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Abstract 

Accurate vehicular trajectory estimation is important for the recently developed autonomous driving systems. As the 
accuracy of the vehicular trajectory estimation is reduced with the slippage that occurs during turning, we propose a 
method in this study to accurately estimate the trajectory of a vehicle, focusing on the slip angle estimation. Although 
the two-wheel model is used as a general concept slip angle estimation, the accurate estimation of the parameters 
was difficult using the conventional methods. Therefore, a global navigation satellite system (GNSS) Doppler was 
used for parameter estimation. In addition, the roll angle was estimated as it occurs during turning and affects the slip 
angle of the vehicle. Specifically, we verified the improvement in accuracy of the vehicular trajectory estimation using 
the cost-effective GNSS Doppler/IMU.
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Introduction
Highly accurate vehicular trajectory estimation has 
become imminently important for automated vehicles 
and advanced driver assistance systems that have been 
developed in the recent years [1]. Accurate trajectory 
information has been used in various studies such as con-
straints for position estimation, 3-D mapping for auto-
mated vehicles, route planning, and vehicular control 
[2–7]. Accuracy is required for trajectory estimation of 
automated vehicles. The required accuracy is a 2D error 
of 0.3  m per 100  m of trajectory, which corresponds to 
the thickness of a tire. Moreover, conventional automated 
vehicles often use GNSS/IMU systems with expensive 
sensors, such as fiber-optic gyros, to achieve the required 
accuracy. However, the cost of using these expensive sen-
sors is an issue. Therefore, the method proposed in this 
study aims to achieve accurate trajectory estimation using 
inexpensive sensors. In addition, we focus on the normal 
driving range of vehicles and aim to increase the accuracy 

of the vehicle trajectory estimation performance. A dif-
ference is known to occur between the directions of the 
velocity vector and the heading angle (slip angle) when 
the vehicle turns. Therefore, the slip angle estimation 
is generally carried out using a two-wheeled model to 
improve the accuracy of vehicular trajectory estimations 
[8]. However, the two-wheeled models require one-by-
one estimation of multiple parameters, which imparts 
error biases and makes the accurate estimation of vehicu-
lar trajectory difficult.

Therefore, in the proposed method, the parameters of 
the two-wheeled vehicle model are automatically esti-
mated using GNSS Doppler to estimate the trajectory 
corrected for the slip angle. The major gap between our 
method and conventional methods is that we do not esti-
mate the parameters one by one, but rather eliminate 
variable parameters by rearranging the model equations 
and estimate fixed parameters. In addition, our method 
does not require the construction of an observer and can 
be used universally because it utilizes not only conven-
tional vehicle motion sensors such as IMU but also GNSS 
Doppler, which is information from outside the vehicle. 
The slip angle estimated by our method allows us to make 
corrections to the trajectory, thereby realizing highly 
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accurate vehicle trajectory estimation in the range of nor-
mal operation.

In order to confirm the effectiveness of the slip angle 
correction by the proposed method, we focused on the 
accuracy of the trajectory in the road orthogonal direc-
tion and evaluated it using data acquired from two dif-
ferent environments (“Evaluation tests” section). In 
the evaluation, the high-precision GNSS/IMU system 
POSLV220 was used as the reference value, and the effec-
tiveness of the proposed method was confirmed by com-
paring the slip angle estimate by the proposed method 
and the trajectory estimate after slip angle correction 
with the reference value, respectively.

This paper is organized as follows. “Related prior 
research” section introduces the previous studies, 
“Increasing the accuracy of vehicle trajectory by correct-
ing the slip angle using GNSS Doppler” section describes 
the proposed method, “Evaluation tests” section summa-
rizes the evaluation results, and “Conclusions” section 
concludes.

Related prior research
Overview of conventional trajectory estimation
Generally, conventional vehicle trajectory estimation uti-
lizes IMUs and wheel speedometers [1, 9, 10]. First, the 
trajectory can be broken into its east and north compo-
nents, and the trajectory at time t can be expressed using 
Eqs. (1) and (2) as follows.

V  : velocity, ψ : heading angle, β : slip angle.
Here, the heading angle ψ is expressed in the following 

Eq. (3) using the yaw rate ψ̇:

ψ̇ : yaw rate, θ : pitch angle, ϕ : roll angle.
Equation  (3) considers the error in the IMU yaw rate 

ψ̇ with an offset of δψ̇ . Furthermore, Eq. (4) presents the 
consideration of including the scale factor of wheel speed 
and the effect of the longitudinal slope of the road with 
respect to V.

Vcan : CAN-bus Velocity, SF  : Scale Factor Error.
Using Eqs. (1)–(4), the vehicle trajectory can be calcu-

lated from the output of the IMU using the wheel speed. 
Therefore, the elements of trajectory that need to be esti-
mated are ψ , β, δψ̇ , SF, ϕ , and θ . Among them, a highly 

(1)Tt
East = Tt−1

East + V · cos (ψ + β) · dt

(2)Tt
North = Tt−1

North + V · sin (ψ + β) · dt

(3)ψ t = ψ t−1 + (ψ̇ t + δψ̇) · 1
cos (θ)·cos(ϕ)

· dt

(4)V = SF · Vcancos(θ)

accurate estimation method has been proposed for ψ , 
δψ̇ , SF  , and θ [1, 11]; therefore, the estimation of the roll 
angle ϕ and slip angle β remains unfulfilled. Thus, in this 
paper, we focus on the accuracy of the vehicle trajec-
tory in the road orthogonal direction, estimate the slip 
angle, and correct the estimated slip angle to the vehicle 
trajectory.

Previous studies on slip angle estimation
The equipment required to directly measure the slip 
angle of a vehicle is expensive and difficult to install in 
a vehicle [8, 12–14]. Consequently, estimation is often 
preferred and performed, where the direct integration 
method [8] and the linear observer estimation method 
[15–17] are used as typical methods for conventional 
estimation of the slip angle. However, the direct integra-
tion method poses a problem of accumulation of noise 
and offset in the sensor detections owing to the inclu-
sion of an integrator, and the error increases with time. 
On the contrary, in the observer estimation method, 
the observer constructs the settings for the estimation. 
There are two main types of observer estimation meth-
ods: model-based observers [18] and kinematics-based 
observers [15]. Among these, the model-based observer 
tends to deviate from the actual values due to the mis-
match between the tire parameters of the real vehicle 
and those used in the model. For this reason, kinematics-
based observers are often used. A number of algorithms 
have been proposed to estimate and adapt the slip angle 
of a vehicle using kinematics-based observers. For exam-
ple, in [19, 20], a method for estimating the cornering 
stiffness of a tire at high steering frequency is proposed. 
Among these studies, the β-less method [21] is consid-
ered to have the highest potential for practical applica-
tion in the field. This method is based on a two-wheel 
model (Fig. 1). In the two-wheel model, the slip angles of 
the left and right front tires of a four-wheeled vehicle are 
assumed to be the same and treated as equivalent to two 

Fig. 1  Two-wheel model
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wheels. The relationship between the slip angle β at the 
center of gravity and the vehicle parameters is shown in 
Eq. (5).

m: vehicle weight, L : distance between front and rear 
wheels, Lf : distance between center of gravity of front 
wheel, Lr : distance between center of gravity and the rear 
wheels of the vehicle, V  : velocity, Kf : front wheel cor-
nering power,Kr : rear wheel cornering power, δ : steering 
angle.

Here, in the previously proposed observer estimation 
methods, the parameters required for slip angle estima-
tion are measured from the inertial sensor measurements 
[12, 15]. However, if these parameters are measured sepa-
rately, the problem of error bias arises. In particular, the 
coefficients Kf and Kr are difficult to measure accurately 
due to various factors such as the effect of tire deforma-
tion. There are other limitations such as the need to accu-
rately estimate the steering angle and the need to tune 
the system for each vehicle [22, 23]. In addition, most of 
the previous studies on vehicle slip angle estimation use 
Kalman filter as an observer [22–24]. Therefore, in most 
of the methods, the estimation accuracy of the algo-
rithm is limited to a limited set of operations, subject to 
experimentation.

Increasing the accuracy of vehicle trajectory 
by correcting the slip angle using GNSS Doppler
Overview of the slip angle estimation
The proposed method aims to resolve the limitation of 
determining the parameters of the two-wheeled model for 
the estimation of the slip angle β by the estimating param-
eters automatically using GNSS Doppler. In addition, the 
proposed method eliminates the term of steering angle in 
the two-wheel motorcycle model, and thus does the esti-
mation of steering angle is not required. The proposed 
method is expected to increase the accuracy of the slip 
angle estimation to an extent of validating the two-wheel 
model. Figure  2 shows an overview of the method. Here, 
in Fig.  2, the heading angle, sensor bias (yaw rate offset), 
and roll angle are estimated, and then the slip angle is esti-
mated. GNSS systems using dual antennas can measure 
attitude angles such as heading and roll angles [25–27]. 
However, these methods can only provide accurate out-
put when there is sufficient signal from the satellite, such 
as in suburban roads [25, 26]. On the other hand, when 
used in urban areas, high accuracy cannot be maintained 
due to multipath effects. Therefore, it is difficult to estimate 
the attitude angle using only GNSS systems. Therefore, in 
order to reduce the effect of multipath and to enable robust 

(5)β =

(

1−
mLf

2LLrKr
V 2

1− m

2L2

(

LfKf−LrKr
KfKr

)

V 2

)

Lrδ
L

estimation, an integrated method of GNSS and IMU has 
been used to estimate the heading angle [1]. Therefore, the 
slip angle estimation method and the roll angle estimation 
method in Fig. 2 are proposed in this paper.

In the two-wheel model, the yaw rate ψ̇ can be 
expressed by Eq. (6) [15] as follows.

Therefore, Eqs.  (5) and (6) can be combined to obtain 
the relationship between β and ψ̇ as given by Eq. (7).

However, the above equation represents the slip angle β 
at the center of gravity. The slip angle β_r at the center of 
the rear wheel axle is given by Eq. (8).

Combining Eqs. (7) and (8), we can obtain Eq. (9) as

As all the parameters in Eq. (9) are fixed and constant 
parameters, except for ψ̇ and V  , they can be comprehen-
sively represented as the gain K in the following Eq. (10):

where ψ̇V  is the product of the yaw rate and velocity and 
refers to the centrifugal acceleration, so it can be summa-
rized as Gy in Eq. (11).

Therefore, Eq. (11) simplifies to Eq. (12) .

(6)ψ̇ =





1

1− m

2L2

�

Lf Kf −LrKr

Kf Kr

�

V 2





V δ
L

(7)β = ψ̇

(

Lr
V −

mLf
2LKr

V
)

(8)βr = β − Lr
V ψ̇

(9)βr = −
mLf
2LKr

ψ̇V

(10)βr = −K ψ̇V

(11)ψ̇V = Gy

Heading  angle/ Sensor bias
Estimation

Acceleration
/ Angular rate VelocityVelocity vector

Roll angle
Estimation

Slip angle
Estimation

GNSS 
Receiver CAN-bus IMU

Fig. 2  Overview of the proposal
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Furthermore, during motion of the vehicle, the com-
ponent of gravitational acceleration for the roll angle 
needs to be considered for Eq.  (12) because the compo-
nent of gravity is included at the time of roll angle gen-
eration. Figure 3 shows the relationship between the roll 
angle and its occurrence. The relationship between the 
roll angle ϕ and the lateral acceleration Gy is expressed in 
Eq. (13).

Substituting Gy from Eq.  (13) to Eq.  (12), we obtain 
Eq. (14) as:

Therefore, the sine component of the roll angle is nec-
essary for the estimation of the slip angle from Eq. (14), 
which is estimated in the next subsection.

Roll angle estimation
The roll angle can be estimated with the formula pre-
sented by Tseng et al. [28]:

Moreover, the transverse acceleration Gy can be meas-
ured from the IMU, and for the error in acceleration of 
the IMU as δGimu

y  , Eq. (15) can be expressed as Eq. (16).

Assuming that Eq. (16) holds true, the roll angle ϕ can 
be estimated upon the correction of δGimu

y .
Therefore, this study proposes a method for estimat-

ing the lateral acceleration error using the relationship 
between the variation in the heading angle ψ at certain 
intervals and the integration of the yaw rate ψ̇ with the 
roll angle ϕ . The relationship between the variation of 

(12)βr = −K · Gy

(13)Gy = ψ̇ · V − g · sinϕ

(14)βr = −K
(

ψ̇ · V − g · sin ϕ
)

(15)ϕ = arcsin
(

V
g · ψ̇ −

Gy

g

)

(16)ϕ = arcsin

(

V
g · ψ̇ −

Gimu
y +δGimu

y

g

)

heading angle at certain intervals and the integration of 
the yaw rate ψ̇2D as viewed from the horizontal plane can 
be expressed by Eq. (17).

However, the roll angle φ needs to be considered with 
respect to the yaw rate in case of a lateral slope on the 
road surface.

Therefore, the expression of roll angle in Eq. (16) can be 
substituted into the above Eq. (18) to obtain the following 
Eq. (19).

Equation (19) shows the relationship between the head-
ing angle and the transverse acceleration error at certain 
intervals. Therefore, the accurate evaluation of the lateral 
acceleration error through Eq. (19) can be used to accu-
rately estimate the roll angle through Eq. (16).

In this study, we determined δGimu
y  by utilizing the 

heading difference between the left and right sides of 
Eq.  (19). By varying the value of δGimu

y  in Eq.  (19), we 
search for cases where the heading difference is zero or 
closest to zero, and thus analytically determine δGimu

y  . 
In Eq.  (19), the heading angle ψ can be estimated by 
using the GNSS Doppler/IMU [1, 29, 30], the velocity V  
can be measured by the wheel speed sensor, and Gimu

y  
can be measured by the IMU, so only δGimu

y  remains 
unknown, for which the estimation can be made. The 
transverse acceleration error δGimu

y  cannot be estimated 
using Eq.  (19) when entire right-hand side of the equa-
tion becomes zero for 0 rad/s yaw rate ψ̇ . Therefore, the 
computation was performed only at the point where the 
curve turned once. In this study, we used data for 100 s 
with n = 100. Figure 4 portrays the variation in the head-
ing difference between the left and right sides for differ-
ent values of δGimu

y  within − 1.5 to 1.5 m/s2 according 
to Eq.  (19). As shown, the variation of δGimu

y  produced 
quadratic curves with inflection points indicating mini-
mum differences between the left and right sides. As 
each of these inflection points was calculated at a differ-
ent position on a curve, the average of these values were 
considered to neutralize the transverse acceleration error 
δGimu

y  . This estimate did not considerably vary over time 
so determining sequence was not necessary. Therefore, 

(17)ψ t+n − ψ t =
t+n
∫
t
ψ̇2Ddt

(18)ψ t+n − ψ t =
t+n
∫
t
ψ̇ · 1

cos(ϕ)
dt

ψ t+n − ψ t =

(19)
t+n
∫
t
ψ̇ · 1

cos

{

arcsin

(

V
g ·ψ̇−

Gimu
y +δGimu

y
g

)}dt

Fig. 3  Effect of road lateral gradient
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the real-time position estimation can be performed right 
after conducting the calibration run estimating the initial 
position. For this dataset, we considered 0.25 m/s2 as the 
estimated value.

Parameter estimation for two‑wheel model using GNSS 
Doppler
Figure 5 presents the relationship between the slip angle 
and lateral acceleration according to Eq.  (14) for a dis-
tance of approximately 5  km around the urban area 
(Odaiba, Tokyo, Japan). The slip angle and the lateral 

acceleration were measured by Applanix POSLV220, 
which is known as a high-precision GNSS/IMU system 
[31]. The correlation between the slip angles with lateral 
acceleration can be observed from Fig. 5, where the slope 
represents the gain K from Eq.  (14). Therefore, the slip 
angle can be estimated by evaluating this relationship.

On the contrary, the velocity vector and heading angle 
can be estimated by utilizing the GNSS Doppler [32] and 
combining the IMU with it [1], respectively. In our head-
ing estimation method, we use least-squares fitting of 
GNSS Doppler and IMU yaw-rate values. Our method is 
unique in that it uses a long time series of data to deter-
mine the multipath. This feature allows us to perform 
convergence operations while determining and removing 
outliers, thus improving the heading angle accuracy.

Therefore, this study proposes a method to approxi-
mate the variation in heading angles using the GNSS 
Doppler/IMU and evaluate the first-order approxima-
tion of velocity vectors using the GNSS Doppler with the 
least-squares method, where the slope of the first-order 
equation is represented by the gain K. An overview of 
the proposed method has been presented in Fig. 6, where 
βr was accumulated according to Eq.  (20) by calculating 
the difference between the directions obtained from the 
GNSS Doppler/IMU HDoppler/IMU and the GNSS Doppler 
HDoppler at the curve. Moreover, thresholds were set for 
speed and storage of data beyond a certain speed owing 
to the higher speed range of the moving object and the 
higher accuracy of the GNSS Doppler [1, 28, 30, 32].

The gain K was estimated based on the relationship 
between the slip angle accumulated by Eq.  (20) and the 
lateral acceleration at that time; the gain K shown in 
Fig.  7 can be estimated without using a high-precision 
GNSS/IMU. Here, comparing Figs.  6 and 7, we can see 
that there is a difference in the estimated value of gain K. 
The main reason for this is that the POSLV220 can esti-
mate the heading with an accuracy of 0.025° [31], while 

(20)β
Doppler/IMU
rDoppler = HDoppler/IMU −HDoppler

0.25  / 

Vehicle lateral acceleration error [ / ]

Fig. 4  Estimation results of the lateral acceleration error

K = 0.008

Fig. 5  Correlation between slip angle and lateral acceleration 
(POSLV220)

Fig. 6  Overview of the slip angle
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the GNSS Doppler has an error in the estimated heading 
due to noise [32].

Evaluation tests
The evaluation tests were conducted on a 5-km 
course in an urban street (Odaiba, Tokyo, Japan) and 
a 14-km course on an urban highway (Tokyo Met-
ropolitan Expressway) with a lateral gradient; the 
courses are shown in Fig.  8. The U-blox M8T with a 

GPS + BeiDou + Galileo + QZSS satellite system was 
used as a GNSS receiver with a reception period of 
10 Hz. The MEMS IMU on the TAG264 of Tamagawa 
Seiki was used with an acquisition period of 50 Hz. An 
Applanix POSLV220 was used as the reference equip-
ment for an accurate evaluation. Figure  9 shows and 
Table 1 lists the sensors and POSLV220 that are used in 
this evaluation. The experimental vehicle used for data 
collection was a Toyota Alphard. From Table  1, it can 
be seen that there is a great difference between the sen-
sor cost of the reference and our proposed scheme.

Roll angle estimation results
The roll angles estimated using the lateral accelera-
tion error δGy with our proposed method is shown 
in Figs.  10 and 11 for the urban street and highway, 
respectively. In addition, the reference (POSLV220) 
model measurements along with the raw roll angle esti-
mation (Eq.  (16)) data without the correction of δGy 
(No sensor correction) are presented in these figures 
for comparison. Furthermore, Figs. 12 and 13 show the 
difference between errors under “No sensor correction” 
and “Proposal” of the estimated roll angles for the urban 
street and highway, respectively. Since the IMU and 
the MEMS-IMU of the POSLV220 are installed at the 
same location in this experiment, their Roll angle out-
puts should be consistent. However, since the MEMS-
IMU is subject to acceleration errors, there will also 

K = 0.007

Fig. 7  Relationship between slip angle and lateral acceleration using 
GNSS/Doppler

Fig. 8  Evaluation fields [“© OpenStreetMaps”]

Fig. 9  Photographs of the sensors and the system

Table 1  Equipment used for evaluation

Sensor Product name Cost (US$)

Proposal GNSS Receiver Ublox M8T(10 Hz) 100

GNSS Antenna Tallysman TW2710 100

MEMS IMU Tamagawa 
AU7554(50 Hz)

500

Reference GNSS Receiver, GNSS 
Antenna, 3-axis 
FOG

Applanix POSLV220 100,000
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be errors in the estimated roll angle. Here, as shown 
in Figs.  10-13, the proposed method is able to negate 
the offset error, indicating that the results are close to 
the reference. This is due to the correction of the accel-
eration error estimated by the proposed method. If we 
look at Figs.  12 and 13, we can see that the estimated 
roll angles have shifted values. This is because the vari-
ation of the acceleration error of the MEMS-IMU used 
in this experiment is small, and the error of the esti-
mated Roll angle also appears to be constant. Tables 2 

and 3 show the errors in the estimated roll angles. From 
Tables 2 and 3, it can be observed that the mean error 
was improved by the correction of the lateral accelera-
tion error estimated by the proposed method for both 
the courses.

However, when comparing the two courses, urban 
street and highway, it can be confirmed that the average 
error is smaller for urban roads. The major differences 
between the two courses include the total distance trave-
led and the effect of multipath. Urban highway may be 
more susceptible to multipath effects due to the presence 
of high-rise buildings. In addition, the lateral acceleration 
error is estimated as a fixed value in this method. In the 
experiment on the urban expressway, the total driving 
distance is longer, and this bias error may have fluctuated 
slightly.

Slip angle estimation results
The slip angles estimated using the proposed method 
are shown in Figs.  14 and 15 for the urban street and 
highway, respectively. These figures prove that the esti-
mated slip angles were close to the reference model for 

Proposal
No sensor correction

Reference

Fig. 10  Estimated roll angle (Urban street)

Proposal
No sensor correction

Reference

Fig. 11  Estimated roll angle (Urban highway)

Proposal
No sensor correction

Fig. 12  Error of estimated roll angle (Urban street)

Proposal
No sensor correction

Fig. 13  Error of estimated roll angle (Urban highway)

Table 2  Error of estimated roll angle (Urban street)

Error Average (°) Standard 
deviation 
(°)

Proposal − 0.09 0.22

No sensor correction − 0.71 0.22

Table 3  Error of estimated roll angle (Urban highway)

Error Average (°) Standard 
deviation 
(°)

Proposal − 0.17 0.29

No sensor correction − 1.06 0.29
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both the courses. Furthermore, the difference between 
the reference and estimated slip angles are presented in 
Figs. 16 and 17; the error in the estimated slip angle is 
shown in Table 4. Table 4 shows that both courses were 
estimated with high accuracy, with a mean error of 
0.01°. In these figures, it was also confirmed that there 
are some points where the error becomes slightly larger 
when focusing on the points (curves) where large slip 
angles occur. This is considered to be a point where the 
two-wheel model used in this method is not applicable.

Trajectory estimation results
Thereafter, the effect of the slip angle correction on the 
trajectory was evaluated. Figure  18 shows the results of 
using the corrected slip angle estimation for the trajec-
tory obtained from the conventional method [1, 4] at 
the urban street shown in Fig. 8a. The trajectory before 
and after the slip angle correction is shown in the inset 
of Fig. 18, compared with the trajectory drawn from the 
starting point aligned to the reference. Figure  18 fur-
ther shows that the trajectory beyond the turn of curve 
approached the reference model by correcting the slip 
angle, which improved the accuracy of the proposed 
model.

Since this study also aims to improve the accuracy of 
the trajectory estimation performance for normal driv-
ing, we will evaluate the estimation performance of the 
estimated vehicle trajectory. In this evaluation, we eval-
uate the error of a 100-m trajectory in order to under-
stand the performance of the vehicle trajectory in a real 
environment. The number 100  m was chosen because 
vehicle trajectory-based vehicle control requires a 
distance of about 100  m when changing lanes. In this 
study, we evaluated the road orthogonal error of 100 m 
trajectory every 10 m on urban street and highway. The 
trajectory was set according to the wheel speed, IMU, 
and slip angle after aligning the POSLV220 only to the 
base point. Figure 19 shows an overview of the evalua-
tion test; Figs. 20 and 21 show the results of the evalua-
tion, where the accuracy of the trajectory was improved 
on both the urban street and the highway. In particular, 

Fig. 14  Estimated slip angle (Urban street)

Fig. 15  Estimated slip angle (Urban highway)

Fig. 16  Error of estimated slip angle (Urban street)

Fig. 17  Error of estimated slip angle (Urban highway)

Table 4  Error of estimated slip angle

Error Average (°) Standard 
deviation 
(°)

Urban street 0.01 0.07

Urban highway − 0.01 0.10



Page 9 of 11Takikawa et al. Robomech J             (2021) 8:5 	

the accuracy of the trajectory—at an error of 30 cm—
was approximately 10% higher than that before the 
correction (no correction). Moreover, the estimation 
accuracy was improved by considering the roll angle 
in Eq.  (14), as compared to excluding the roll angle φ 
in the given equation. The effect of considering the roll 
angle was particularly pronounced on the urban high-
way that has a large number of lateral slopes.

Fig. 18  Effect of slip angle correction (Urban street)

Fig. 19  Overview of trajectory evaluation

Fig. 20  Evaluation of vehicle trajectory (Urban street)

Fig. 21  Evaluation of vehicle trajectory (Urban highway)
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Conclusions
In this paper, we focus on the estimation of slip angle to 
improve the accuracy of vehicle trajectory estimation, 
which is an important factor in automatic vehicle driving. 
In the conventional linear observer estimation method 
using a two-wheel model, which is a typical slip angle 
estimation method, the parameters of the two-wheel 
model are estimated one by one, and the bias of the error 
has been a problem.

Therefore, in this study, the two-wheel motorcycle 
model equation for the position of center of gravity was 
replaced by that for the center of the rear axle slip angle, 
and the parameters of the motorcycle model were col-
lectively estimated as a gain K. This allowed the auto-
matic estimation of parameters and ensured the removal 
of the steering angle term that was difficult to measure. 
We utilized the GNSS Doppler/IMU and GNSS Doppler 
to estimate the gain K. The difference between the head-
ing angles measured by the GNSS Doppler/IMU and the 
velocity vectors measured by the GNSS Doppler from 
the motorcycle model was first-order approximated by 
the least-squares method, and the slope of the first-order 
equation was defined as the gain K. By accounting the 
effect of the roll angle for the estimation of the gain K, 
a highly accurate slip angle estimation was performed. 
The roll angle estimation was based on the relationship 
of the integrated yaw-rate value and the variation of the 
heading angle during a certain time period. This study 
enabled the estimation of the slip angle without the need 
for the observer and vehicle-specific tuning, and allowed 
the correction of slip to be easily incorporated into the 
trajectory estimation.

The effectiveness of the slip angle correction for the 
vehicular trajectory was confirmed in the evaluation 
test. The experiments were conducted on a standard 
urban (street) course and a high-speed (highway) course 
that was prone to lateral gradients; the error rates of the 
100-m trajectory for both courses were improved by 
about 10% to cover within 30  cm. The consideration of 
roll angle improved the accuracy of the estimation, and 
its effectiveness was especially significant on a course 
with numerous lateral slopes such as the urban highway.

In this study, an off-line processing was used to 
improve the accuracy of the trajectory estimation by 
estimating a highly accurate slip angle. This was effective 
for off-line use of trajectories such as the creation of 3-D 
maps for automated driving. As the theoretical capabil-
ity of the proposed model has been verified for real-time 
use, we will continue to improve the algorithm for real-
time implementation to further improve the usability of 
the proposed model.
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