grasping positions that can be grasped 
among the estimated grasping positions. In this proposed 
method, the grasping method that can grasp an object 
are recalled by inputting only the grasping positions with 
a high estimated certainty into the network for estimat-
ing the grasping hand shape.

The grasping hand shape network outputs a depth 
image of the grasping hand shape by inputting an object 
shape and one grasping position. This network is a model 
that extracts the relationship between the local object 
shape and the hand shape, and can recall a three-dimen-
sional hand shape according to the local shape feature of 
the object at the specified grasping position.

“Methods” section describes the simultaneous recall 
method for multiple grasping methods, the network’s 
learning method that learns the relationship between the 
object shape and the grasping method, and the learning 
method of the network that determines the graspability. 
“Experiment” section describes the results of recalling 
multiple grasping methods while proving the usefulness 
of this study.

Methods
This study describes an approach that simultaneously 
recalls multiple grasping methods from one object image 
using the CNN. As illustrated in Fig.  1, this approach 
consists of three networks: the grasping position net-
work, the grasping hand shape network, and the grasp-
ing position certainty network. The grasping method 
is recalled using the grasping position network and the 
grasping hand shape network. The grasping position net-
work estimates multiple grasping positions for an object. 
The grasping hand shape network estimates the hand 
shape for each estimated grasping position. The grasping 
position certainty network estimates probability of being 
able to grasp an object based on its position. The esti-
mated certainty is used to determine whether the object 
can be grasped at the estimated position.

The process of recalling multiple grasping methods 
from an object image is as follows.

1.	 The multi-channel heatmap indicates one grasp-
ing position for each channel, which is generated by 
inputting the object depth image into the grasping 
position network.

2.	 The certainty for each grasping position candidate is 
estimated by inputting the combination of the object 
image and one channel of the multi-channel heatmap 
into the grasping position certainty network.

3.	 If the estimated certainty is greater than a threshold, 
it is determined that grasping the object is possible at 
that grasping position.

4.	 The grasping hand shape image is generated by feed-
ing the object image and the one-channel graspable 
position heatmap with high certainty into the grasp-
ing hand shape network.

The grasping position heatmap is an image that rep-
resents the likelihood of the grasping position for each 
pixel. An object image, a grasping position heatmap, and 
a grasping hand shape image are represented in the same 
image coordinate.

The learning method for each network is described in 
the following section.

Grasping position network
This network takes an object depth image and outputs 
the multi-channel heatmap that indicates one grasping 
position in each channel, as shown in Fig. 2. Each chan-
nel represents a typical grasping position cluster for the 
objects. In the learning setting, the training dataset pro-
vides one correct answer for one input. This is because 
all the training data is assumed to be acquired in daily life 
scenarios where humans grasp objects. To recognize the 
different types of grasping methods by learning the data-
set, the network needs to automatically learn clustering 

Fig. 1  The recalling flow of the multiple grasping methods
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by similar grasping types and object shapes. A cluster 
of similar grasping types is created by giving the ground 
truth of the grasping position only to the channel clos-
est to the ground truth of the grasping position during 
learning. This is among the multi-channel heatmaps that 
are tentatively estimated for the training input image in 
each network update iteration. Additionally, a constraint 
is introduced where each channel image for the estimated 
grasping positions must be as different as possible due to 
the different types of grasping positions are clustered for 
each of the channels.

The loss function of this network is presented in 
Eq. (1).

where: x is an input object image; ϕ(x) is the multi-chan-
nel heatmap that is estimated for x by the grasping posi-
tion network ϕ(·) ; i , j , and k are the channel indices of 
the multi-channel heatmap; w is a weight parameter; and 
ypos is the ground truth heatmap of the grasping position.

The first term in Eq. (1) is the expression that normalizes 
the squared error between the ground truth of the grasp-
ing position and the one-channel heatmap that is selected 
in Eq. (2). By minimizing this expression, this network is 
trained to estimate the one-channel heatmap that is closer 
to the ground truth. The second term is the expression 
that normalizes the inverse of the squared error between 
each channel of the output multi-channel heatmap. By 
minimizing this expression, this network learns to output 
different estimations (i.e. different grasping position) for 
each channel.

The channel selection method is described in Eq. (2).

where: P is a set of all the pixel coordinates for the one-
channel heatmap; p and q are coordinate indices; and 
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Binary(·) is the function that binarizes the pixel values 
larger than a threshold to one and it or less to zero.

Equation  (2) selects the channel that has the largest 
overlap between the estimated heatmap and the ground 
truth of grasping position. Once a channel is trained by 
feeding a ground truth, the channel becomes to generate 
the heatmap with a single high peak and a small variance 
for the other similar input object images, whilst other 
channels still generate a heatmap with low peaks and a 
large variance. Therefore, when a different grasping posi-
tion is presented as the ground truth, the other channels 
tend to have higher responses around the ground truth 
and then that channel rather than pretrained channel is 

easy to be selected. In other words, every channel quickly 
learns similar grasping positions and the same typical 
grasping pattern is aggregated for each channel.

If the grasping position network has just one output 
channel (i.e., the grasping position is not clustered), the 
trained network outputs a two-peak heatmap for the 
grasping position as shown in Fig. 3b. When recalling the 
grasping hand shape from such a heatmap indicating two 
grasping positions, the hand shape overlaid with the two 
types of the grasping hand shape is estimated as shown in 
Fig. 3c. With such an overlaid hand shape image, it is dif-
ficult to determine which pixel represents which type of 
hand shape. Therefore, our method prepares a sufficient 
number of output channels for the number of correct 
grasping position and clusters the grasping positions so 
that individual grasping methods can be recalled.

Grasping hand shape network
This network takes an object depth image and a one-chan-
nel heatmap, which indicates one grasping position, and 
outputs a two-channel image, as shown in Fig. 2. The first 
channel of the output image estimates the likelihood of the 
hand region for each pixel. In training, the binary image 

Fig. 2  The learning flow of the grasping position network and the grasping hand shape network
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where: x is an input object image; ϕ(x)k is the kth-chan-
nel heatmap that is selected by Eq.  (2); ψ(x,ϕ(x)k)handR 
is the hand region likelihood image that is estimated by 
the grasping position network ψ(·) ; yhandR is the ground 
truth of the hand region likelihood; and P is a set of all 
the pixel coordinates in the hand shape image.

By minimizing this expression, this network learns the 
likelihood of the hand region for each pixel.
Lossdepth is the expression that normalizes the mean 

squared error of the depth value at the pixel coordinates 
that are included in Qhand for the second channel and 
presented in Eq. (5).

where: ψ(x,ϕ(x)k)handD is the hand region depth image 
that is estimated by the grasping position network ψ(·) ; 
yhandD is the ground truth of the hand region depth; and 
Qhand is the set of pixel coordinates in the hand region for 
the correct hand shape image.

By minimizing this expression, this network learns to 
estimate the depth values that are closer to the ground 
truth in the hand region.

Grasping position certainty network
This network takes an object depth image and a one 
channel heatmap that indicates one grasping posi-
tion candidate, and outputs a certainty that represents 
the graspability at that grasping position, as displayed 
in Fig.  5. As shown in the grasping possibility gate 
block of Fig.  1, the network estimates the certainty at 
each grasping position that is proposed by the grasp-
ing position network. To learn this network, it is nec-
essary to prepare a sufficient number of training data 
that includes the graspable and the ungraspable posi-
tions. However, it is difficult to prepare the data of the 
graspability for all grasping positions. Since the grasp-
ing position network clusters similar grasping positions 
during learning, it is expected that the grasping posi-
tions corresponding to typical grasping patterns will be 
output for each channel of the multi-channel heatmap. 
Therefore, the learned grasping position network was 
utilized to learn this network. The training data was 
classified into a few object types, such as cups with and 
without a handle, and selected in advance. The channel 
that outputs the grasping position that can be grasped 
for each object type was also selected in advance. When 
training this network, a probability of 1 is assigned as 
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Fig. 3  Effect of the number of output channels of the grasping 
position network. a The input object shape, b the two-peak heatmap 
estimated by a network outputting a single channel heatmap, and c 
the hand shape image estimated from a and b 

Fig. 4  Effect of the number of output channels of the grasping hand 
shape network. a the correct hand shape, b the estimation result by 
the two-channel output network, c the estimation result by the one 
channel output network

representing the hand region is given as the ground truth. 
The second channel estimates the depth value in the hand 
region. Only the depth values in the correct hand region are 
given to the corresponding pixels in this channel whilst in 
predicting, the hand shape image is recalled by masking the 
hand depth image with the binarized hand region image.

If the hand shape is generated by only one channel 
depth image, the depth value for the background region is 
learned in addition to that for the hand region. Since the 
background region is much larger than the hand region, 
loss value is mainly determined by the background depth 
rather than the hand, and the detail inside the hand tends 
to be neglected as shown in Fig. 4c. The two-channel rep-
resentation (depth and mask) can recall the three-dimen-
sional hand shape more accurately as shown in Fig. 4b.

The loss function of this network is presented in Eq. (3).

Lossregion is the expression of the cross-entropy loss for 
the first channel and presented in Eq. (4).
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the ground truth if the input heatmap is the heatmap 
of the selected channel; otherwise, 0 is given. The loss 
function of this network is described in Eq. (6).

where: x is an input object image; �(x,ϕ(x)i) is the esti-
mated certainty for the i-th channel heatmap that is esti-
mated by the grasping position certainty network �(·) ; 
ycert is the ground truth of the certainty; i is the channel 
index; and c is the number of channels of the multi-chan-
nel heatmap.

This equation represents the average of the cross-
entropy loss for the estimated certainty. By minimizing 

(6)
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this equation, this network learns the graspability at the 
input grasping position.

Experiment
To prove the usefulness of the proposed method, mul-
tiple grasping methods were recalled by using networks 
that learned the grasping methods as described in Sect. 2. 
In this experiment, the number of output channels of the 
grasping position network was set to three and the weight 
parameter, w , in Eq. (1) to one. Given the time it takes to 
observe the human’s motion and to collect the data of the 
grasping method, the artificial data of the various grasp-
ing methods were used for learning.

Structure of networks
This method uses three networks, and each network was 
designed with referent to the lightweight model of Resnet 

Table 1   Details of the structure of each network 

Fig. 5  Learning flow of the grasping position certainty network
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[9]. Table  1 shows the details of the structure of each 
network. The grasping position network estimates the 
three-channel heatmap from the object depth image. The 
grasping hand shape network and the grasping position 
certainty network have two input data points, an object 
depth image, and a grasping position heatmap, and esti-
mate a hand shape image or a certainty.

Dataset
The dataset consists of the object depth images as the input, 
the grasping position heatmaps and the depth images of the 
grasping hand shape as the ground truth. When the train-
ing images are obtained by observing daily life scenes, only 
one grasping motion can be observed at any given time. If 
an object has multiple grasping methods, another type of 
grasping method may be observed at the next opportunity 
for the same object, however, a new object image should 
be obtained in every observation. To simulate this scene 
observation, each training sample was defined as a triplet 
that consists of an input object image, one grasping posi-
tion heatmap and one hand shape image that is obtained 
by one observation. Since collecting many samples required 
time-consuming efforts, artificial training samples, in which 
different grasping methods are associated with the same 
synthesized object images, were employed.

In this study, objects with two grasping types were pre-
pared: grasping from above and from the side. The object 
and hand shape regions were extracted from a 16-bit depth 
image that were taken by Kinect for Windows with a depth 
sensor. The object images were then augmented by overlay-
ing them on random background images that are taken by 
Kinect for Windows. The background of the hand shape 
images were set so that all their pixel values were 5,000. The 
grasping position heatmaps had an 8-bit pixel depth which 
had a peak value at the pixel specified as the grasping posi-
tion and profiles like the Gaussian function.

The dataset was prepared by capturing 19 types of objects: 
cups with and without a handle, watering cans, teapots, 
and containers. These objects had different bottom depths, 
different sizes, and different shapes such as cylinders or 
inverted truncated cones and were captured from eight 
different viewing angles. To increase the variety of object 
images, objects were randomly translated by shifting them 
in 25 patterns, rotating them in the range of – 20° to 20°, and 
scaling them in the range of 0.94–1.06. A grasping position 
heatmap and a hand shape image are also processed by the 
same transformation as an object image for consistency.

The dataset was divided into a training set, which includes 
15 types of objects, and a validation set of the four object 
types with 640,000 training data points and 1600 validation 
data points being prepared in total.

Examples of the object used in this experiment are 
shown in Fig. 6, and examples of the dataset are show 
in Fig. 7.

Results and discussion
Figure  8 shows the change of the loss during the learn-
ing process of each network and Fig. 9 shows the mean 
error and standard deviation of the grasping position, the 
hand shape, and the certainty, in the final epoch. In Fig. 8, 
all losses converge to a constant value as the learning 

Fig. 6  Example of object used in this experiment

Fig. 7  Examples of the dataset consisting of object depth images, 
grasping position heatmaps and depth images of the grasping hand 
shape. Each row demonstrates examples of the different grasping 
methods for the same object image. The object and hand shape 
image are displayed by a colormap for the visibility of the depth
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progresses whilst in Fig. 9, there was no large difference 
between the mean error of the training set and the vali-
dation set.

Figure  10 shows the estimated results of the grasping 
method and its certainty for the training data, which 
includes five different object shapes. While it may be 
enough that the hand shape only for the grasping posi-
tion channel judged as “graspable” (i.e., with high cer-
tainty) is obtained, for analyzing the estimation process, 
the recalled hand shapes for any other grasping position 
candidates are presented here. Figure 11 shows the 3-D 
point cloud representation of the object and the recalled 
grasping hand shapes for the second object of Fig. 10.

As depicted in Fig.  10, multiple different grasping 
methods are estimated for a variety of object shapes. It 
was observed that the grasping positions were automati-
cally clustered into each channel of the multi-channel 
heatmap through the training process.

The second and third columns show that each esti-
mated grasping position indicates each of the typi-
cal grasping positions, such as the upper body, and the 

handle or the body’s side of the input object that were 
observed in the training dataset. The grasping positions 
that were not seen in the dataset, such as an imaginary 
handle position of an object without a handle and the 
position of the handle’s inside, were also recalled by one 
of the channels because the partial shapes were similar to 
each other. These grasping positions were judged as hav-
ing low grasping certainty and then rejected.

As shown in Fig. 9, the mean error and standard devia-
tion of the estimated grasping position for all the train-
ing data were 0.53 pixel and 0.55 pixel. The average object 
height for the training data was approximately 8 cm and 
the size projected on the image was approximately 20 
pixels, corresponding to 0.2  cm in 3-D space scale. The 
estimated positions were regarded as near the ground 
truth with the largest error in the training data being 
approximately 2.2 pixel, which is shown as a result for 
the fifth object in Fig.  10. This error value corresponds 
to 0.9 cm in 3-D space scale, comparable to the size of a 
fingertip.

Fig. 8  Loss of the grasping position, the hand shape, and the certainty in each epoch

Fig. 9  Mean error and standard deviation per a sample of the grasping position, the hand depth, and the certainty
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As shown in the fourth column in Fig. 10, the estimated 
hand shapes for each grasping position that is included in 
the dataset, such as the second and third rows of the first 
object, were close to the ground truth. For the grasping 
positions that were not seen in the dataset, such as the 
first row of the first object and the second row of the fifth 
object, the recalled hand shapes were plausible for grasp-
ing. However, that grasping is impossible due to the hand 
being apart from the object or interfering with the object. 
These ungraspable methods were appropriately rejected 
by evaluating the grasping position certainty (= 0.011) 
shown in the right-most column of Fig. 10.

As shown in Fig. 9, the mean error and standard devia-
tion of the recalled hand “depth” for all the training data 
was 21.7  mm, approximately the width of a finger, and 
10.4 mm. An example of a poor result for the hand depth 
recall is shown in the first row of the second object in 
Fig. 10. This result presented a 30 mm error on average 
for all the pixels in the hand region, but the pixels around 
the fingertip had a 10 mm error on average, which is more 
precise than the mean error for all the training samples. 
As shown in the point cloud in the first row in Fig. 11, the 
fingertips are precisely in contact with the object part to 
the handle. These results explain that the grasping hand 
shape network successfully learned the graspable hand 
shape at the grasping position for the various objects.

As shown at the right-most column in Fig. 10, the cer-
tainty value is close to one when grasping is possible at 
the input position; otherwise, it is close to zero. In this 
experiment, when the grasping position is recalled 

Fig. 10  Results of recalling the grasping method with certainty 
for the training data. Each row in the second to rightmost columns 
corresponds to each typical grasping type that is clustered in the 
grasping position network. The third column displays the estimated 
grasping position and the ground truth in red and green, and the 
intersection pixels in yellow. The ground truth is displayed only on the 
image of the channel that is selected in Eq. (2). The pixel color of the 
object and the hand shape images encodes the depth values by the 
“red(near)-blur(far)” colormap

Fig. 11  Point cloud of the object and recalled grasping hand for 
the second object in Fig. 10. The object and hand points being 
represented by blue and yellow respectively
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inside of the handle or in the air instead of an object, it 
is learned that it cannot be grasped at those positions 
because the handle interferes with the grasping hand or 
there is no object part to grasp. In Fig. 10, it can be con-
firmed those grasping positions have a certainty close 
to zero. From the above results, the trained model was 

clustered as different grasping patterns when there was 
a handle or not, and the certainty was estimated appro-
priately for the object shape and grasping position. As 
shown in Fig. 9, the grasping position certainty for all the 
training data was accurately predicted with a mean esti-
mation error of 0.03 and its standard deviation of 0.13. 
In this study, the grasping is possible for the input object 
was possible if the certainty is over the threshold value of 

Fig. 12  Results of recalling the grasping methods with certainty for 
the validation data

Fig. 13  Point cloud of the object and recalled grasping hand for the 
fourth object in Fig. 12

Fig. 14  The recall results of the multiple grasping methods for a real 
image. The region cropped by the white frame in the left image is the 
input object image. Each row of the right image corresponds to the 
recalled grasping method
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Fig. 15  The recalling results for a variety of real images. The results that are determined to be ungraspable are based on the estimated certainty, 
which are displayed by the dark images
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0.5 for the highest F-value, which gives an accuracy rate 
of 97.8% and precision of 99.1%.

Figure 12 displays the results of recalling the grasping 
method and estimating its certainty for the validation 
data in the same way as Fig. 10 for the training data. Fig-
ure 13 shows the 3-D point clouds of the object and the 
recalled grasping hand shapes for the fourth object in 
Fig. 12.

As shown in the second column in Fig. 12, multiple grasp-
ing positions were estimated for the unknown object images 
and in Fig. 9, the mean error, and its standard deviation of 
the estimated grasping position for all of the validation data 
were 2.04 pixel and 1.80 pixel. The average object height for 
the validation data was approximately 8 cm and the pixel size 
that was projected on the image was around 20 pixels (cor-
responding to 0.9  cm in 3-D space scale, which is smaller 
than the finger width), the estimated positions were con-
sidered to be near the ground truth enough. Although there 
was another estimated grasping with a large position error, 
as shown in the second row of the fifth object, even such an 
example successfully recalls the graspable handle-shape part.

The fourth column in Fig.  12 shows the grasping hand 
shapes recalled for each estimated grasping position. As 
shown in Fig. 9, the mean error and standard deviation of the 
recalled hand depth for all the validation data were 33.3 mm 
and 21.1  mm. Hand shapes with a very large depth error, 
such as the result of the third row of the fourth object, were 
rare occurrence. The mean error and standard deviation of 
the recalled hand depth except those bad cases was 24.9 mm 
and 10.5 mm, which was close to the values for the training 
data. As shown in Fig. 13, since the fingertips were in contact 
with the object, it was observed that the grasping hand shape 
network successfully estimated the grasping hand shape for 
the unknown object images.

The right-most column in Fig. 12 shows the estimated cer-
tainty. As shown in Fig. 9, the grasping position certainty for 
all the validation data was accurately predicted with a mean 
estimation error of 0.07 and a standard deviation of 0.20. 
The grasping position certainty network estimated the cer-
tainty for the unknown object images with an accuracy rate 
of 93.8% and a precision of 96.5% under the condition of 
threshold of 0.5 at which the F-value is maximized.

Figures 14 and 15 show examples of recall results of the 
multiple recalled grasping methods for real images. The 
recalling procedure is performed in real time by employing 
CUDA-driven GPU board (Geforce GTX1080). The depth 
images for a total of 20 kinds of unknown objects were taken 
for 5 s at 15 fps. The left side of Fig. 14 is a captured depth 
image, and each row of the right side is the recalled grasping 

method overlaid on the input image which includes a grasp-
ing position, a grasping hand shape, and a grasping position 
certainty. In the lowest row, since the estimated certainty 
value is exceedingly lower than the threshold of 0.5, it was 
judged as impossible to grasp at that position and no grasp-
ing hand was overlaid. Figure 15 shows recall results for the 
other objects in the same manner as Fig. 14.

The second column in the first row of Fig. 15 shows the 
recall result for the elephant-shaped watering can with a 
handle similar to a cup and grasping methods with high 
certainty are recalled for the handle and the upper part, 
and a grasping method with low certainty was recalled 
for the inside of the handle. The grasping methods were 
recalled in response to similar local shape features, 
even for an object having large different shape from the 
learned object.

Conclusions
This study proposed a method to recall grasping meth-
ods for objects having multiple graspable positions 
and grasping hand shapes. This technique trained the 
CNN to recall multiple grasping methods by automati-
cally clustering the object shapes and grasping types 
in the learning process without prior knowledge of the 
type and number of grasping methods for each object. 
The grasping positions common to each of the typical 
grasping methods were automatically clustered into 
one of the multi-channel heatmap during learning. In 
addition, the CNN generated the grasping positions 
corresponding to the learned typical grasping methods. 
The plausible grasping methods for the input object 
were chosen by evaluating the estimated grasping posi-
tion certainty as the graspability. The proposed method 
was applied to different objects with similar shape fea-
tures, such as cups with and without a handle, watering 
cans, teapots, and containers, and the suitable grasp-
ing methods and their certainties were successfully 
recalled.

Future research should focus on the following points to 
expand this method:

1.	 Extend the proposed method to objects that have 
grasping types not distinguished by the grasping 
position, such as holding a pen when writing and 
pinching it when the pen is being carried.

2.	 Develop a method to generate a motor command 
for grasping by the robot hand based on the recalled 
hand shape image.
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