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Abstract 

This paper presents a general methodology for the analysis and synthesis of a positive semi-definite system described 
by mass, damping and stiffness matrices that is often encountered in impedance control in robotics research. This 
general methodology utilizes the fundamental kinematic concept of rigid-body and non-rigid-body motions of which 
all motions consist. The rigid-body mode results in no net change in the potential energy from the stiffness matrix of 
the multiple degree-of-freedom (DoF) discrete mechanical system. Example of an unconstrained discrete mechani-
cal system is presented to illustrate the theoretical principle as applied in obtaining the free and forced vibration 
responses, as well as the dynamic characteristics of the system in natural frequency, ωn and damping ratio, ζ . In addi-
tion, the methodology is applied to the impedance control of redundant robots. The rigid-body mode is equivalent to 
the motions of a redundant robot which result in no net change in potential energy, also called the zero-potential or 
ZP mode, of impedance control. Example of a redundant robot is used to demonstrate the application of the method-
ology in robotics. The dynamic characteristics of ωn and ζ in the modal space are analyzed, which can be synthesized 
to modulate the damping of the system analytically.
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Introduction
When impedance control is utilized in robotics research, 
it is often realized by researchers in the field that the 
elements of the matrix, especially the damping matrix 
to impart proper damping to achieve desired dynamic 
response, are obtained using trials and error without 
available analytical tools. This is largely due to the mul-
tiple degrees of freedom (DoF) of the robotic system, as 
manifested by coupled stiffness and damping matrices 
that make the analysis and synthesis challenging. We pre-
sent in this paper a new and general methodology for the 
analysis and synthesis of a positive semi-definite robotic 

system described by mass, damping and stiffness matri-
ces in impedance control. This general methodology 
grew out of a novel research result in vibration analysis 
that involves general mass, damping, and stiffness matri-
ces of unconstrained mechanical systems.

The analysis of the vibration response of discrete 
mechanical systems with masses, dampers, and springs 
has been developed for constrained discrete systems [1]. 
However, a systematic methodology for the solution of 
unconstrained systems with multiple degrees of freedom 
(DoF) has not yet been presented. In this paper, a new 
and general methodology is presented for unconstrained 
discrete mechanical systems of multiple DoF by utilizing 
the kinematic concept of rigid-body (RB) and non-rigid-
body (NRB) motions. The rigid-body motions refer to the 
motion of such multiple DoF system with no net change 
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in potential energy from the interconnected springs; that 
is, the rigid-body motions belong to the null space of 
the stiffness matrix. The unconstrained systems possess 
rigid-body mode(s) that must be removed before solv-
ing the vibration problem and determining the dynamic 
response.

The methodology is also applied to the analysis of 
impedance control of redundant robots, in which the 
redundancy resembles the unconstrained rigid-body 
mode(s). Such rigid-body mode(s), or better described 
as the zero-potential-energy mode(s), results in no net 
change in the potential energy owing to the stiffness in 
the impedance control of redundant robotic manipu-
lators. This method enables the analysis of dynamic 
response of impedance control of redundant robots with 
given mass, damping and stiffness matrices. Furthermore, 
it enables one to choose the elements of stiffness and 
damping matrices to modulate the dynamic responses of 
the robot with proper damping ratios by employing this 
analytical method.

The main contribution of this paper is to provide a sys-
tematic methodology, based on the vibration theory and 
kinematics of motion, to determine the dynamic char-
acteristics of a system under impedance control. Fur-
thermore, one can use this methodology to analytically 
modulate and optimize the damping characteristics of 
the impedance control by gaining physical insights into 
the dynamic characteristics of the mechanical or robot 
system using the analytical methodology.

This paper can logically be separated into two parts. 
Part I presents the theory of analysis and methodology 
using the eigenvalue analysis. Part II presents the appli-
cation of the theory in robotic impedance control on a 
redundant robotic manipulator.

Related work
There has been work by many authors on vibration anal-
ysis of mechanical systems that are constrained to an 
inertial frame of reference, such as in [1], among others, 
where the systems are conservative and positive definite. 
For the case of constrained non-conservative systems, 
such as positive-definite mass-damper-spring systems 
of multiple degrees of freedom, the linear system theory 
[2] can be directly applied to solve them to obtain their 
dynamic response. If such systems are unconstrained 
(positive semi-definite), they are no longer readily solv-
able, unless the methodology presented in this paper is 
employed.

Impedance control [3] of robotic manipulators deals 
with the interaction of the robot with its environment, 
and is modeled as a multi-dimensional mass-damper-
spring system, similar to the discrete systems in mechan-
ical vibration theory. The methodology presented here 

becomes particularly useful for the case of redundant 
manipulators, which require a special treatment, as in 
non-conservative unconstrained discrete mechanical sys-
tems. This methodology allows us to obtain the dynamic 
response of the robot, which also lets us analyze the effect 
of different damping parameters of the system [4] once it 
has been appropriately mapped into the joint space [5, 6] 
(as most of robotic tasks are defined in Cartesian space 
[7]) to damp out undesired joint vibrations in a theoreti-
cally sound manner. Research results on selecting damp-
ing parameters for impedance control were presented, 
for example in [8], but assumed a special case of diago-
nalization of the system with both damping and stiffness, 
which in general is not the case.

Motivation and essence of the method
Impedance control of systems with multiple degrees 
of freedom (DoF), represented by Eq. (1), requires 
knowledge of the dynamic characteristics of the system 
for good control.1 Equation (1) represents a multiple-
DoF robotic system under impedance control with the 
{M,C,K} matrices. The challenge of such a system is 
the non-diagonal (or coupled) {M,C,K} matrices that 
make the system equation difficult to decouple to obtain 
the dynamic characteristics of a scalar system, like the 
one-DoF system of mẍ + cẋ + kx = f  . (Even when one 
chooses diagonal C and K matrices, the M matrix is still 
not diagonal for any robotic system.) Furthermore, the 
elements in damping C are often chosen by trial-and-
error or from experience.

Take the case of impedance control of a Franka Emika 
Panda robot at a given configuration with a prescribed 
K = diag([2000, 600, 2000, 100, 100, 100]) in Cartesian 
space, one can choose a diagonal damping matrix of 
C1 = diag([5, 3, 5, 1, 1, 1]) (in SI units). What often fol-
lows is a trial-and-error approach to pick the elements of 
C to achieve a good dynamic characteristics by running 
the robot and measuring its impulse or step response. 
An experimental response of this set of {M,C1,K} (with 
the mass matrix M given by the robot system library) 
is plotted in Fig.  1, with large under- and over-shoot. 
By employing the methodology in this paper to obtain 
dynamic responses and understand the dynamic charac-
teristics in the modal space in which the system Eq. (1) 
can be decoupled to 6 independent single DoF, we can 
choose the following C2 = diag([22.5, 23.5, 45, 2, 12, 1]) . 
This can be easily done by following the proposed 
method using a range of values of individual elements in 

1  This is similar to the control of a one-DoF mechanical system of 
mẍ + cẋ + kx = f  for which we must know the dynamic characteristics of 
natural frequency and damping before applying any control to the system.
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C to study their trend of influence on the damping ratios 
using automated code. The much improved dynamic 
response of experimental results on Panda robot at the 
same configuration is plotted in Fig. 1 for comparison.

It follows from the theoretical analysis in this paper, 
the damping ratios and natural frequencies of the decou-
pled system in the modal space are shown in Table 1. The 
system with C2 produces larger damping ratios; whereas, 
C1 produces 3 small damping ratios. This explains 
the dynamic response of low damping using C1 , and 
improved response using C2 in the experimental results 
of responses in Fig. 1. It is noted that the response in the 
Cartesian space is a linear combination of each response 
in the modal space, according to the well-known “expan-
sion theory” in vibration analysis [1].

The key is to choose the corresponding elements of 
the damping matrix using the analytical methodol-
ogy to understand the fundamental dynamic behavior 
and improve the dynamic response of the system. This 
is accomplished by the novel methodology based on 
vibration theory and kinematics of motion, presented 

in “Theoretical background” section. Examples of a 
mechanical system and a redundant robot system are 
presented with illustration in the two sections following 
the theory.

Theoretical background
An unconstrained discrete mechanical  system has free-
dom to move without being constrained to an inertial 
frame, such as the constraint of a wall or a rigid structure. 
Such unconstrained system has rigid-body motion, as if 
the entire system were a rigid-body moving without rela-
tive motions between the discrete elements of the system 
[9]. This rigid-body mode of motion is dictated by rigid-
body mechanics, with a frequency of oscillation of zero. 
We will denote the rigid-body mode of motion of an n-
DoF system as u0 , which is a n× 1 vector of constant ele-
ments, with the associated frequency of ω0 = 0.

First of all, let us consider the general equation of 
motion of a n-DoF system in Eq. (1)

where M is the mass matrix, C is the damp-
ing matrix, K is the stiffness matrix of the n-DoF 
dynamic system described by the n× 1 state vector 
q(t) = [q1(t) q2(t) · · · qn(t)]

T subject to an external 
force Q . The initial displacements and velocities are given 
as q0 = q(0) and q̇0 = q̇(0) , respectively.

The characteristic of an unconstrained, positive semi-
definite system is a singular stiffness matrix, K . The sys-
tem in Eq. (1) becomes a positive semi-definite system. 
In addition, the rigid-body mode u0 belongs to the null 
space of K [10]; that is,

As an example, the rigid-body mode of the uncon-
strained system shown in Fig. 2 is u0 = [1 1 1]T when all 
three masses of the three-DoF mechanical system move 
synchronously, as if they were a rigid body. This concept 
of “rigid-body mode” also applies to a redundant system, 
such as a redundant robot in which the number of DoF 
(joints) is larger than the intended DoF of the system, 

(1)Mq̈(t)+ C q̇(t)+ Kq(t) = Q

(2)u0 ∈ N(K) =⇒ Ku0 = 0

Fig. 1  Experimental results of impedance control on a Panda 
robot. The responses are performed with an initial displacement in 
the y direction, released with zero initial speed, corresponding the 
damping matrices of C1 and C2 , respectively

Table 1  Comparison of damping ratios and natural frequencies of the Panda robot performing Cartesian impedance control using 
two different damping matrices C1 and C2

Data from all six pairs of eigenvalues in the modal space are tabulated

C1 �1,2 �3,4 �5,6 �7,8 �9,10 �11,12

ωn 20.25 10.98 9.755 73.17 90.89 –

ζ 0.0255 0.0316 0.0294 0.2483 0.4075 1

C2 �1,2 �3,4 �5,6 �7,8 �9,10 �11,12

ωn 20.23 10.95 11.17 – – 125.45

ζ 0.2235 0.2032 0.2288 1 1 0.94
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typically 6 for a spatial robot with 6 DoF in the Carte-
sian space. Therefore, Eq. (2) is extended to include such 
redundant robot system by defining the “zero-potential-
energy” criterion as

For the sake of presentation in this paper, however, the 
notation of rigid-body mode is used, although it is inter-
changeable with the “zero-potential-energy” criterion 
throughout this paper.

This rigid-body mode defined in Eq. (2) can be normal-
ized with respect to the mass matrix by 

√

uT0 Mu0 such 
that

The corresponding non-oscillatory frequency of this 
rigid-body mode is

In the following, we provide the procedures to solve the 
unconstrained or redundant systems with: (I) remove the 
redundancy, or the unconstrained rigid-body mode; (II) 
formulate the positive-definite system; (III) determine 
the response of the system; and (IV) obtain the  over-
all response of vibration by combining the RB and NRB 
solutions. An example is illustrated with an uncon-
strained redundant mechanical system of three degrees 
of freedom. Finally, the application of the theory to 
impedance control of redundant robots is presented with 
an example.

Remove the redundancy
First of all, we must remove the redundancy, or the 
unconstrained rigid-body motion, of the positive semi-
definite system described in Eq. (1).

By the expansion theorem, a general response of vibra-
tion can be expressed as a linear combination of all the 
bases (modes, or modal vectors) in the following

(3)E =
1

2
uT0 Ku0 = 0

(4)uT0 Mu0 = 1

(5)ωRB = ω0 = 0

where qRB(t) and qNRB(t) denote the rigid-body and 
non-rigid-body components of the state vector q(t) . All 
modal vectors, ui , including u0 , are normalized such that 
uTi Mui = 1 for i = 0, 1, 2, . . . , (n− 1) . By the orthogonal-
ity property, we have

Next, in order to determine the oscillatory motions (or 
the non-rigid-body, NRB, motion), we remove the known 
rigid-body mode by imposing upon the state vector q a 
constraint matrix, S , to ensure that all solutions of q(t) 
are free of the rigid-body mode, based on Eq. (6). By the 
expansion theorem, any response q(t) is a linear com-
bination of all modal vectors, including the rigid-body 
mode. If a response q(t) is free of the rigid-body mode, 
it will be orthogonal to the rigid-body mode, u0 ; that is,

If uT0 M = [s1 s2 · · · sn]
T , Eq. (8) becomes

Equation (9) can be used to equate a chosen qi as a func-
tion of the rest of (n− 1) elements in q by the following 
equation

Therefore, the constraint matrix, S , can be defined and 
expressed as q = S q′ where

where the constraint matrix and the reduced state vector 
q′ are

(6)
q(t) = c0(t)u0

︸ ︷︷ ︸

RB

+ c1(t)u1 + · · · + cn−1(t)un−1
︸ ︷︷ ︸

NRB

= qRB(t)+ qNRB(t)

(7)uTi Muj = δij =

{
1 if i = j
0 if i �= j

(8)uT0 Mq = 0

(9)
n∑

i=1

siqi = s1q1 + s2q2 + · · · + snqn = 0

(10)
qi = −

(
s1

si
q1 +

s2

si
q2 + · · · +

si−1

si
qi−1

+
si+1

si
qi+1 + · · · +

sn

si
qn

)

(11)
q =
















q1
q2
...

qi−1

qi
qi+1

...
qn
















� �� �

n×1

= Sq′

m2

q2

q3

m3m1

k5q1

k2 k3

F1

F2

F3

c5

c2 c3

Fig. 2  Unconstrained and nonconservative 3-DoF 
mass-spring-damper system
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The new state vector q′ = [q1 q2 · · · qi−1 qi+1 · · · qn]
T is 

the reduced state vector of q by removing qi.
For example, if we choose to eliminate qn , Eq. (10) will 

become

The constraint matrix in Eq. (11) will become q = S q′ or

Employing the mapping of q = S q′ in Eqs. (11) or (13), 
Eq. (1) can be pre-multiplied by ST to become

where the matrices in the reduced (n− 1) space with the 
new state vector q′ are defined as

Formulate the positive‑definite system
Once the rigid-body mode has been removed, the equa-
tion of motion of the reduced (n− 1)-DoF, as derived 
above, is formulated as

where q′(t) = [q1 q2 · · · qi−1 qi+1 · · · qn]
T is the reduced 

vector with (n− 1) state variables, defined by q = Sq′ in 

S =













1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

. . .
...

− s1
si

− s2
si

· · · −
si−1
si

−
si+1
si

· · · − sn
si

...
. . .

...
0 0 · · · 0 0 · · · 1













� �� �

n×(n−1)

q′ =














q1
q2
...

qi−1

qi+1

...
qn














� �� �

(n−1)×1

(12)qn = −

(
s1

sn
q1 +

s2

sn
q2 + · · · +

sn−1

sn
qn−1

)

(13)







q1
q2
...
qn







� �� �

n×1

=










1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

− s1
sn

− s2
sn

· · · −
sn−1
sn










� �� �

n×(n−1)







q1
q2
...

qn−1







� �� �

(n−1)×1

M′q̈′ + C′q̇′ + K′q′ = ST Q

M′ = STMS C′ = STCS K′ = STKS

(14)M′q̈′ + C′q̇′ + K′q′ = ST Q

Eqs. (11) or (13). The equation of motion in (14) with the 
M′ , C′ and K′ matrices is now a positive definite system.2

The solution of Eq. (14) requires the excitation Q and 
the initial conditions q′(0) and q̇′(0) , which have to be 
derived from the given initial conditions q(0) and q̇(0) in 
the physical space. Based on Eq. (6), the initial condition 
q(0) can be broken into RB (rigid-body) and NRB (non-
rigid-body) components

where α0 is a constant. Pre-multiply Eq. (15) by uT0 M to 
obtain

Note that uT0 Mu0 = 1 and uT0 MqNRB(0) = 0 based on 
the orthogonality in Eq. (7). The RB part of the initial dis-
placement is

Likewise, the RB part of the initial speed can be expressed 
as

Thus, the NRB part of the initial displacement and speed 
for the equation of motion (14) in the reduced (n− 1) 
space, free of the rigid-body mode, are

The initial conditions of the reduced state vector q′(0) 
and q̇′(0) will be the corresponding elements in qNRB(0) 
and q̇NRB(0) from Eqs. (18) and (19), respectively. For 
example, if we choose to eliminate qn , the first (n− 1) ele-
ments of qNRB(0) and q̇NRB(0) in Eqs. (18) and (19) should 
be used as the initial conditions of the reduced state vec-
tors q′(0) and q̇′(0) , respectively.

Determine the response of the system
Finally, the solution of vibration analysis of an uncon-
strained system consists of both 

(15)q(0) = qRB(0)+ qNRB(0) = α0u0 + qNRB(0)

uT0 Mq(0) = α0u
T
0 Mu0 + uT0 MqNRB(0) = α0

(16)qRB(0) = α0u0 =
[

uT0 Mq(0)
]

u0

(17)q̇RB(0) =
[

uT0 Mq̇(0)
]

u0

(18)qNRB(0) = q(0)−
[

uT0 Mq(0)
]

u0

(19)q̇NRB(0) = q̇(0)−
[

uT0 Mq̇(0)
]

u0

2  The reduced (n− 1) state vector is now q′ = [q1 q2 · · · qi−1 qi+1 · · · qn]
T  . 

For example, if we choose to eliminate qn , the reduced (n− 1) state variables 
will become q′ = [q1 q2 · · · qn−1]

T .
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1.	 Rigid-body mode: Apply Eqs. (2) and (4) to find the 
normalized rigid-body mode, u0 , corresponding to 
ω0 = 0.

2.	 Non-rigid-body mode: Remove the rigid-body mode 
from the solution of q(t) by using the constraint 
matrix S to obtain the reduced equation of motion 
for (n− 1) DoF in Eq. (14). Solve this equation with 
the given excitation ( STQ , for forced vibration 
response) and the initial conditions of the reduced 
vectors, q′(0) and q̇′(0) , from the NRB part of the ini-
tial conditions qNRB(0) and q̇NRB(0) in Eqs. (18) and 
(19), respectively.

In the following subsections, the two parts of the solution 
for free and forced vibration responses will be discussed.

Determine the rigid‑body motion (RB)
Equations (2) and (4) render the rigid-body mode which 
is normalized, called u0 . Since this RB motion depends 
on K , we need to determine it using the dynamics of the 
system. With the normalized rigid-body mode, we can 
write the dynamic response of the rigid-body as follows

where β = β(t) is a function of time. Substituting Eq. (20) 
into Eq. (1) to obtain

When u0 is normalized, as in Eq. (4), Eq. (21) can be sim-
plified to

Equation (22) is a scalar equation if there is only one 
rigid-body mode.3 Next, we formulate the equations 
to determine the rigid-body motion with free or forced 
vibration.

RB motion: free vibration analysis  Free vibration is a 
response to only the initial conditions. When Q = 0 , 
the differential equation of motion for β(t) in Eq. (22) 
becomes

The solution can be obtained from the following equation 
with the initial conditions:

(20)qRB(t) = u0 β(t)

(21)
Mu0β̈(t)+ Cu0β̇(t)+ 0 = Q

=⇒ uT0 Mu0β̈(t)+ uT0 Cu0β̇(t) = uT0 Q

(22)β̈(t)+ uT0 Cu0 β̇(t) = uT0 Q

β̈(t)+ uT0 Cu0 β̇(t) = 0

The solution of response to Eq. (23) is

where a = uT0 Cu0 �= 0 is a positive scalar for a positive 
definite C matrix.

If the system is without damping or a = uT0 Cu0 = 0 , 
we can re-write Eq. (23) as follows

The solution of response to Eq. (25) is

Once the response β(t) is found, the RB part of the 
free vibration response can be obtained by Eq. (20), 
qRB(t) = u0 β(t) . Note Eqs. (24) and (26) can result in 
net steady-state RB motion of the system as a whole, as a 
consequence of the RB part of the initial conditions.

RB motion: forced vibration analysis  Equation (22) can 
be employed to find the forced vibration response. The 
solution of this one-DoF system from Eq. (22) can be 
obtained using the inverse Laplace transform

Once the response β(t) is found using Eq. (27), the RB 
part of the forced vibration response can be obtained by 
Eq. (20), qRB(t) = u0 β(t).

Determine the oscillatory motions (NRB)
Once the rigid-body mode has been removed, the equa-
tion of motion of the reduced (n− 1)-DoF positive-
definite system in Eq. (14) can be solved to obtain the 
oscillatory motions (NRB). Because q′(t) is free of RB 
motion, the initial conditions employed for the solution 
in Eq. (14) must also be free of the RB motion.

Note that the reduced state variables in q′(t) still repre-
sent the physical generalized coordinates. The differences 
between q(t) and q′(t) include:

•	 The reduced state q′(t) has (n− 1) independent gen-
eralized coordinates, with the RB motion removed 
from the n-DoF q(t) , by imposing the constraint 
matrix S.

(23)
β̈(t)+ uT0 Cu0 β̇(t) = 0 with IC′s :

β(0) = uT0 Mq(0), β̇(0) = uT0 Mq̇(0)

(24)β(t) = β(0)+
1

a
(1− e−at

)β̇(0)

(25)
β̈(t) = 0 with IC′s :

β(0) = uT0 Mq(0), β̇(0) = uT0 Mq̇(0)

(26)β(t) = β̇(0) t + β(0)

(27)β(t) = L−1

{

uT0 Q

s2 + (uT0 Cu0)s

}

3  The rigid-body mode can include translational mode or rotational mode or 
both.
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•	 The reduced state q′(t) should be free of the RB 
motion. This has a major implication on how to 
define the initial conditions when solving for the 
NRB motion using Eq. (14) with the given initial con-
ditions q(0) and q̇(0) in the original n-DoF space.

Note that if this system has no damping; i.e., the damp-
ing matrix C in Eq. (1) does not exist, a modal matrix in 
the reduced (n− 1)× 1 space can be found, by the modal 
analysis, and mapped back to the n-DoF system to find a 
full n× n modal matrix [1] with the addition of the rigid-
body mode, u0 . This can be treated as a special case of the 
general treatment which is presented in the following.

Next, we formulate the equations to determine the 
non-rigid-body (NRB) motion with free or forced 
vibration.

NRB motion: free vibration analysis  The initial condi-
tions are needed to find the free vibration response of NRB 
motion in the q′ space. The general RB motion is defined 
in Eq. (20). The RB part of the initial conditions are in Eqs. 
(16) and (17), with the RB part of free vibration response 
derived in “Determine the rigid-body motion (RB)” sec-
tion. The NRB part of the initial conditions are derived in 
Eqs. (18) and (19). The corresponding (n− 1) elements of 
these initial conditions in the reduced q′ space are used 
to solve for the free vibration response q′(t) based on the 
equation of motion in (14).

The following two types of systems are discussed: (i) 
conservative systems without damping, and (ii) noncon-
servative systems with damping.

	 i.	 Conservative systems without damping:

		  Apply the modal analysis for the conservative system 
[1] to the reduced systems in Eqs. (14), without the 
damping matrix C , to obtain the (n− 1)× (n− 1) 
modal matrix, U′ . Use the corresponding elements 
of q′ and q̇′ in qNRB(0) and q̇NRB(0) to form the ini-
tial conditions in the reduced space q′(0) and q̇′(0) . 
The initial conditions in the modal space, each a 
(n− 1)× 1 vector, will be:

The solution of the modal coordinates are thus

where r = 1, 2, · · · , (n− 1) . Once the vector of the  
modal coordinates η(t) = [η1(t), η2(t), · · · , ηn−1(t)]

T is 
obtained, the (n− 1)× 1 reduced state vector is

η(0) = (U′
)
TMq′

(0)

η̇(0) = (U′
)
TMq̇′

(0)

(28)ηr(t) = ηr(0) cosωr t +
η̇r(0)

ωr
sinωr t

Finally, the NRB part of the free vibration response 
is obtained from the mapping using the constraint 
matrix in equation (11)

	 ii.	 Nonconservative systems with damping:
		  The nonconservative system in Eq. (14) has 

(n− 1)× (n− 1) mass, damping, and stiffness 
matrices M′,C′ , and K′ . Equation (14) can be re-
arranged in the form of the linear system equation 
in the following

where x(t) = [q′(t) q̇′(t)]T , and the A and B 
matrices are

In order to find the solution to the system 
described by Eq. (29), we employ the dual eigen-
value analysis for the nonconservative system. The 
solution is

where �(t) = eAt = X e�t YT is the state transi-
tion matrix, �(t, τ ) = eA(t−τ) = X e�(t−τ) YT , X 
and Y are the right and left eigenvectors, respec-
tively, and YTX = I . Thus, we can substitute the 
results into Eq. (30) to obtain

The free vibration response to the initial conditions 
without excitation can be obtained from Eq. (31) 
directly. The response is

The eigenvectors X and Y are obtained from the 
dual eigenvalue analysis together with the eigenval-
ues in the � matrix. The initial conditions are given 
with x(0) = [q′(0) q̇′(0)]T , using the correspond-
ing elements of q′ and q̇′ in qNRB(0) and q̇NRB(0) to 
form the initial conditions in x(0) . The NRB part of 
the free vibration responses, including generalized 
coordinates and generalized velocities, are found in 
x(t) = [q′(t) q̇′(t)]T from Eq. (32).

q′
(t) = U′

η(t)

qNRB(t) = S q′
(t)

(29)ẋ(t) = A x(t)+ BSTQ(t)

A =

[
0 I

−(M′)−1
K
′ −(M′)−1

C
′

]

, B =

[
0

(M′)−1

]

(30)

x(t) = �(t) x(0)+

∫ t

0
�(t, τ )BSTQ(τ ) dτ

(31)
x(t) = X e�t YT x(0)

+

∫ t

0
X e�(t−τ) YT BSTQ(τ ) dτ

(32)x(t) = X e�t YT x(0)
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Finally, the NRB part of the free vibration response is 
obtained from the mapping using the constraint matrix 
in Eq. (11)

NRB motion: forced vibration analysis  Equation (14) is 
an (n− 1)-DoF positive-definite system. The solution of 
forced vibration response can be obtained by employ-
ing the standard procedures of the modal analysis if the 
damping C does not exist. For nonconservative systems 
with damping matrix C , the dual eigenvalue methodology 
with linear system solution should be employed to obtain 
the solution of forced vibration response.

The following two types of systems are discussed: (i) 
conservative systems without damping, and (ii) noncon-
servative systems with damping.

	 i.	 Conservative systems without damping:

		  Apply the modal analysis for the conservative sys-
tem to the reduced systems in Eq. (14), without the 
damping matrix C , to obtain the (n− 1)× (n− 1) 
modal matrix, U′ . Proceed with the modal analysis 
and obtain the forced vibration response (for exam-
ple, by the inverse Laplace transform, as in the fol-
lowing). Defining q′ = U′η , Eq. (14) becomes

The forced vibration response4 using the inverse 
Laplace transform is

where fr(t) is the component of f(t) , and 
Fr(s) is the Laplace transform of fr(t) . 
Once the vector of the modal coordinates 
η(t) = [η1(t), η2(t), . . . , ηn−1(t)]

T is obtained, the 
reduced state vector q′ is

Finally, the NRB part of the forced vibration 
response is obtained from the mapping using the 
constraint matrix in Eq. (11)

qNRB(t) = S q′(t)

(U′
)
TM′U′

η̈(t)+ (U′
)
TK′U′

η(t) = (U′
)
TST Q(t)

= f(t)

η̈r(t)+ ω
2
r ηr(t) = fr(t) =⇒ ηr(t) = L

−1

{
Fr(s)

s2 + ω2
r

}

q′
(t) = U′

η(t)

qNRB(t) = S q′(t)

	 ii.	 Nonconservative systems with damping:
		  Following the analytical solution in “NRB motion: 

free vibration analysis” section, the NRB part of 
the forced vibration response is the convolution 
integral in Eq. (31). Note that x(t) = [q′(t) q̇′(t)]T 
includes both the generalized coordinates and gen-
eralized velocities.

Finally, the NRB part of the forced vibration response 
is obtained from the mapping using the constraint matrix 
in Eq. (11)

Alternative solution using the dual expansion theorem: 
The dual expansion theorem of the nonconservative 
eigenvalue systems give rise to

Substitute Eq. (33) into the linear system Eq. (29) and 
pre-multiply by YT to obtain

Apply the orthogonality property to reduce the above 
equation to

Equation (34) is recognized as a set of independent modal 
equations of the form

in which

are the modal excitations. Each equation with modal 
coordinates ξr in Eq. (35) can be solved by

to render the response of ξr(t) using the inverse Laplace 
transform, where Nr(s) = L{nr(t)} . The response of x(t) 
can be obtained by substituting into Eq. (33) the solution 
of modal response ξ

Once x(t) is found, the NRB part of the forced vibration 
response qNRB(t) = S q′(t) can be obtained.

qNRB(t) = S q′
(t)

(33)

x(t) = ξ1(t)x1 + ξ2(t)x2 + · · · + ξ2n(t)x2n

=

2n∑

r=1

ξr(t)xr = X ξ(t)

YTX ξ̇ (t) = YTAX ξ(t)+ YTBSTQ(t)

(34)ξ̇ (t) = � ξ(t)+ YTBSTQ(t) = � ξ(t)+ n(t)

(35)ξ̇r(t) = �r ξr(t)+ nr(t) r = 1, 2, . . . , 2n

(36)nr(t) = yTr BSTQ(t) r = 1, 2, . . . , 2n

ξr(t) = L−1

{
Nr(s)

(s − �r)

}

x(t) = X ξ(t)

4  Other methods can be employed to obtain the forced vibration response, as 
appropriate.
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Overall response of vibration by combining the RB 
and NRB solutions
Finally, the solution of the overall response of vibra-
tion for such unconstrained system can be determined 
by combining the appropriate solutions of RB and NRB 
motions, as follows

where qRB(t) represents the solution of the rigid-body 
motion obtained through formulation presented in 
“Determine the rigid-body motion (RB)” section, and 
qNRB(t) is the solution of the non-rigid-body oscilla-
tory motion obtained through formulation presented 
in “Determine the oscillatory motions (NRB)” section, 
respectively.

Apply the theory to an example of unconstrained 
mechanical system
Problem Statement: A three-DoF unconstrained 
nonconservative mass-spring-damper sys-
tem is shown in Fig.  2. The generalized coordi-
nates are q = [q1 q2 q3]

T , where qi are measured 
from the equilibrium positions. The parameters of 
the system are: m1 = 8 kg,m2 = 2 kg,m3 = 5 kg , 
c2 = 15N s/m, c3 = 20N s/m, c5 = 10N s/m   , 
k2 = 1200N/m, k3 = 1500N/m , and k5 = 2400N/m . 
The initial displacements are q1(0) = 0, q2(0) = 0.03 and 
q3(0) = 0m , and the system is released from at rest with 
zero initial velocity.

Derive the equation of motion for the unconstrained 
nonconservative system in Fig. 2. Determine (i) the free 
vibration response and (ii) the forced vibration response 
subject to a unit impulse Qimp = [δ(t) 0 0]T .

Solution: The unconstrained nonconservative system 
under consideration here is illustrated in Fig. 2.

The equation of motion for the dynamic system shown 
in Fig. 2 is

 where q = [q1 q2 q3]
T is the state vector of the gen-

eralized coordinates. It is noted that both the stiffness 

(37)q(t) = qRB(t)+ qNRB(t)

(38)





m1 0 0
0 m2 0
0 0 m3





� �� �

M

q̈ +





c2 + c5 −c2 −c5
−c2 c2 + c3 −c3
−c5 −c3 c3 + c5





� �� �

C

q̇

+





k2 + k5 −k2 −k5
−k2 k2 + k3 −k3
−k5 −k3 k3 + k5





� �� �

K

q =





F1
F2
F3





and damping matrices, K and C , are singular,5 while the 
mass matrix, M , is not singular. The system is positive 
semi-definite.

Substituting the given values of the parameters into Eq. 
(38), we obtain

The rigid-body mode is in the null space of the matrix K 
(to render Ku0 = 0 ); that is,

In this case, the rigid-body mode, u0 , represents a motion 
in which all three masses move in a synchronized way, as 
though all three masses were connected as one whole 
rigid body. The rigid-body mode can be normalized by √

uT0 Mu0 . Thus, the normalized rigid-body mode is6

The corresponding frequency (non-oscillatory) is

To solve the eigenvalue problem, we have to reduce the 
positive semi-definite system by one degree of freedom 
(from 3 DoF to 2 DoF), by removing the rigid-body 
mode. Applying the preceding methodology, we can for-
mulate the following constraint equation

Therefore, the constraint equation and the constraint 
matrix, S , can be expressed as

M =





8 0 0
0 2 0
0 0 5





C =





25 −15 −10
−15 35 −20
−10 −20 30





K =





3600 −1200 −2400
−1200 2700 −1500
−2400 −1500 3900





u0 ∈ N (K) =





1
1
1





(39)u0 =





0.2582
0.2582
0.2582





ω0 = 0

(

uT0 M
)

q = 0 =⇒ q3 = −1.6 q1 − 0.4 q2

5  This is not normally the case, with a different damping matrix.
6  We typically use 4 significant digits for numbers, when applicable, with 
adequate accuracy of results.
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where q′ = [q1 q2]
T is the reduced state vector. The 

reduced positive definite system is now

where the new mass and stiffness matrices are

It is easy to verify that the conventional modal analysis 
can not be employed in this nonconservative system to 
obtain the solution of vibration responses. Instead, the 
general methodology presented in this paper will be 
employed to obtain the response of free vibration subject 
to the prescribed initial displacement and velocity.

	 i.	 Free vibration response: From Eq. (25), we find

	 Although the system is a nonconservative system, 
it so happens that uT0 Cu0 = 0 . Thus, the free vibra-
tion response for the rigid-body motion, β(t) , from 
Eq. (26) is

The response of the rigid-body motion based on 
Eq. (20) is

with the rigid-body (RB) part of the initial condi-
tions being

Thus, the initial conditions of the NRB oscillatory 
motion are

(40)





q1
q2
q3



 =





1 0
0 1

−1.6 −0.4





�
q1
q2

�

= Sq′

(41)M′q̈′ + C′q̇′ + K′q′ = 0

(42)

M′ = STMS =

[
20.8 3.2
3.2 2.8

]

C′ = STCS =

[
133.8 40.2
40.2 55.8

]

K′ = STKS =

[
21264 4656
4656 4524

]

β(0) = uT0 Mq(0) = 0.01549, β̇(0) = uT0 Mq̇(0) = 0

β(t) = β̇(0) t + β(0) = 0.01549

(43)qRB(t) = u0 β(t) =





0.004
0.004
0.004





qRB(0) = uT0 β(0) =





0.004

0.004

0.004



; q̇RB(0) = uT0 β̇(0) =





0

0

0





Only the first two elements of the NRB initial con-
ditions in Eq. (44) will be used for the initial con-
ditions q′(0) and q̇′(0) because q′ is obtained by 
eliminating q3.7

	 The system given in Eqs. (41) and (42) is a 2× 2 
nonconservative positive-definite system, with the ini-
tial conditions in Eq. (44). The dual eigenvalue analy-
sis for such nonconservative system will be employed 
using the methodology in “NRB motion: free vibra-
tion analysis” section. Equation (41) is re-arranged 
according to Eq. (29) to become

where x(t) = [q′(t) q̇′(t)]T , and the A matrix is8 

The solution of the free vibration response accord-
ing to Eq. (32) is

where the initial condition consists of the first 
two elements of q′ and q̇′ in qNRB(0) and q̇NRB(0) 
because q3 was eliminated in forming the con-
straint matrix S.

The eigenvalues of the matrix A in Eq. (45) are 
�1,2 = −3.024 ± 30.83 and �3,4 = −10.29± 38.88 , 
with corresponding right and left eigenvectors in 
the following that satisfies YTX = I

(44)

qNRB(0) = q(0)− qRB(0) =





−0.004
0.026

−0.004



,

q̇NRB(0) = q̇(0)− q̇RB(0) =





0
0
0





ẋ(t) = A x(t)+ BSTQ(t)

(45)

A =

�
0 I

−(M′)−1K′ −(M′)−1C′

�

=






0 0 1 0
0 0 0 1

−930 30 −5.125 1.375
−600 −1650 −8.5 −21.5






x(t) = X e�t YT x(0)

x(0) =

�
q′(0)
q̇′(0)

�

=






−0.004
0.026
0
0






7  When q1 is eliminated instead of q3 , the initial conditions q′(0) and q̇′(0) will 
take the last two elements of the NRB initial conditions in Eq. (44). When q2 is 
eliminated, the initial conditions q′(0) and q̇′(0) will take the first and the last 
elements.
8  The B matrix is zero without excitation in free vibration response.
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The solution of free vibration response can be 
obtained using the x(t) = X e�t YT x(0) , which 
includes q′(t) and q̇′(t) . The response of NRB 
part of the free vibration can be obtained by 
qNRB(t) = Sq′(t) after simplifying the complex 
solution, with

The overall free vibration response is the sum 
of the rigid-body (RB) motion in Eq. (43) and 
the oscillatory motion (NRB) in Eq. (46); that is, 
q(t) = qRB(t)+ qNRB(t) . Therefore, the over-
all free vibration response is

The details of the responses in Eqs. (46) and (47) 
can be found in Appendix 1. The responses of q(t) 
in Eq. (47) are linear combination of the RB and 
NRB responses, and are plotted in Fig. 3. It can be 
verified that the solution in Eq. (47) satisfies the dif-
ferential Eq. (38).

	 Only the general treatment of analysis can 
be used to obtain the free vibration response. The 
response is plotted in Fig.  3. The free vibration 
response plotted in Fig.  3 has a steady-state devia-
tion from zero (or the initial equilibrium position) for 
the amount of 0.004 m, the same as the rigid-body 
motion obtained in Eq. (43). The RB motion will cause 
the entire system to oscillate and asymptotically set-
tles at a new position that is 0.004 m away from the 
initial equilibrium position. Thus, the free vibration 

X =







−0.002473− 0.2522i −0.002473+ 0.02522i

0.006034 + 0.01904i 0.006034 − 0.01904i

0.7849 0.7849

−0.6053+ 0.1284i −0.6053− 0.1284i

−0.0003004 + 0.001701i −0.0003004 − 0.001701i

−0.006342− 0.02397i −0.006342+ 0.02397i

−0.6306− 0.02918i −0.06306+ 0.02918i

0.9973 0.9973







Y =







−0.4530+ 20.99i −0.4530− 20.99i

−0.8486+ 1.404i −0.8486− 1.404i

0.6705+ 0.07055i 0.6705− 0.07055i

0.3687+ 0.1971i 0.3687− 0.1971i

2.428+ 17.43i 2.428− 17.43i

−0.3343+ 22.1i −0.3343− 22.1i

0.4161− 0.002654i 0.4161+ 0.002654i

0.5263+ 0.1456i 0.5263− 0.1456i







(46)qNRB(t) =





qNRB,1
qNRB,2
qNRB,3





(47)q(t) =





q1(t)
q2(t)
q3(t)





response of such system resembles a “step response” 
based on the results shown in Fig. 3.
	 We have also solved Eq. (38) using the same ini-
tial conditions with the numerical differential equa-
tion solver NDSolve[] of Mathematica, and over-
laid the results by black dashed lines for each DoF in 
Fig. 3. Both solutions, one from the proposed analyti-
cal solution and the other from the numerical solver, 
are practically the same, which further validates the 
accuracy of the analytical methodology presented in 
this paper. The analytical solution, however, provides 
the physical insights of dynamic characteristics, as 
revealed in the damping ratios and natural frequen-
cies in the modal space. For example, the low damp-
ing ratio, ζ , associated with �1,2 in Table 2 is the main 
cause of the oscillatory response.

	 ii.	 Forced vibration response: First, we determine the 
RB part of the forced vibration response. From 
Eq. (27), the RB part of the impulse response is

	

β(t) = L−1

{

uT0 Q

s2 + (uT0 Cu0)s

}

= 0.2582 t

Fig. 3  Free vibration response obtained by using the general 
methodology. The response q1(t) , q2(t) , and q3(t) are indicated. Note 
that the initial conditions are satisfied

Table 2  Damping ratios and natural frequencies of the 3 DoF 
unconstrained mechanical system

Data from both pairs of eigenvalues in the modal space are tabulated

�1,2 �3,4

ωn 30.97 40.22

ζ 0.0976 0.255
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where the impulse excitation is Q(t) = [δ(t) 0 0]T . 
Note that uT0 Cu0 = 0 in this example.
Once the response β(t) is found, the RB part of the 
forced vibration response can be determined by Eq. 
(20), qRB(t) = u0 β(t) . Therefore, the RB part of 
the impulse is

Next, let’s determine the NRB part of the forced 
vibration response.

	 Employ the A matrix in Eq. (45) and the right/left 
eigenvectors in matrices X and Y . The solution of 
the forced vibration response is given by the con-
volution integral in Eq. (31). The unit impulse 
response subject to Q(t) = [δ(t) 0 0]T is

The first two elements of x(t) are the reduced state 
vector q′(t) . Thus, the NRB part of the impulse 
response is qNRB(t) = S q′(t)

The overall response of forced vibration is the sum 
of the RB and NRB solutions obtained above. The 
impulse response is

The details of the responses in Eqs. (49), (50) and 
(51) can be found in Appendix 2.

	 The unit impulse response is plotted in Fig. 4.
	 Note that the impulse response plotted in Fig. 4 
is different from typical impulse responses of a con-
strained system. Due to the rigid-body motion, the 
entire system will continue to move away from the 
initial equilibrium position because of the RB motion 
in Eq. (48), which is a monotonically increasing 
motion, while the NRB oscillations are superposed 
on the RB motion. Thus, the impulse response of a 

(48)qRB(t) =





0.06667t
0.06667t
0.06667t





(49)

x(t) =

� t

0
X e�(t−τ) YT BSTQ(τ ) dτ

= X e�t YT BST





1
0
0



 =






q′1
q′2
q̇′1
q̇′2






(50)qNRB(t) =





qNRB,1
qNRB,2
qNRB,3





(51)qimp(t) =





qimp,1

qimp,2

qimp,3





unconstrained system resembles a ramp response of a 
constrained system.

Application of the theory to impedance control 
of redundant robots
The theory previously described and exemplified for 
vibration analysis of multi-DoF mechanical systems 
can be applied to obtain a closed-form solution of a 
multi-dimensional joint impedance control system of 
redundant and non-redundant robotic manipulators. A 
theoretically sound dynamic response of the robot can be 
obtained to modulate the behavior of the system through 
the choice of parameters of the stiffness and damping 
matrices.

Dynamic response of robotic manipulators performing 
Cartesian impedance control
In Cartesian impedance control, an n-DoF (redundant or 
non-redundant) robotic manipulator has a certain level 
of desired dynamic behavior when interacting with the 
environment [3]. The equations of motion of an n-DoF 
redundant manipulator is given by

where q is the vector of joint angles, M is the manipula-
tor’s mass matrix, G the matrix containing the centrifugal 
and Coriolis terms and v is the gravity vector term. Choos-
ing τm as [−K(q)q(t)− C(q)q̇(t)+ v(q)+G(q, q̇)q̇(t)] , 
the system in Eq. (52) becomes:

This equation of impedance control is now comparable to 
Eq. (1) describing a mass, damper and spring system. In 
order to perform Cartesian impedance control, a desired 

(52)M(q)q̈(t)+G(q, q̇)q̇(t)+ v(q) = τm + τ ext

(53)M(q)q̈(t)+ Cq̇(t)+ Kq(t) = τ ext

Fig. 4  Impulse response of the nonconservative system with 
damping. The response q1(t) , q2(t) , and q3(t) are indicated
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dynamic behavior is intended in the Cartesian ( m×m ) 
task space [7]

where, KC is the Cartesian stiffness matrix, CC is the 
damping matrix and MC is the Cartesian mass matrix. 
The values of KC can be chosen as necessary for the 
application, and a prospective initial damping matrix CC 
can be approximated or based on relatively low values. 
Both Eqs. (53) and (54) assume the similar expression as 
that in Eq. (1); therefore, the preceding analysis can be 
employed to obtain dynamic response of impedance con-
trol. The impedance control in the joint space is often of 
primary interests because that is where the physical con-
trol is taking place with the motors and encoders. Thus, it 
is necessary to compute the respective stiffness, damping 
and mass matrices in the joint space with a specification 
of Cartesian task requirements.

For a given robot configuration, the inertia mass matrix 
M in the joint space can be computed [11], and the 
desired joint stiffness K and damping C matrices can be 
mapped from the Cartesian task space [5, 6, 12, 13] using 
the manipulator Jacobian J:

where KG =
[(

∂JT

∂q1
f
)(

∂JT

∂q2
f
)

· · ·
(
∂JT

∂qn
f
)]

 is the equivalent 
stiffness due to the change of geometry under the pres-
ence of force [5].

Closed‑form solution
Similar to the case of mechanical systems, we need to 
find a solution to Eq. (53) in the joint space. We assume 
that the external forces f  and the changes in the Jaco-
bian J of the manipulator are negligible, and only the first 
term in Eq. (55) is used to transform the stiffness matrix 

(54)MC ẍ(t)+ CC ẋ(t)+ KCx(t) = f

(55)K = JTKC J+ KG + JTCC J̇

(56)C = JTCC J

from Cartesian space to the joint space. With the stiff-
ness and damping, K and C in Eqs. (55) and (56), used in 
Eq. (1), we can apply Eqs. (2) through (37) in the analy-
sis of joint-space impedance control of robots, with a 
terminology change outlined in Table  3. The term of 
“zero-potential-energy,” or the ZP mode, is used in place 
of the RB motion, with identical physical meaning. The 
ZP motion will result in no net potential energy change 
from the stiffness matrix of the impedance control; that 
is, 12 q

T
ZPKqZP = 0 , where K is the stiffness matrix of 

the impedance control in Eq. (53). Likewise, the NZP 
and NRB motions are also used with identical physical 
meaning.

This method accounts for the general case of possi-
ble redundant and non-redundant manipulators. In the 
former, this would be equivalent to the unconstrained 
systems, discussed earlier in the previous section. If 
the robotic manipulator system is non-redundant, it is 
no longer unconstrained, the dynamic response would 
only include the non-zero-potential-energy (NZP) part 
of the motion. Just like in the case for mechanical sys-
tems, the general dynamic response of the robot can be 
expressed as a linear combination of all the bases, ui , as 
in Eq. (6).

ZP and NZP motions
The ZP motion, represented by u0 in Eq. (2), can be 
determined and normalized, based on Eq. (20), as follows

where β = β(t) is a function of time. Based on Eq. (21), 
we can substitute Eq. (57) into (53) to obtain

Given that in general both K and C matrices go through 
similar transformations via the Jacobian matrix J, the sec-
ond term in Eq. (58) will vanish. When u0 is normalized, 
this equation can be simplified as β̈(t) = uT0 τext , and 
solved by including the initial conditions in this reduced 
space. To determine the oscillatory motions, we remove 
the known ZP mode qi by imposing upon the state vec-
tor q(t) a n×(n− 1) constraint matrix, S , as introduced 
earlier from Eq. (6) to Eq. (19), to build the M′,C′ and K′ 
matrices.

Once the NZP system is positive definite, we can 
obtain the NZP responses as described in the theory for 
mechanical discrete systems. After that, it is necessary 
to combine both ZP and NZP solutions, similar to Eq. 
(6) to finally obtain the full dynamic response. Then, a 

(57)qZP(t) = u0β(t)

(58)uT0 Mu0β̈(t)+ uT0 Cu0β̇(t) = uT0 τ ext

Table 3  Comparison between discrete mechanical and robotic 
systems

Mechanical vibration Robotic impedance control

Rigid body mode Zero potential energy change

RB ZP
1

2
qT
RB
K qRB = 0

1

2
qT
ZP
K qZP = 0

Non rigid body mode Non zero potential energy change

NRB NZP
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proper Cartesian damping matrix can be chosen [4]. 
Note that the complex conjugate eigenvalues render the 
natural frequency and damping ratio in the modal space, 
as follows

where a and b are the real and imaginary parts of the 
eigenvalues obtained in Eq. (31), and γ = tan−1(b/a) . The 
dynamic response of the robotic system performing Car-
tesian or joint-based impedance control is determined 
by the damping ratios, ζ , and the damped frequency, ωd , 
through a and b.

Special case of multiple redundancies
For cases when r = n−m > 1 , the methodology previ-
ously presented can also be applied; however, it is nec-
essary to successively remove all r ZP modes from the 
system, while satisfying the orthogonality property with 
the mass matrix M , as in Eq. (7), where each ui represents 
a ZP mode.

With multiple redundancy and constraint matrices 
from the ZP modes, we have

The r ZP modes of the system become an (n× r) matrix 
Ur containing the vectors of the null space of the stiffness 
matrix K . There are two main ways of obtaining the NZP 
motions, as follows.

Successive removal of every ZP mode
Each ZP mode is removed one at a time, reducing the 
redundancy by one each time. This requires building a set 
of matrices using the constraint matrix each time until all 
r ZP modes are removed and the system becomes posi-
tive definite, as in the following.

(59)� = a± ib; ωd = b; ζ = cos(γ )

(60)q = Sqr = S0S1 . . . Sr−1q
r

Ku0 = 0 → q = S0q
′ → M′,C′,K′

K′u
′
0 = 0 → q′ = S1q

′′ → M′′,C′′,K′′

K′′u0′′ = 0 → q′′ = S2q
′′′ → M′′′,C′′′,K′′′

...

Kr−1ur−1
0 = 0 → qr−1 = Sr−1q

r → Mr ,Cr ,Kr

Abbreviated removal of ZP modes
Alternatively, all ZP modes can be removed by using 
the full Ur matrix to reduce the system directly into a 
(n− r)× (n− r) positive definite system. The following 
equations explain the procedures.

where u1 to ur−1 are derived with the following state vari-
able transformations

Both ways of removing ZP modes are further explained 
in the following example of robotic impedance control.

Example of a redundant 7‑DoF robot
The example used to illustrate the analysis is a general 
robotic system which consists of 7 DoF. We choose to 
consider a Cartesian impedance control with 5 DoF to 
demonstrate the procedures to handle multiple redun-
dancy. Therefore, we have n = 7 and m = 5 in this case, 
giving two-DoF redundancy with r = 2 . Both methods of 
successive removal of the ZP modes in (i) and the abbre-
viated method in (ii) are employed.

At a chosen robotic configuration, there is a Jacobian 
matrix J associated with it, as well as a mass matrix M , 
and a chosen set of stiffness and damping matrices K and 
C mapped from the Cartesian space. All these matrices 
can be found in Appendix 3, at the end of the paper. The 
7× 7 impedance control equation in the joint space is

where the mass, damping and stiffness matrices are:

KUr = 0

Ur =



 u0 u1 . . . ur−1





n×r

(61)

q = S0q
′ → q′ = S∗0q → u′1 = S∗0u1

q′ = S1q
′′ → q′′ = S∗1q

′ → u2
′′ = S∗1S

∗
0u2

...

qr−2 = Sr−2q
r−1 → qr−1 = S∗r−2q

r−2

→ ur−1
r−1 = S∗r−2S

∗
r−3 . . . S

∗
0ur−1

qr−1 = Sr−1q
r → Mr ,Cr ,Kr

Mq̈(t)+ C q̇(t)+ Kq(t) = Q
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 As stated in the theory, the characteristic of an uncon-
strained, positive semi-definite system is a singular 
stiffness matrix, K . For this case, the eigenvalues of the 
stiffness matrix are:

This system is not solvable, unless the two  ZP modes 
(r = 2) are removed. Once this is done, we can solve for 
the oscillatory and non-oscillatory motions as presented 
in Eqs. (2)–(37).

M =












3.414 −0.6947 −0.1556 −0.4560
−0.6947 8.710 0.3832 5.484
−0.1556 0.3832 3.860 0.1785
−0.4560 5.484 0.1785 4.831
1.934 0.1270 1.995 0.04439

−0.3131 3.108 0.2056 2.444
0.2101 −0.08658 0.1165 −0.07011

1.934 −0.3131 0.2101
0.1270 3.108 −0.08658
1.995 0.2056 0.1165

0.04439 2.444 −0.07011
2.770 −0.01395 0.2296

−0.01395 2.459 −0.07805
0.2296 −0.07805 0.08852












C =












1.949 0.07297 1.305 0.1258
0.07297 2.956 −0.3774 2.388
1.305 −0.3774 1.963 −0.3420
0.1258 2.388 −0.3420 2.173
0.5526 −0.4693 1.623 −0.4543
0.09194 1.670 −0.3647 1.738

0 −0.05528 0.1413 −0.05528

0.5526 0.09194 0
−0.4693 1.670 −0.05528
1.623 −0.3647 0.1413

−0.4543 1.738 −0.05528
1.597 −0.4639 0.1625

−0.4639 1.657 −0.05528
0.1625 −0.05528 0.01833












K =












162.4 7.297 108.7 12.58
7.297 71.02 3.605 51.40
108.7 3.605 78.97 7.147
12.58 51.40 7.147 48.11
46.05 0.5985 37.93 2.098
9.194 20.69 4.876 27.30
0 −0.1658 0.8012 −0.1658

46.05 9.194 0
0.5985 20.69 −0.1658
37.93 4.876 0.8012
2.098 27.30 −0.1658
21.22 1.136 0.9211
1.136 21.57 −0.1658
0.9211 −0.1658 0.1039












eig(K) = [255.1, 120.8, 16.85, 10.03, 0.5840, 0, 0]

Successive removal of every ZP mode
The stiffness matrix K is associated with two ZP modes. 
Both ZP modes belong to the null space of K . When nor-
malized and making them orthogonal to each other, we 
obtain

In order to remove the first ZP mode we use the first vec-
tor u0 to build its corresponding constraint matrix S0 , 
such that

With this constraint matrix S0 we can now build a new 
system free of this first ZP mode:

The numerical values for these matrices are in Appendix 
3. This 6× 6 system in the reduced space q′ is still not 
free from the second ZP mode u1 . The system is not posi-
tive definite, with the eigenvalues of

In order to remove the remaining ZP mode, we need to 
build a second constraint matrix S1 by first obtaining and 
normalizing this ZP mode from K′ in the next reduced 
space of K′u′1 = 0 and S0 u′1 = u1 . Once this ZP mode is 
obtained we can build S1 with

Ur =



 u0 u1





7×2

=











0.1988 −0.06389
0 0

−0.4589 0.3744
0 0

0.3825 −0.6587
0 0

0.1478 2.952











(62)

q = [q1 q2 q3 q4 q5 q6 q7]
T = S0 q

′

=












1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−17.0 3.12 11.5 1.86 −6.3 1.94





















q1
q2
q3
q4
q5
q6










M′ = ST0 MS0; C′ = ST0 CS0; K′ = ST0 KS0

eig(K′
) = [252.55, 120.22, 67.585, 16.587, 0.5843, 0]

(63)

q′ = [q′
1 q

′
2 q

′
3 q

′
4 q

′
5 q

′
6]

T

=










1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

22.4 −1.93 −14.1 −0.813 9.48

















q′1
q′

2
q′

3
q′

4
q′

5








= S1 q
′′
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With this constraint matrix S1 the new system in the q′′ 
space can be found

The numerical values of these matrices are in Appen-
dix 3. Now, this system is positive definite since both ZP 
modes have been removed, with the eigenvalues of

This ( 5×5 ) system is now solvable by applying the theory 
of mechanical vibration of discrete systems presented 
ealier.

Next, we are going to show that the abbreviated 
method is equivalent to removing the ZP modes succes-
sively one at a time.

Alternative method to remove ZP modes
From Eqs. (61) and (62) and information of every ZP 
mode, we can build the constraint matrices. For S0 , we 
can directly use u0

 We can now use S0 to obtain the next ZP mode in the 
reduced space q′ with u′1 = S∗0 u1 , where S∗0 is the 
pseudo-inverse of the first constraint matrix, and u1 is the 
next ZP mode in the original ( 7× 7 ) space. It is impor-
tant to always work with the ZP vectors normalized with 
respect to M , and the inverse of S0 must be unique and 
consistent with M , i.e. S∗0 = (ST0 MS0)

−1ST0 M . Once this 
( 6× 1 ) ZP mode, u′1 , is obtained, the S1 constraint matrix, 
with q′ = S1 q

′′ , can be constructed as follows

This is exactly the same as the S1 obtained in Eq. (63) 
from successive removal of the ZP modes. The full con-
straint matrix S can be obtained without needing to build 
systems in each step, and as in Eq. (60)

With S = S0S1 , the matrix can be written as

M′′ = ST1 M
′S1; C′′ = ST1 C

′′S1; K′′ = ST1 K
′S1

eig(K′′
) = [17186, 197.01, 63.79, 10.023, 0.8841]

q = [q1 q2 q3 q4 q5 q6 q7]
T = S0 q

′

=












1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−17.04 3.118 11.45 1.86 −6.304 1.94





















q1
q2
q3
q4
q5
q6










q′ =










1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

22.4 −1.93 −14.1 −0.813 9.48

















q′′
1

q′′
2

q′′
3

q′′
4

q′′
5








qNZP = S q′′ = S0S1 q
′′

With this full constraint matrix S , we can obtain the posi-
tive definite system directly as follows

The results are identical to the system obtained by using 
the method of building a new system by successively 
removing each ZP presented earlier. This reduced sys-
tem leads to the following damping ratios and natural 
frequencies. It is noted that there are 3 modes with small 
damping ratios, ζ , in Table 4.

Solve the positive definite system
This positive definite system {M′′,C′′,K′′} now can be 
solved by using Eqs. (29) to (32) of the dual eigenvalue 
analysis. An initial displacement of the following is given 
to the system

The response of NZP motion q′′1 to q′′5 denoted by

can be obtained by following the methodology of the 
dual eigenvector analysis. The results of q′′1 to q′′5 are in 
Appendix 3.

The dynamic response of the physical system q(t) can 
now be obtained by the following equation

where the NZP component from Eq. (37) is 
qNZP = S0 S1q

′′(t) . The results are plotted in Fig. 5 where 
both ZP and NZP parts of the response are combined in 
the responses from q1 to q7.

The dynamic response in Fig.  5 is plotted for the first 
five seconds to illustrate the characteristics of free vibra-
tion response. The results are indicative of the typical 

S =












1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

22.36 −1.925 −14.08 −0.8126 9.478
26.43 −0.6264 −15.93 0.2800 12.12












M′′ = STMS; C′′ = STCS; K′′ = STKS

q(0) = [ 0 0.01 0.01 0 0 0 0 ]T rad

q′′
(t) = [q′′1 (t) q

′′
2 (t) q

′′
3 (t) q

′′
4 (t) q

′′
5 (t)]

T

(64)q(t) = qZP + S0 S1q
′′
(t)

Table 4  Damping ratios and natural frequencies of the Baxter 
robot performing Cartesian impedance control for a given set of 
damping and stiffness matrices

Data from all five pairs of eigenvalues in the modal space are tabulated

�1,2 �3,4 �5,6 �7,8 �9,10

ωn 14.6 3.71 3.07 2.08 0.817

ζ 0.0992 0.0839 0.0597 0.176 0.510
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behavior and can give a glimpse of the characteristics 
of dynamic response of the impedance control through 
the overshoots and settling times of the response. When 
plotted over a longer period of time, we can examine 
the low damping characteristics with low frequency that 
takes longer to settle.

Discussion
Free vibration responses of a unconstrained and non-
conservative discrete mechanical system with prescribed 
initial displacement show that the responses resem-
ble a step response of a system with external force, due 
primarily to the RB mode of the unconstrained system. 
As shown in the plots of the combined RB and NRB 
motions, the initial conditions are satisfied. Likewise, an 
impulse response of a unconstrained mechanical system 
has a forced vibration response that resembles a ramp 
response of forced vibration, due to the RB mode.

It is noted that the coefficient of the β̈ term in Eq. (23) 
will not be unity unless the RB mode, u0 , is normalized 
with respect to the mass matrix, as defined in Eq. (7). 
In the case of free vibration, when u0 is not normalized 
according to Eq. (7), the non-unity coefficient will dis-
appear from the homogenous equation and can result 
in incorrect RB component of the initial condition. On 
the other hand, forced vibration in Eq. (22) will not be 
affected because the coefficient will be carried through 
with the non-zero forcing function term uT0 Q.

In applying the methodology to an example of imped-
ance control of a Baxter robot, the complex eigenval-
ues of the 5×5 positive definite system in the reduced 
space of robotic impedance control are −1.450± i14.54 , 
−0.3116± i3.700 , −0.1833± i3.066 , −0.3660± i2.046 
and −0.04169± i0.8158 . These complex eigenvalues 
result in damping ratios, ζ , and natural frequencies, ωn 
listed in Table 4. It is noted that the damping ratios are 

low, resulting in highly oscillatory responses, as shown 
in the responses plotted in Fig. 5. Since the responses of 
q1 to q7 are the linear combination of the bases obtained 
from the 5×5 positive definite system, the lower damping 
ratios, especially when accompanied by low natural fre-
quency, will appear in q1 to q7 to dominate the response. 
It is important to be able to increase the damping ratios 
in order to improve the overall dynamic responses.

This can be achieved, with a given stiffness matrix, 
by choosing different values in the elements of damp-
ing matrix. However, study shows that increasing all 
elements of the damping matrix may not necessarily 
improve all damping ratios. Furthermore, certain ele-
ments of the damping matrix have more influence on 
certain damping ratios of the complex eigenvalues. The 
methodology presented in this paper, nevertheless, can 
assist in determining which diagonal and/or off-diagonal 
elements in the damping matrix can improve the damp-
ing ratios. This reduces blind guessing or trial-and-error 
in choosing values of the elements of the damping matrix 
[4, 6] to improve dynamic response.

By applying the dual eigenvalue analysis in Eqs. (29) to 
(32), we are able to evaluate the dynamic response of the 
impedance control by criteria such as damping ratios and 
frequency of the NZP part of the motion. This methodol-
ogy with the closed-form solution allows us to adjust the 
stiffness and damping parameters in the K and C matri-
ces, respectively, according to the required applications 
of the performance of dynamic responses. It also allows 
us to modulate the dynamic response of the null space 
of the robotic task [14–16]. If there are any desired addi-
tional tasks for the redundant DoF(s), the stiffness and 
damping parameters can be mapped into the joint space 
by the use of a null space projection matrix, and from 
there on, proceed as shown here. In summary, the meth-
odology presented in this paper can provide the advan-
tage to systematically adjust the elements in K and C 
matrices of impedance control to modulate the dynamic 
responses of the system.

As a case in point, when trying to perform impedance 
control in the Cartesian ( 6× 6 ) space using a redundant 
7-DoF manipulator at a chosen configuration, the given 
stiffness for the task is

An initial damping matrix is picked as

The following damping ratios can be obtained: 0.0108, 0.
0039, 0.0162, 0.0342, 0.116 and 0.0953. In contrast, if we 
apply the methodology presented here to select a damp-
ing matrix, one possible non-diagnoal  damping matrix, 
after a synthesis using the methodology, is

KC = diag([3000, 3000, 3000, 100, 100, 100])

CC0 = I6

Fig. 5  Free vibration response obtained by using the general 
methodology, showing the characteristics of dynamic response of 
this system. Note that the initial conditions are satisfied



Page 18 of 21Kao and Saldarriaga ﻿Robomech J            (2021) 8:12 

The damping ratios of CC1 are: 0.0326, 0.1081, 0.1335, 0.
3419, 0.1342 and 0.1274. This revised impedance control 
with the new CC1 damping matrix has a better dynamic 
response because of the improvement of damping ratios 
of the multiple DoF system.

Conclusion
A general methodology to obtain a closed-form solution 
for free and forced vibration responses are presented for 
unconstrained mechanical system and robotic manipula-
tors under impedance control. The methodology includes 
a novel procedure to deal with nonconservative uncon-
strained systems or redundant robots containing rigid 
body (RB) or zero potential energy (ZP) modes, which 
must be removed, using constraint matrix, to obtain the 
dynamic response. After that, the non-positive definite 
system can be mapped via constraint matrix to form  a 
positive definite system in a reduced space, to obtain the 
complete dynamic response of the system.

When applying to robotic manipulators perform-
ing Cartesian and joint-based impedance control, this 
methodology can provide the analysis and synthesis of 
dynamic characteristics of the impedance control sys-
tem. This theory can help in choosing the elements of the 
damping matrix to attain prescribed dynamic response 
with damping characteristics  without guessing or trial-
and-error. The elimination of trial-and-error in determin-
ing the elements of the damping matrix in impedance 
control to meet the requirements of dynamic response, 
by using this  novel analytical  methodology, is another 
important contribution of this paper. The methodology 
was illustrated by examples of both a discrete mechanical 
system and a redundant robotic manipulator in imped-
ance control with damping modulation.

Appendix 1: Results in the example of free 
vibration
The results of qNRB(t) in Eq. (46) are: 
qNRB,1 = e

−3.024t(−0.002293 cos 30.83 t − 0.001256 sin 30.83 t)

+ e
−10.29t(−0.001707 cos 38.88 t + 0.0003660 sin 38.88 t),

qNRB,2 = e
−3.024t(0.001563 cos 30.83 t + 0.001344 sin 30.83 t)

+ e
−10.29t(0.02444 cos 38.88 t + 0.005522 sin 38.88 t),

 

and

CC1 =










0.1 0 0 0 0 0
0 0.1 0 0 0 0
0 0 0.1 0 10 0
0 0 0 10 0 0
0 0 10 0 10 0
0 0 0 0 0 1










The results of q(t) in Eq. (47) are: 
q1(t) = 0.004 + e−3.024t (−0.002293 cos 30.83 t − 0.001256 sin 30.83 t)

+ e−10.29t (−0.001707 cos 38.88 t + 0.0003660 sin 38.88 t),

q2(t) = 0.004 + e−3.024t (0.001563 cos 30.83 t + 0.001344 sin 30.83 t)

+ e−10.29t (0.02444 cos 38.88 t + 0.005522 sin 38.88 t),

 

and

Appendix 2: Results in the example of forced 
vibration
The results of q′1 to q′4 in Eq. (49) are: 

q′
1
= e−3.024t (−0.00004006 cos 30.83t + 0.001863 sin 30.83t)

+ e−10.29t (0.00004006 cos 38.88t + 0.00003087 sin 38.88t),

q̇′1 = e−3.024t (0.05755 cos 30.83t − 0.004398 sin 30.83t)

+ e−10.29t (0.0007881 cos 38.88t − 0.001875 sin 38.88t)
 and

The results of qNRB in Eq. (50) are: 
qNRB,1 = e

−3.024t (−0.00004006 cos 30.83t + 0.001863 sin 30.83t)

+ e
−10.29t (0.00004006 cos 38.88t + 0.00003087 sin 38.88t),

qNRB,2 = e
−3.024t (0.0003357 cos 30.83t − 0.001430 sin 30.83t)

+ e
−10.29t (−0.0003357 cos 38.88t − 0.0006435 sin 38.88t)

 

and

The results of q(t) in Eq. (51) are: 
qimp,1 = 0.06667t + e−3.024t (−0.00004006 cos 30.83t + 0.001863 sin 30.83t)

+ e−10.29t (0.00004006 cos 38.88t + 0.00003087 sin 38.88t),

qimp,2 = 0.06667t + e−3.024t (0.0003357 cos 30.83t − 0.001430 sin 30.83t)

+ e−10.29t (−0.0003357 cos 38.88t − 0.0006435 sin 38.88t),

 

and

qNRB,3 = e
−3.024t (0.003044 cos 30.83 t + 0.001472 sin 30.83 t)

+ e
−10.29t (−0.007044 cos 38.88 t − 0.002794 sin 38.88 t).

q3(t) = 0.004 + e−3.024t (0.003044 cos 30.83 t + 0.001472 sin 30.83 t)

+ e−10.29t (−0.007044 cos 38.88 t − 0.002794 sin 38.88 t).

q′2 = e−3.024t (0.0003357 cos 30.83t − 0.001430 sin 30.83t)

+ e−10.29t (−0.0003357 cos 38.88t − 0.0006435 sin 38.88t),

q̇′2 = e−3.024t(−0.04510 cos 30.83t − 0.006025 sin 30.83t)

+ e−10.29t(−0.02157 cos 38.88t + 0.01967 sin 38.88t).

qNRB,3 = e
−3.024t (−0.00007018 cos 30.83t − 0.002408 sin 30.83t)

+ e
−10.29t (0.00007018 cos 38.88t + 0.0002080 sin 38.88t).

qimp,3 = 0.06667t + e−3.024t (−0.00007018 cos 30.83t − 0.002408 sin 30.83t)

+ e−10.29t (0.00007018 cos 38.88t + 0.0002080 sin 38.88t).
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Appendix 3: Matrices and results from the example 
of impedance control
The matrices for the robotic impedance control applica-
tion example are:

The matrices in the first reduced space for the robotics 
example are:

J(q) =








−0.57 −0.1280 −0.3816 −0.2208

0.57 −0.1280 0.3816 −0.2208

0 −0.7371 0 −0.3903

0 −0.7071 0.6028 −0.7071

0 0.7071 0.6028 0.7071

−0.1616 −0.1613 0

0.1616 −0.1613 0

0 −0.02537 0

0.6930 −0.7071 0.07818

0.6930 0.7071 0.07818








KC = diag([300, 200, 100, 10, 7])

CC = diag([3.5, 2.5, 2.5, 2, 1])

The matrices in the second (positive definite) reduced 
space for the robotics example are:

The individual results from q′′1 to q′′5 of the free vibration 
response for the robotics example are:

M′′ = ST1 M
′S1 = STMS

=








1200 −35.30 −746.4 9.815 516.2
−35.30 5.813 22.01 2.106 −14.85
−746.4 22.01 469.6 −6.214 −318.4
9.815 2.106 −6.214 2.485 4.357
516.2 −14.85 −318.4 4.357 224.08








C′′ = ST1 C
′S1 = STCS

=








782.6 −32.31 −494.04 8.318 323.7
−32.31 2.612 20.55 0.2951 −13.29
−494.04 20.55 316.4 −5.216 −203.2
8.318 0.2951 −5.216 0.4382 3.467
323.7 −13.29 −203.2 3.467 135.6








K′′ = ST1 K
′S1 = STKS

=








11240.5 −472.08 −6609.2 222.44 4703
−472.08 71.17 284.5 15.82 −197.7
−6609.2 284.5 4148.1 −133.4 −2783.8
222.44 15.82 −133.4 17.98 93.54
4703 −197.7 −2783.8 93.54 1980.5








M
′ = S

T

0 MS0

=










21.97 −3.269 −17.02 −1.677 6.208 −1.508

−3.269 9.030 2.916 5.617 −0.3513 3.232

−17.02 2.916 18.14 1.478 −2.502 1.509

−1.677 5.617 1.478 4.876 −0.1245 2.482

6.208 −0.3513 −2.502 −0.1245 3.393 −0.1605

−1.508 3.232 1.509 2.482 −0.1605 2.490










C
′ = S

T

0 CS0

=










7.278 0.04066 −4.6863 0.4868 −0.2475 0.4265

0.04066 2.790 0.08515 2.219 0.02553 1.501

−4.686 0.08515 7.609 −0.3215 1.269 −0.3146

0.4868 2.219 −0.3215 2.031 −0.0185 1.594

−0.2475 0.02553 1.269 −0.0185 0.2768 −0.0241

0.4265 1.501 −0.3146 1.594 −0.0241 1.512










K
′ = S

T

0 KS0

=










192.6 4.599 74.80 12.11 41.52 8.577

4.599 70.99 7.915 51.17 2.473 20.48

74.80 7.915 110.9 8.951 35.93 6.848

12.11 51.17 8.951 47.85 3.638 27.04

41.52 2.473 35.93 3.638 13.73 2.699

8.577 20.48 6.848 27.04 2.699 21.32









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q′′1 = 0.0001419e−0.04169t
cos 0.8158t − 0.003865e−0.3660t

cos 2.046t

+ 0.0007177e−0.1833t
cos 3.066t − 4.557 ∗ 10−6e−0.3116t

cos 3.700t

+ 0.005941e−1.450t
cos 14.54t + 0.00005122e−0.04169t

sin 0.8158t

+ 0.0002874e−0.3660t
sin 2.046t − 0.0005039e−0.1833t

sin 3.066t

+ 0.00007397e−0.3116t
sin 3.700t + 0.0005485e−1.450t

sin 14.54t

q′′2 = 0.004524e−0.04169t
cos 0.8158t − 0.0006863e−0.3660t

cos 2.046t

+ 0.005556e−0.1833t
cos 3.066t + 0.0003636e−0.3116t

cos 3.700t

+ 0.0002413e−1.450t
cos 14.54t + 0.001130e−0.04169t

sin 0.8158t

+ 0.0001772e−0.3660t
sin 2.046t − 0.001375e−0.1833t

sin 3.066t

+ 0.001092e−0.3116t
sin 3.700t + 0.00002118e−1.450t

sin 14.54t

q′′3 = −0.0002073e−0.04169t
cos 0.8158t + 0.001370e−0.3660t

cos 2.046t

− 0.001267e−0.1833t
cos 3.066t + 0.00006476e−0.3116t

cos 3.700t

+ 0.004758e−1.450t
cos 14.54t − 0.00006735e−0.04169t

sin 0.8158t

− 0.0001197e−0.3660t
sin 2.046t + 0.00001805e−0.1833t

sin 3.066t

+ 0.00005911e−0.3116t
sin 3.700t + 0.0004955e−1.450t

sin 14.54t

q′′4 = −0.009101e−0.04169t
cos 0.8158t + 0.002150e−0.3660t

cos 2.046t

+ 0.006914e−0.1833t
cos 3.066t − 0.0003835e−0.3116t

cos 3.700t

+ 0.0004199e−1.450t
cos 14.54t − 0.002275e−0.04169t

sin 0.8158t

− 0.001027e−0.3660t
sin 2.046t + 0.002837e−0.1833t

sin 3.066t

− 0.0008391e−0.3116t
sin 3.700t + 0.00003642e−1.450t

sin 14.54t

q′′5 = 0.0002824e−0.04169t
cos 0.8158t + 0.01106e−0.3660t

cos 2.046t

− 0.002401e−0.1833t
cos 3.066t + 0.00007903e−0.3116t

cos 3.700t

− 0.006896e−1.450t
cos 14.54t + 0.00002419e−0.04169t

sin 0.8158t

− 0.0008921e−0.3660t
sin 2.046t + 0.001267e−0.1833t

sin 3.066t

− 0.00008440e−0.3116t
sin 3.700t − 0.0005586e−1.450t

sin 14.54t
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