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Abstract 

The novel approach to physical security based on visible light communication (VLC) using an informative object-
pointing and simultaneous recognition by high-framerate (HFR) vision systems is presented in this study. In the 
proposed approach, a convolutional neural network (CNN) based object detection method is used to detect the 
environmental objects that assist a spatiotemporal-modulated-pattern (SMP) based imperceptible projection map-
ping for pointing the desired objects. The distantly located HFR vision systems that operate at hundreds of frames per 
second (fps) can recognize and localize the pointed objects in real-time. The prototype of an artificial intelligence-
enabled camera-projector (AiCP) system is used as a transmitter that detects the multiple objects in real-time at 30 fps 
and simultaneously projects the detection results by means of the encoded-480-Hz-SMP masks on to the objects. The 
multiple 480-fps HFR vision systems as receivers can recognize the pointed objects by decoding pixel-brightness vari-
ations in HFR sequences without any camera calibration or complex recognition methods. Several experiments were 
conducted to demonstrate our proposed method’s usefulness using miniature and real-world objects under various 
conditions.

Keywords:  Physical security, Cyber-physical systems, High-speed camera-projector, Informative projection mapping, 
Real-time pattern recognition, visible light communication

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://crea-
tivecommons.org/licenses/by/4.0/.

Introduction
Physical security using cyber-physical systems (CPS) 
involves numerous interconnected systems to monitor 
and manipulate real objects and processes. CPS inte-
grates the information and communication systems into 
the physical objects by active feedback from the physical 
environment. They incorporate CPS systems to exchange 
various types of data and confidential information in 
real-time to play a vital role in Industry v4.0 [1] and infra-
structure security, enabling smart applications services 
to operate accurately. The infrastructures’ physical secu-
rity requires various measures to prevent unauthorized 

access to facilities, equipment, and resources. These 
measures are interdependent systems that mainly include 
surveillance by vision-based object detection and rec-
ognition to ease observation of distributed systems. 
However, these technologies are computationally and 
economically expensive. Most of the infrastructures are 
equipped with multiple cameras and alarm systems, 
which increase installation and maintenance costs. If the 
security equipment is enabled with artificial intelligence 
(AI), then the cost goes higher.

The proposed novel approach integrates CPS in physi-
cal security using VLC to transmit and receive infor-
mation about static and moving environmental objects 
without causing any distraction to the human visual 
system (HVS). As a transmitter, the AiCP system broad-
casts the CNN-detection results using an SMP-based 
encoded projection mapping, referred to as informative 
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object-pointing (IOP) in this study. Whereas distantly 
located HFR vision-based multiple receivers decode each 
pattern captured frame-by-frame and identify the objects 
simultaneously. Hence, this approach reduces the com-
putational load on the receivers required for complex 
recognition algorithms in a distributed processing. The 
imperceptibility of IOP to an HVS is achieved by map-
ping the SMP-based projection masks on desired objects 
facilitated by a projection system of a higher projec-
tion-rate than the critical frequency of HVS. The SMP 
projected at hundreds of fps can only be perceived by a 
vision system of equivalent frame rate or higher than that 
of a projection system. We observed that the information 
to be communicated is constrained by the transmitter 
and the receiver’s framerate. Therefore, a higher framer-
ate can transfer a higher amount of information. We used 
a high framerate projector with color wheel filters that 
projects each red, green, and blue light at 480 Hz sequen-
tially. A single filter of the color wheel represents a single 
bit of information. Hence, using a combination of three 
color-filters of the high-speed projector, we can send 23-
bits sequentially that resemble the information of a maxi-
mum of eight objects.

Related works
In this study, we primarily focus on prototyping CNN-
object detection assisted projection mapping that can 
encode information on the environmental object and 
HFR vision-based decoding while maintaining the confi-
dentiality of data to be communicated. Projection map-
ping has been used in the entertainment industries and in 
scientific research as a surface-oriented video projection 
system for augmenting realistic videos onto the desired 
surfaces [2–4]. They are widely used for visual augmen-
tation in buildings, rooms, and parks [5–7]. Projection-
mapping-based systems are mainly classified as static and 
dynamic projection mapping. Static projection mapping 
is usually preferred in industries and scientific researches 
for shape analysis using structured light projection map-
ping [8, 9]. It involves a projection of light patterns by 
manually aligning the objects and projectors [10–13]. 
In dynamic projection mapping (DPM), a system tracks 
the desired surfaces’ positions and shapes using a marker 
[14–16] followed by model [17–19] tracking methods to 
project videos onto the moving surfaces. Asayama et al. 
[20] proposed an approach on visual markers for the 
projection of dynamic spatial augmented reality (AR) 
on fabricated objects. DPM requires heavy computa-
tion to acquire dynamic, realistic effects in real-time [21, 
22]. Narita et al. [23] have explained using a dot cluster 
marker for DPM onto a deformable nonrigid surface. 
The use of an RGB depth sensor-assisted projector with 
a DPM to render surfaces of complex geometrical shapes 

was reported [24] for developing an interactive system of 
surface reconstruction. Several approaches using nonin-
trusive and imperceptible patterns have been presented 
using projection mapping. Lee et al. [25] have proposed 
a location tracking method based on a hybrid infrared 
and visible light projection system. Their system has the 
unique capabilities of providing location discovery and 
tracking simultaneously. Visible light-emitting projec-
tion devices such as high-speed digital light projection 
(DLP) systems are enabled with a high-frequency digital 
micromirror device (DMD) to project binary image pat-
terns at thousands of fps [26–29]. DMD projectors have 
been used in structured-light-based three-dimensional 
(3D) sensing, interactive projection mapping, and other 
geometric and photometric applications [30–33]. Dan-
iel et  al. [34] presented a simultaneous acquisition and 
display method that can embed imperceptible patterns 
in projected images. High-speed switching between the 
projected pattern and its complementary pattern with 
DLP is used in their research, indistinguishable by HVS. 
However, the resultant projection leads to lower bright-
ness, and hardware modification is required in such a 
system [35]. High-speed projection systems that can 
emit light at a higher frequency than the HVS have been 
used in numerous AR applications. The projection pat-
terns and their complementarity at 120 Hz are sufficient 
to generate uniform brightness projections to the HVS 
[36–38]. Color-wheel filter-based 3D projectors with 
the DLP principle can emit 120-Hz color-plane patterns 
[39, 40]. Projection mapping based VLC has been used 
to establish a wireless link between projection and sens-
ing systems to transmit anticipated information [41–43]. 
Kodama et al. [44] have designed a VLC position detec-
tion system embedded in single-colored light using a 
DMD projector. They used photodiodes as sensors to 
decode the projected area location for IoT applications. 
However, the photodiode-based sensor cannot obtain 
complete projection information at an instant. Conven-
tional vision systems that operate at tens of fps cannot 
capture temporal changes in high-speed projection. They 
lead to a severe loss of temporal information. Hence, an 
HFR vision system to sense temporal alterations in high-
speed projection data is required. With millisecond-level 
accuracy, HFR vision systems operated at hundreds or 
thousands of fps have been used for various industrial 
applications [45–48]. A saccade mirror and HFR cameras 
have been used to add visual information in real-time for 
the projection-based mixed reality of dynamic objects 
[49]. An HFR camera-projector depth vision system has 
been used for simultaneous projection mapping of RGB 
light patterns augmented on 3D objects by computing 
the depth using a camera projector system [50]. Tempo-
ral dithering of high-speed illumination was reported for 
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fast active vision [51]. HFR vision systems have also been 
used as sensing devices in many applications such as 
optical flow [52], color histogram-based cam-shift track-
ing [53, 54], face tracking [55], image mosaicking, and 
stabilization [56, 57]. Hence, HFR vision systems can be 
used as an environment sensing device in CPS.

Concept
Recently emerging AI-vision systems are most informa-
tive for human operators and an automatic alarm-
ing system for physical security by reducing the efforts 
required for manual monitoring. The AI-enabled cam-
era-projector system is used in this research to reduce 
the computational cost required in multiple surveillance 
vision systems by broadcasting the CNN-object detec-
tion results. Hence numerous cost-efficient systems can 
synthesize the same results as illustrated in Fig.  1. The 
proposed active projection mapping and simultaneous 
recognition system consists of three parts, (1) a smart 
object pointing using AiCP system as a transmitter, (2) an 
HFR vision-based object recognition system as a receiver, 
and (3) encoding and decoding protocol in VLC.

Smart object pointing using AiCP system
Various studies reported that HVS could not resolve 
rapid visual changes beyond the critical frequency Fcf  
of 60 Hz except the subconscious effects under most 

conditions. In the proposed system, we used a DLP 
projector of projection frequency higher than the Fcf  
of HVS. The temporal sensitivity of the HVS is subtle, 
with bright components of the light. However, the sen-
sitivity decreases as contrast reduces. The DLP projector 
can control the light to be passed, resulting in an over-
all image to appear as an integrated image. The DLP 
projector emits a series of light pulses at variable time 
intervals to obtain the desired light intensity. The object 
detection system outputs classes of detected objects and 
their region of interest (ROI) using a complex algorithm. 
The smart object pointing system transmits informa-
tive light using the AiCP system based on object point-
ing code (OPC) for a particular object, which is unique 
for every input intensity, known as temporal dithering 
of the illumination. A unique SMP color mask based on 
OPC is projected onto the same objects like a spotlight 
to catch HFR vision systems’ attention while maintaining 
imperceptibility.

HFR Vision‑based recognition system
An HFR vision system of equivalent framerate, same as 
the AiCP system or higher, can perceive the temporal 
changes (i.e., time-varying photometric properties) in the 
projection area. The HFR vision system acquires inform-
ative SMP projected onto the objects frame-by-frame in 
the form of a sequence of packets of information. The 

Fig. 1  Concept of AiCP-based object pointing and HFR vision-based recognition
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OPC in a packet of information is encoded in a time-var-
ying color mask. Both transmitter and receivers should 
be synchronized to know the start and end of a packet 
of information. In this study, an HFR vision system is 
distantly located without any wired synchronization and 
acts as a receiver of informative light. Both the systems 
are optically synchronized by projecting a spatial header 
with the status of the projection plane. Hence, any num-
ber of remotely located HFR vision systems observing the 
projection area can recognize the pointed objects using 
computationally efficient methods.

Encoding and decoding protocol in VLC
The functional blocks of the VLC-based transmitter and 
receiver are shown in Fig.  2. The smart object pointing 
using AiCP system as a transmitter consists of an AI-ena-
bled camera and a spatiotemporal encoding block.

A color-wheel-based high-speed single-chip DLP pro-
jector consists of spectral distributions with segments of 
blue filter (B, 460 nm), red filter (R, 623 nm), green fil-
ter (G, 525 nm), and a blank transparent filter. The wheel 
rotates at high-speed to generate various combinations 
of RGB planes for each image as modulated and emit-
ted color plane slices of blue, red, and green patterns. 
The blank transparent filter adds the overall brightness to 
the projection area. The imperceptibility can be achieved 
when a packet of N-light planes has a combination of 
each N/2 spatiotemporal color plane and its inverse 
planes in sequential order. Thus, due to temporal dith-
ering, the mapped informative color masks as a pointer 

should be a non-flickering light source to the HVS and 
the conventional 25 to 30  fps vision systems. As illus-
trated in Fig. 3, we encode the information in two phases 
of the projection as a forward projection phase (FPP) and 
inverse projection phase (IPP). The AiCP system gener-
ates three color planes of FPP along with an embedded 
color mask and another three planes of IPP with the com-
plementary color mask onto the objects to be pointed. 
The combination of color masks in FPP and IPP is cho-
sen to visualize the accumulated light as a uniform bright 
gray level light within the projection area.

At the receiver end, HFR vision-based recognition 
consists of spatiotemporal decoding and object recog-
nition blocks. HFR vision acquires all the SMP-planes 
frame-by-frame and decodes the packets of information 
embedded in each frame by temporally observing each 
pixel in an image that corresponds to the projection area. 
The amplitude of pixel brightness determines the infor-
mation encoded in the image. All the pixels covering the 
projection area have the same high projection frequency; 
however, variation in phase values helps to decode the 
accumulated information based on OPC. Pixels with the 
same phase are segregated as a single object; however, the 
remaining pixels correspond to the non-projection area 
are referred to as zero-pixel value. In this way, HFR vision 
systems can accumulate frame-by-frame data, decode 
the embedded information to recognize globally pointed 
objects, simultaneously.

The communication protocol and data transaction 
from the VLC-based transmitter to the receiver are 
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Fig. 2  Transmitter and receiver in VLC
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depicted in Fig.  4. The spatially distributed informa-
tion in a single detection frame is represented by a 
24-bit 3-channel RGB image which is used for OPC 
generation. We produce two more 24-bits 3-channel 
RGB images representing FPP and IPP frames. Each 
FPP and IPP image is supplied to the DLP projector 
for time-varying projection. The DLP projector pro-
jects four planes of each projection phase consisting of 
blue, red, green, and blank planes. A total of eight 1-bit 
colored projection planes are required for transmitting 
a single detection frame. The combination of the pro-
jected eight projection-planes generates uniform gray-
level brightness results in spatiotemporal encoding at 
VLC-based transmitter. An HFR vision system cap-
tures all the transmitted planes frame-by-frame in the 
same projection sequence at the receiver side. The eight 
8-bit 1-channel monochrome images are binarized, 
weighted, and accumulated for spatiotemporal decod-
ing. After decoding, a single 8-bit monochrome image 
is generated to represent the recognized objects. Thus, 
spatiotemporal encoding and decoding can be achieved 
using the VLC system of the HFR projector and cam-
era, respectively.

Smart projection mapping and HFR vision‑based 
recognition methodology
CNN‑based object detection
The camera module of the AiCP system detects the 
objects in the scene using a CNN-based object detection 
algorithm, You Only Look Once (YOLO) [58]. It predicts 
the class of an object and outputs a rectangular bounding 
box specifying the object location at detection time δtD . 
B(Iyolo) contains the bounding-boxes bb1; bb2; ..; bbN of 
the top-scored candidate class of all N-objects detected 
in the acquired image Iyolo . Each bbn have four param-
eters: centroid coordinates bnxc, bnyc of the detected top-
scored candidate class along with the width (bnw) and 
height (bnh) , expressed as, 

Informative masking
The FPP and IPP images are cumulatively generated 
based on the detected objects and their bounding 
box B(Iyolo(x, y, t)) ; they are then passed through the 

(1a)B(Iyolo(x, y, t)) = (bb1; bb2; ..; bbN ),

(1b)bbn = {bnxc, b
n
yc, b
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w , b
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DLP projector and later projected as series of modu-
lated colored planes on the respective objects. This is 
expressed as, 

Pfpp(x, y, t) and Pipp(x, y, t) are the forward and inverse 
projection light planes that encode the information of 
the pointed bounding box of objects B(Iyolo(x, y, t)). 
The values of Pfpp(x, y, t) and Pipp(x, y, t) are determined 
by combination of color wheel filter, temporal dither-
ing and Fcf  of DLP projector in place. The αt(u, v, t) is 
DMD mirror angle in DMD mirror position (u, v) and 
(�t) is the color filter wavelength emitted at time dt. The 
mirror angle αt of all DMD mirrors for Pipp is always 
complementary to Pfpp for each information packet. 
The angle of the DMD mirror at position (u, v) is deter-
mined by image plane decided by the OPC as listed in 
Table 4.

Thus, the spatiotemporal packet of information is 
generated based on the following condition,

(2a)Pfpp(x, y, t) =

∫ T
2

0

�tαt(u, v, t)dt,

(2b)Pipp(x, y, t) =

∫ T

T
2

�tα
′

t(u, v, t)dt.

In this way, the AiCP system points the informative color 
mask on each detected object at high-speed while imper-
ceptible to the HVS.

High‑speed vision based recognition and localization
The HFR camera receiver’s frame rate is set at 480  fps 
(same as Pf  of HSP) for frame-by-frame decoding. The 
HFR camera acquires each plane of the projected packets 
in sequence and computes the changes in intensities of 
projection within the packet leading to decoding. Hence, 
HFR camera focuses on high-speed projector photomet-
ric properties rather than geometric calibration [13]. The 
nature of projected light based on the projection device 
principle and light reflectance from the projected surface 
is estimated and decoded using HFR camera.

Image acquisition
Pixel position of the projected header data is manually 
assigned to assist HFR camera in understanding the color 
filter cycle and projection sequence cycle. Images are 
acquired simultaneously corresponding to the projected 

(3)

D(x, y,T ) =







Pfpp(x, y, t)+ Pipp(x, y, t), if T ≤
1

Fcf
0, otherwise.
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image. Initially, the HFR camera looks for blue filter data 
with the first projection sequence emitted by the projector. 
The HFR camera is interfaced with a function generator to 
acquire images uniformly.

where k and δt are the frame number and time interval of 
monochrome HFR camera at 480 fps. The x- and y- coor-
dinate systems corresponds to the HFR pixel position. 
Note that for acquiring all the color filter segment data, 
δt is 1

480
= 2.083ms . As mentioned previously D(m, n, δt) 

is the projected information observed at duration δt . 
s(x, y, �δt ) is spectral reflectance from the surface of the 
object in the projected area at time δt.

Sequential thresholding
The acquired frames are sequentially thresholded by 
binarizing the projected and non-projected areas in the 
scene. The binarization of image Ik(x, y, δt)) at time δt 
with the threshold θ is represented as,

Sequential weighting and accumulation
White pixels in the thresholded image plane are weighted 
based on the status of the projection and color filter 
sequence and accumulated a packet of information. The 
decoding plane Idec(x, y,T ) at overall decoding time T is 
represented as,

where Np is the total number of projection sequences for 
an accumulation time T, Cs is the color sequence, and Idec 
represents the labeled decoded information of each non-
zero pixel.

Pixels of the same values are segregated based on 
the recognition identity; hence, the HFR vision system 
can decode spatiotemporally transmitted information 
mapped on the objects pointed by the AiCP system.

Localization of pointed objects
To determine the trajectory of each labeled object in the 
projection area, we calculate the zeroth and first-order 
moments of the Idec as,

The zeroth and first-order moments were used to calcu-
late the decoded area ( Oarea ) and centroid ( Oxy ) of the 

(4)Ik(x, y, δt) = D(x, y, δt)s(x, y, �δt ),

(5)Bk(x, y, δt) =

{

1, if Ik(x, y, δt) ≥ θ

0, otherwise.

(6)Idec(x, y,T ) =

Np
∑

Ps=1

Cf −1
∑

Cs=0

2
(PsCs)

∫ T

0

Bk(x, y, δt)dt,

(7)Mpq(Idec(T )) =
∑

(x,y)ǫIdec(T )

(xpyqIdec(x, y,T )).

decoding plane (Idec(T )) that corresponds to each object 
after accumulated time T, 

 where M00,M01 and M10 are the summations of decoded 
pixels, x-position and y-position, respectively of the 
decoded regions in Idec(T ).The decoded regions are 
labeled on the basis of OPC. In this way, the HFR vision 
system decodes visible light information and localizes 
the objects as Oxy(Idec(T )); it determines their trajecto-
ries pointed by bounding boxes B(Iyolo) of each detected 
object in the AiCP encoded system.

System configuration
In this study, we used visible light as a medium to trans-
mit information using the phenomenon of temporal dith-
ering. The specifications of AiCP system as a transmitter 
and the HFR vision system as a receiver are explained as 
follows,

AiCP system as transmitter
As shown in Fig.  5, the prototype of AiCP system con-
sists of USB3.0 (XIMEA MG003CGCM) VGA-resolu-
tion ( 640× 480-pixels) RGB-camera head with 8.5  mm 
C-mount lens and high-speed DLP projector (Optoma 
EH503). The RGB-camera captures images at 30 fps with-
out interfering with the flickering frequency of the DLP 
projector. DLP projector’s frame size is 1024 × 768 with 
120  Hz refresh rate for projecting color planes. It has a 
color wheel with equal segments of blue (B, 460 nm), red 
(R, 623  nm), green (G, 525  nm), and blank transparent 
filters. It rotates at 120 rps to generate various combina-
tions of RGB-planes for each image as modulated and 
emitted color plane slices of blue, red, and green patterns. 
The blank transparent filter adds the overall brightness 
in the projected area. Thus, each color-filter plane pro-
jects at 480 Hz, which is higher than Fcf  of HVS. A PC 
with an Intel Core i7-960 CPU, 16 GB RAM running on 
a Windows-7 (64-bit) operating system (OS) is used for 
interfacing two GPUs in dual-channel 16x PCIe slots on 
the motherboard. The NVIDIA GTX 1080Ti (GPU-1) is 
used for accelerating CNN-based YOLOv3 object detec-
tion algorithm and an NVIDIA Quadro P400 (GPU-2) for 
accelerating video projection. The refresh rate, video syn-
chronization (Vsync), and projection rate are synchro-
nized with the rotating color wheel’s frequency at 120 Hz. 
The focal-length and throw ratio of the projector-lens are 
set to 28.5 m and 2.0, respectively, with a maximum lumi-
nance of 5200 lux.

(8a)Oarea(Idec(T )) = M00(Idec(T )),

(8b)Oxy(Idec(T )) =

(M10(Idec(T ))

M00(Idec(T ))
,
M01(Idec(T ))

M00(Idec(T ))

)

,
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We used a CNN-based YOLO [58] algorithm to detect 
and localize environmental objects. GPU-1 accelerates 
the detection algorithm to detect and localize the objects 
from pre-learned models in real-time. The inference 
process outputs the class and ROI of detected objects 
based on the pre-learned weights for YOLOv3 from the 
80-class COCO dataset. The ROIs are segregated based 
on the classification to prepare informative color masks.

A single filter of the color wheel represents a single bit 
of information that can be transmitted at 480 Hz. Hence, 
using a combination of three-color filters of the DLP 
projector, we can send 23-bits sequentially that resemble 
the information of a maximum of eight objects. The PC-
based software generates FPP and IPP at 120 Hz for each 
CNN-detection frame based on the predefined OPC. The 
DLP projector emits corresponding color filter combina-
tions as an informative color mask based on the fetched 
FPP and IPP.

The execution times of the AiCP system are listed in 
Table 1. The image acquisition, CNN-based object detec-
tion, and informative mask generation steps are executed 
in 33.32  ms. However, video projection was conducted 
in a separate thread to maintain the projection rate at 

constant intervals synchronized with a frame rate of the 
DLP projector for each projection-phase that is 60  fps 
(approx. 16 ms).

HFR vision system as a receiver
As shown in Fig. 6, the HFR vision system consists of a 
monochrome USB3.0 high-speed camera head (Baumer 
VCXU-02M) with a resolution of 640× 480  pixels. The 
PC’s specification to implement HFR image processing is, 
Intel Core i7-3520M CPU, 12 GB RAM with windows-7 
(64-bits) OS for processing acquired images.

Initially, the header information projected by the DLP 
projector is inferred by the HFR vision system to syn-
chronize with the projection sequence. Visible light 
decoding starts when the first and fourth blocks of the 
header are read as 1; that is, the blue color plane of the 
first sequence is acquired. Once the decoding starts, each 
acquired image plane is sequentially thresholded based 
on the presence or absence of informative masked pixels 
in the image. If the pixel is part of the colored mask, it is 
denoted as 1; otherwise, it is 0. Each thresholded image 
plane is then weighted based on the corresponding color 
and projection phases. All weighted images are accumu-
lated by summing the 8 planes of both the projection 
phases. The confirmed pixels are informative; they are 
segregated based on the clusters and labels in the data-
base and later localized on the image plane. Hence, the 
HFR vision system can sense the temporally dithered 
imperceptible information and decode correctly by rec-
ognizing the same objects pointed by the AiCP module 
simultaneously.

high-speed DLP 
projector
(480Hz)

Nvidia 
Quadro P400

video accelerator

Nvidia 
GTX-1080ti 

deep-learning 
accelerator

CNN-based object 
detector

informative mask 
generator

video projection 
(120hz)

640x480x3 pixels 
@ 30fps

object ROI and 
class

FPP and IPP
informative video 

streaming

informative projection mapping

GPU-1

GPU-2PC

Fig. 5  AiCP system for informative object pointing

Table 1  Execution times on AiCP System (unit: ms)

Time

(1) Image acquisition and CNN-based object detector 32.3

(2) Informative mask generator 1.02

(3) Video projection (FPP + IPP) 16.15

Total (1)–(2) 33.32
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The execution times for HFR recognition and trajec-
tory estimation are shown in Table 2, Steps (1)–(5) are 
repeated eight times to buffer a packet of information 
that consumes 12.648  ms; followed by steps (6) and 
(7). The total computation time for decoding a frame 
of pointed objects is 12.707  ms, which is less than 
the information projection cycle of the AiCP system. 
Hence, the proposed system can recognize and esti-
mate the trajectory of objects in real-time. The simulta-
neous video display is implemented in a separate thread 
for real-time monitoring of the object recognition.

System characterization, comparison, 
and confirmations
To confirm the functionalities of our algorithm, we 
quantify the robustness in decoding with varying lens 
parameters, compare the real-time execution with con-
ventional object trackers, demonstrate the effectiveness 
in pointing and recognizing multiple objects at indoor 
and outdoor scenarios as proof of concept.

Robustness in decoding with varying lens parameters
Firstly, we quantify the robustness of our system by con-
firming the object recognition ability of HFR vision in 
terms of varying lens-aperture, lens-zoom, and lens-
focus blur when three objects of the same class are 
pointed by AiCP system. We characterized the capabil-
ity of the proposed system to observe the projection area 
and decode the informative color mask on each object at 
varying conditions in five steps. As shown in Fig. 7, three 
miniature cars of different sizes were placed on the lin-
ear slider with a complex background. The AiCP module 
put 1 m in front of the experimental scene, whereas the 
HFR camera at 2 m away from the scene. The HFR cam-
era head was mounted with a C-mount 8-48  mm f/1.0 
manual zoom lens. We used a linear slider to move the 
miniature objects to and fro in the experimental scene. 
Since the AiCP system has a latency due to the CNN-
object detection and projection system, it may affect the 
mapped light onto the object like a tail behind the rap-
idly-moving objects. To avoid this unpleasant effect and 
map the IOP properly onto the objects, the linear slider 
was moved at 50 mm/s velocity.

As shown in Fig.  8a, the total brightness was reduc-
ing exponentially without significantly affecting the 
decoded area while the aperture varied from f/4.0 to 
f/16.0, at 16  mm focal length and 1.5  m focal depth. A 
variance of the Laplacian method-based lens-focus blur 
index was used to determine the de-focal blurring level 
occurring in the images. As the de-focal blur increases, 
the blur index reduces considerably. In this experiment, 
the focal depth was set to 1.5 m to acquire sharp images. 
As shown in Fig. 8b, the decoded area was not substan-
tially affected at 16 mm focal length with the decreasing 
blur index by varying the focal depth from 1  to 7  m as 
marked on the lens. However, as shown in Fig.   8c, the 
decoded area was increasing with focal length (zoom in) 
from 8 mm to 36 mm due to increasing number of pixels 

object ROI and 

class

visible light decoding

sequential 
weighting

weighted 
plane 

accumulation

sequential 
thresholding

object recognition and tracking

esabatad

informative segmentation

yes

640x480x1 pixels 
@ 480fps

[mono image with header]

image acquisition

If 
blue=1
seq=1

no

header reader

USB 3.0 
monochromatic 

HFR camera

start 
decoding

Fig. 6  HFR vision system for recognition of pointed objects

Table 2  Execution times  on  HFR recognition and  tracking 
system (unit: ms)

Time

(1) Image acquisition 0.3

(2) Header reader 0.001

(3) Sequential thresholding 0.11

(4) Sequential weighting 0.27

(5) Weighted plane accumulation 0.9

(6) Cluster and label [database] 0.057

(7) Object recognition and localization 0.002

(8) Image display 16.66

Total [ (1–5) x 8]+(6)+(7) 12.707
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having informative light, at f/4 aperture and 1.5 m focus 
depth. It is evident that if the decoded area is visible to 
the HFR vision system, the recognition is always effi-
ciently working.

Real‑time execution comparison
Secondly, we compare our HFR vision-based object rec-
ognition approach with conventional object trackers to 
confirm computational efficiency required for real-time 
execution. We considered conventionally used object 
trackers for the real-time execution comparison. Track-
ers such as MOSSE [59], KCF [60], Boosting [61], and 
Median Flow [62] which are distributed in the OpenCV 
[63] standard library. Table  3 indicates that the compu-
tational cost for synthesizing 640× 480 images in other 
methods is higher than our proposed method except for 
the MOSSE and Boosting object trackers. We observed 
that apart from the MOSSE tracker, other trackers lose 
the pointed objects when occlusion arises. However, our 
method has advantages in computational efficiency and 
recognition accuracy as long as the decoded area is vis-
ible to the HFR vision system. We fill up bounding boxes 
obtained from the YOLO object detector with the same 
size of SMP color masks for IOP in the projection area, 
affecting the object’s decoded area and position based on 
the HFR vision observation viewpoint. Hence, the object 
localization may not be on the pointed object, but it is 
always inside the decoded area.

Indoor multi‑object pointing and HFR vision‑based 
recognition
Next, we demonstrate the effectiveness of the proposed 
method in multi-object pointing using the AiCP system 
and their recognition by distantly placed HFR vision 

systems at the indoor scenario. As shown in Fig. 9, seven 
miniature objects were placed in a scene with a complex 
background. The traffic signal and clock were immovable 
among these objects, whereas two humans and three cars 
were placed on two separate horizontal linear sliders par-
allel to the projection plane. The AiCP module was placed 
at 1.5 m in front of the experimental scene. We used two 
HFR vision systems set at 1.5  m away from the scene 
to demonstrate multiple viewpoint recognition. Both 
the HFR cameras were mounted with 4.5 mm C-mount 
lenses and operated at 480 fps with 2 ms exposure time. 
The projection area was set to 510mm× 370mm , with 
805  lux acquired luminance. The approximate length 
of a miniature car and the height of a miniature person 
was 10  cm. They were moved 200  mm by correspond-
ing linear sliders to and fro horizontally at a speed of 
50 mm/s within the projection area, which is equivalent 
to 7.92  km/h and 3.25  km/h for a real car and person 
when located 66 m and 27 m away from the AiCP system, 
respectively.

OPC of Seven objects for the AiCP system and rec-
ognition ID for the HFR vision system is tabulated in 
Table  4. We used the seven combinations of FPP and 
IPP for seven objects of different appearances and a 
single combination as a background of the projection 
plane. The active or inactive status of light passing 
through the color wheel filter based on a combination 
of FPP and IPP for a particular object. The experiment 
was conducted for 6  s; both linear sliders moved the 
objects one time to and fro horizontally during this 
period. As shown in Fig. 10, the CNN-detection frames 
were captured at 1  s interval, contain the detected 
objects marked with bounding boxes. The SMP color 
masks for each bounding box (that is, rectangular 
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Fig. 7  Overview of the experimental setup for quantification of robustness
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pointer) were projected onto the respective objects by 
AiCP system. Figures  11 and  12 show a color map of 
the decoded informative masks (left side frames) along 
with recognition results (right side frames) of cam-
era-1 and camera-2 of HFR vision systems, respectively. 
The decoded area and displacements of each object 
acquired in camera-1 are plotted in Fig. 13a, b, respec-
tively, whereas, those of camera-2 are shown in Fig. 14a, 
b. The decoded areas on moving objects vary in each 
frame. Whereas, in the case of a clock and traffic light, 
there is no significant change in the decoded area. 
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Table 3  Execution time comparison between  proposed 
method and conventional object trackers (unit: ms)

Method Time

(1) MOSSE 0.5

(2) KCF 19.45

(3) Boosting 8.01

(4) Median flow 40.26

(5) Our method 12.707
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They are often affected by the light absorbent proper-
ties of the material and curvatures of the objects. We 
observed that sometimes, due to the objects’ low reflec-
tive parts, the FPP and IPP are indifferent, which affects 
the decoded area, and the HFR vision system does not 

recognize the object. We quantified the amount of 
communication between the AiCP system and the HFR 
vision system, in terms of the amount of data trans-
mitted and received during the 6  s period. The CNN 
object-detector detected 7 objects per frame in 0.033 s; 

HFR
camera-1

AiCP 
module

HFR 
camera-2slider-1

projection area

slider-2

1.5 m

B R G FPP IPP

1 2 3 4 5

header-blocks

projection area illuminated by AiCP module 

Fig. 9  Overview of the experimental setup for multi-object pointing and HFR vision-based recognition

Table 4  Seven objects OPC for AiCP system and the recognition ID for HFR vision system

Object of interest Informative color 
masks

DLP color wheel filter (’1’ active ’0’ inactive) Recognition 
ID (HFR 
Vision)

FPP IPP Color filter for FPP Color filter for IPP

blue Red Green Blank Blue Red Green Blank

Background Black White 0 0 0 0 1 1 1 0 14

Person 1 Green Pink 0 0 1 0 1 1 0 0 70

Person 2 Pink Green 1 0 0 0 0 1 1 0 16

Car 1 Red Cyan 0 1 0 0 1 0 1 0 26

Car 2 Blue Yellow 1 0 0 0 0 1 1 0 28

Car 3 Cyan Red 1 0 1 0 0 1 0 0 72

Clock Yellow Blue 0 1 1 0 1 0 0 0 82

Traffic light White Black 1 1 1 0 0 0 0 0 84
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t =0 s t =1.00 s t =2.00 s

t =3.00 s t =4.00 s t =5.00 s
Fig. 10  CNN-object detection based multi-objects pointing by AiCP system

t =0 s t =1 s

t =2 s t =3 s

t =4 s t =5 s
Fig. 11  Color map of decoded SMP color mask (left) and corresponding recognition (right) acquired in camera-1 of HFR vision system
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thus, it could detect those 7 objects approximately 180 
times; the DLP projector required 2880 planes to pro-
ject the information in 6 s.

Outdoor real‑world object pointing and HFR vision‑based 
recognition
We also confirmed the usefulness of the proposed 
method in pointing and recognizing the real-world 
objects for security and surveillance as an application 
of CPS. The experimental scene comprised the class-
room as a background, a person moving at average speed 

of 1000  mm/s , an umbrella, and a chair, as shown in 
Fig.  15. The AiCP module placed 8.5  m in front of the 
classroom door with 230 lux of acquired luminance and 
5.75m× 2.25m projection area. An HFR vision sys-
tem operated at 480 fps, 2 ms exposure with an 8.5 mm 
C-mount lens set 18.5 m away from the scene. To acquire 
adequate projection brightness required for decoding 
frame-by-frame at HFR vision system, we selected the 
pixel binning function with 320× 240-pixels image res-
olution in HFR camera. To avoid daylight’s influence on 
SMP projection mask projected on the pointed objects, 

t =0 s t =1 s

t =2 s t =3 s

t =4 s t =5 s
Fig. 12  Color map of decoded SMP color mask (left) and corresponding recognition (right) acquired in camera-2 HFR vision system
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we experimented using the corridor light illumination in 
the evening time. OPC of the multi-class object for the 
AiCP system and recognition ID for the HFR vision sys-
tem is outlined in Table 5. During the 6 s experiment, the 
person was walking throughout the experiment scene 
and sometimes occluded chair and umbrella. The CNN-
detection results are shown in Fig.  16 captured at 1  s 
interval.

The HFR vision system efficiently recognized the 
pointed person, umbrella and chair in real-time despite 
the limitations of the projector. We involved the back-
ground subtraction method by considering every blank 

sequence as a reference frame and subtracted every color 
sequence from it to enhance the thresholding and weigh-
ing process in HFR vision-based recognition. Thus, Eq. 
(4) is replaced as,

where Iref (x, y, δt−1) is the reference frame, that is the 
frame acquired from the black sequence filter from 
previous packet, to subtract from subsequent frames 

(9)

Bk(x, y, δt) =

{

1, if |Ik(x, y, δt)− Iref (x, y, δt−1))| ≥ θ

0, otherwise
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Fig. 13  Graphs of a decoded area acquired, and b corresponding displacement of each recognized objects in camera-1 HFR vision system
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Fig. 15  Overview of the experimental setup for real-world multi-objects’ pointing using AiCP module and recognition by HFR vision system
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corresponding to blue, red and green color filter. θ is 
the threshold to enhance the subtraction process. Fig-
ure  17 shows a color map of the decoded SMP masks 
(left side frames) and corresponding recognition results 
(right side frames). The decoded area and displacements 
of the objects obtained from the receiver are plotted in 

Fig. 18a and b, respectively. The decoded area is signifi-
cantly larger than the miniature objects in a previous 
experiment, as it varies with the viewpoint of HFR vision 
system. In this way, we confirmed the usefulness of our 
proposed system for real-world scenarios.

Table 5  Multi-object OPC for AiCP system and the recognition ID for HFR vision system at outdoor conditions

Object of interest Informative color 
masks

DLP color wheel filter (‘1’ active ‘0’ inactive) Recognition 
ID (HFR 
Vision)

FPP IPP Color filter for FPP Color filter for IPP

Blue Red Green Blank Blue Red Green Blank

Background Black White 0 0 0 0 1 1 1 0 14

Chair Pink Green 1 1 0 0 0 0 1 0 16

Umbrella Red Cyan 0 1 0 0 1 0 1 0 26

Person White Black 1 1 1 0 0 0 0 0 84

t =0 s t =1.00 s t =2.00 s

t =3.00 s t =4.00 s t =5.00 s
Fig. 16  Multi-objects pointed by AiCP system
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Conclusion
In this study, we emphasize prototyping VLC based phys-
ical security application using AiCP system for object 
pointing and an HFR vision system for pointed object 
recognition. The AiCP system broadcasts CNN-object 
detection results by the IOP method using a high-speed 
projector. The distantly located HFR vision systems can 
perceive the information and recognize the pointed 
objects by decoding projected SMP from observation 
viewpoints. We also explained the imperceptibility to 
HVS using SMP based projection mapping to maintain 
the confidentiality of the information. We quantify the 
robustness in HFR vision-based recognition by varying 
lens-aperture, lens-zoom, and lens-focus blur and con-
firm the computational efficiency by comparing it with 

conventional object tracking methods. As a proof of con-
cept, we demonstrated the efficiency of our approach in 
communicating information of multiple objects in the 
indoor scene using miniature objects and its usefulness 
in the outdoor scenario for real-world objects despite 
projector limitation. The localization accuracy can be 
improved drastically in the future using pixel-based IOP 
as per the contour of an object instead of bounding box-
based IOP. Hence, our proposed system can be applied 
to real-world scenarios such as security and surveillance 
in vast areas, SLAM for mobile robots, and automatic 
driving systems. The system is currently limited for static 
and slowly moving objects due to the projection-latency 
in commercially available projectors and the reflectance 
properties. We intend to improve the proposed system 

t =0 s t =1 s

t =2 s t =3 s

t =4 s t =5 s
Fig. 17  Color map of decoded SMP color mask (left) and corresponding recognition (right) acquired in HFR vision system
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using bright and low latency high-speed projectors to 
recognize high-speed moving multi-objects in 3-D scenes 
from a long-distance during daylight.
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