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Abstract 

In this study, we evaluated the deformation shape of a balloon-type dielectric elastomer actuator (DEA) that has 
been prestretched with water pressure. We fabricated the DEA with poly(dimethylsiloxane) (PDMS) as the elastomeric 
material and carbon grease as the electrode. We derived analytical solutions for the deformation of the DEA based on 
structural mechanical models. Additionally, we compared the deformation shapes obtained by theoretical analysis 
and experimental results. Our model can partially predict the deformation shape of the DEA with good accuracy. In 
addition, we discuss the applicable range of the theoretical model and error relative to the experimental results.
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Introduction
Recently, soft actuators have attracted considerable 
attention because they have the potential to realize bio-
mimetic soft mechanisms [1, 2] or to be used in various 
new applications, such as human machine cooperation 
[3] or low-invasive medical robots [4]. Various types of 
soft actuators have been proposed that are driven by 
pneumatic [5, 6], electrical [7–9], thermal [10, 11], or 
optical [12, 13] inputs. Among these types of soft actua-
tors, electrically-driven soft actuators generally have 
advantages of fast response, small size, low weight, and 
large deformation. Dielectric elastomer actuators (DEAs) 
are one type of electrically driven soft actuator. They are 
driven by high voltage ( ≈ kV), consist of commercially 
available soft polymer materials, and are easily fabricated 
due to their simple structures [14–16]. Since DEAs can 
be utilized in dry environments, they are potential candi-
dates for practical applications in soft actuators.

Generally, DEAs are composed of thin planar dielec-
tric elastomer materials sandwiched by flexible elec-
trodes on both sides of the elastomer. When we apply a 
high electric voltage ( ≈ kV) between the electrodes, the 
dielectric elastomer becomes thinner but extends in the 
planar direction because of Maxwell stress between the 
electrodes. Thus, DEAs are normally actuated in the in-
plane direction of the sheet of DEA and are installed in 
mechanical structures to generate bending motion for 
practical applications, such as artificial muscles [17–19] 
or fish robots [20–22]. Here, we note that one important 
drive condition of a DEA is prestretching of the dielec-
tric elastomer materials. To generate large deformations, 
dielectric elastomers should be stretched prior to actua-
tion. Most DEAs are stretched in the in-plane direction 
by using mechanical jigs, which restricts the motions 
of DEAs in the in-plane direction. Another way to pre-
stretch DEAs is to use air pressure [23] or water pressure 
[24]. When air or water pressure is applied to a DEA, the 
shape of the DEA is deformed like a balloon. Thus, the 
directions of actuation of these types of DEAs are intrin-
sically out-of-plane and can be applied to loud speakers 
[25], fluid pumps [26], or tactile presentation devices 
[27].
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For detailed studies on prestretched DEAs with air 
or water pressure, there are several studies on the drive 
characteristics of balloon-type DEAs [25, 28–30]. These 
studies have experimentally evaluated static behaviors 
[30] or dynamic behaviors [25], or have numerically 
simulated dynamic characteristics of balloon-type DEAs 
[28, 29]. However, numerical simulations cannot predict 
the deformation shape of balloon-type DEAs accord-
ing to various design values, such as diameter, thickness, 
and pressure [31, 32]. Thus, to design balloon-type DEAs 
with desired deformation shapes, a predictive analytical 
model of DEAs with various design parameters must be 
developed.

In this paper, we perform theoretical and experimen-
tal analyses of balloon-type DEA deformations. First, 
we theoretically and experimentally evaluate static char-
acteristics of DEAs with uniaxial load and compare the 
results. Second, we derive analytical solutions of the 
deformations of a balloon-type DEA with water pressure 
and electric voltage under two assumptions; (i) employ-
ing a flexural model of a circular plate and spherical shell 
in structural mechanics for the analysis, (ii) employing 
linear constitutive law (Hooke’s law) to derive analytical 
solutions. Then, we compare the analytical results with 
the experimental results of various sizes of balloon-type 
DEAs prestretched with water pressure and discuss the 
validity and applicable range of the model.

Evaluations of DEA with uniaxial load
First, we evaluated DEAs with uniaxial load, which is a 
commonly used system to evaluate basic characteristics 
of DEAs. In this study, we used polydimethylsiloxane 
(PDMS) (Silpot 184, Toray Dow Corning, Tokyo, Japan) 
for both DEA samples prestretched with a uniaxial load 
and with water pressure. PDMS is a transparent and heat-
curable silicone elastomer and is known to have high 
formability and a high dielectric coefficient. Furthermore, 
PDMS is also known to have relatively linear mechanical 
characteristics over a small deformation region of up to 
≈ 50% [33, 34]. This DEA with a uniaxial load was evalu-
ated to confirm the linearity of PDMS as a DEA material. 
For the theoretical analysis of the deformation shape of 
the DEA in the next section, we assumed that PDMS has 
linear characteristics.

Fabrication of DEA
For fabrication of a thin membrane of PDMS, we use a 
spin coating method commonly used in microfabrication. 
Liquid PDMS is applied to a polystyrene sheet substrate 
and spin coated at 1500 rpm for 30 s. Afterwards, liquid 
PDMS on the substrate were baked at 80 °C for 2 h in a 
constant-temperature oven. Then, we obtained a PDMS 
membrane with a thickness of approximately 100 µ m. 

Finally, the surface of the DEA was coated with carbon 
grease (MG846-80G, MG Chemicals, Burlington, Can-
ada) as the electrode. We fabricated DEAs at thicknesses 
of 80, 100, 120 µ m by changing the preparation condi-
tions. For each thickness, three samples were fabricated 
and evaluated.

Experimental system for uniaxial load
A fabricated PDMS membrane was fixed with fixing jigs 
as shown in Fig. 1a, b. This fixing jigs are made of acrylic 
plate and sandwiches fabricated PDMS membrane. Fur-
thermore, we put thin PDMS sheets on the fixing jigs to 
increase friction forces between the jigs and PDMS mem-
brane and firmly fix the PDMS membrane. Additionally, 

a

b

Fig. 1  Experimental system of uniaxial load. a Schematic figure of 
the experimental system, b picture of the actual experimental system, 
c schematic figures of deformation of a DEA with uniaxial load
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copper tapes were attached to both sides of the PDMS 
and used for connection to a power supply. This DEA was 
attached to an aluminum frame and a weight was hanged 
to the bottom fixing jig to apply uniaxial load. For elec-
tric voltage application, we used a function generator 
(AFG3022C, Tektronix) to generate the input signal. The 
input signal was connected to a high-voltage amplifier 
[HOPP-5P(A), Matsusada precision, Shiga, Japan]. In this 
study, we varied the voltage from 0 to 3.0 kV. Actuator 
displacement was acquired using digital cameras (DC-
TZ90, Panasonic, Osaka, Tokyo) and measured using 
visual analysis software Image J [35, 36].

Theoretical model of DEA with uniaxial load
Under the assumption that PDMS obeys linear constitu-
tive law (Hooke’s law), the relationship between strain of 
PDMS st and voltage V can be written as follows with a 
simple capacitor model.

Here, ε0 is permittivity of vacuum, E is the Young’s mod-
ulus of the material, V is an applied electric voltage, and 
t is a thickness of PDMS. εr is relative permittivity, which 
is 2.72 for Silpot 184. We used this Eq. (1) to evaluate the 
drive characteristics of the DEA with a uniaxial load.

To determine strains st of DEA in the experiments, 
we calculated st , as shown in Fig. 1c. The DEA has three 
phases: first phase without a load (Fig. 1c-1), “off” phase 
with a load (Fig.  1c-2) and “on” phase with a load and 
electric voltage (Fig. 1c-3). Here, l1 , l2 , l1off  , l2off  , l1on and l2on 
are the electrode widths of every phase, and t0 , toff  and ton 
are the thickness of the elastomer. When we assume that 
the elastomer is non-compressible, the elastomer volume 
v = l1l2t0 is constant for every phase. Then, we can calcu-
late elastomer thickness at the on phase ton by measuring 
widths and heights of the electrode l1off , l2off , l1on , l1on . As a 
result, we can experimentally calculate thickness strain of 
the elastomer st with the following equations.

Results
Figure 2 shows the experimental results of the actuation 
of DEA with uniaxial load. To evaluate the strain char-
acteristics of PDMS, we set V 2/t2 as the horizontal axis 
and st on the vertical axis in Fig. 2. By setting this hori-
zontal axis, this plot should be linear, according to Eq. 
(1), if the Young’s modulus E is constant. In this case, we 

(1)st =
εrε0

E

V 2

t2
.

(2)

toff =
v

l1off l2off
, ton =

v

l1on l2on

st =
toff − ton

toff

can estimate the Young’s modulus E from the slope of the 
line.

In Fig. 2, experimental results of DEA with 80 µ m, 100 
µ m, and 120 µ m are shown in green, blue, and red cross 
points, respectively. Also, we plotted the approximate 
line linearized by a least-squares method, which is shown 
as a solid line for each color. From this approximation, 
the slopes were 1.98, 2.60, and 1.78 × 10−17 for DEA with 
thicknesses of 80 µ m, 100 µ m, and 120 µ m, respectively. 
From these results, the Young’s modulus of the fabricated 
PDMS varied from 0.825 to 1.21 MPa. These values are 
thought to vary due to the curing conditions or fabrica-
tion error of the thickness. For theoretical analysis in the 
next section, we use 0.80 MPa as the value of the Young’s 
modulus of PDMS.

Evaluations of DEA only with water pressure
Second, we evaluated the deformation of DEA with water 
pressure, which is the main target of this study. The sys-
tems were previously reported by Godaba et  al. [37] to 
realize large deformation in the out-of-plane direction of 
a DEA. In this study, we fabricated balloon shaped DEAs 
made of PDMS and evaluated the deformation shape.

Fabrication of DEA
For the fabrication of thin membranes of PDMS, we used 
a spin coating method similar to the DEA with uniaxial 
load in the previous section. In this case, we fabricated 
DEAs with thicknesses of 100 µ m, and three samples 
were fabricated and evaluated at each condition.

Experimental system for water pressure
For prestretching with water pressure, we used an 
experimental system to apply water pressure by con-
necting a water reservoir and a circular pipe with a 
hose, as shown in Fig.  3a, b. The fabricated PDMS 

Fig. 2  Results of experimental and theoretical analyses of DEAs with 
a uniaxial load
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membrane was affixed to an acrylic pipe. After that, the 
surface of the DEA was coated with carbon grease. In 
this study, we used acrylic pipes with diameters of 18.0, 
24.0, and 32.0 mm.

In using this system, water pressure for prestretch-
ing can be changed by the height of water in the reser-
voir. Water pressure p applied to DEA is determined as 
follows.

Here, ρ is density of water, g is acceleration of gravity, h1 
and h2 are heights of water in the reservoir and the pipe, 
as shown in Fig. 3a. Additionally, water was also used as 
an electrode to apply electric voltage to the DEA. We 

(3)p = ρg(h1 − h2)

connected the grand electrode of the high voltage ampli-
fier to the water reservoir.

Analytical solution of the deformation of DEAs 
only with water pressure
To theoretically analyze deformations of DEAs with water 
pressure, we employed following two assumptions; (i) 
PDMS membrane is analyzed by using a flexural model of 
a circular plate. (ii) PDMS membrane has linear constitu-
tive law (Hooke’s law). We assume PDMS has linear elastic 
properties in our model because PDMS is known to have 
linear characteristics until ≈ 50% deformation [33, 34], as 
we confirmed in the previous section. To analyze defor-
mations of DEA, we consider that there are three phases 
of DEA actuation in our system, as shown in Fig. 4a. First, 
before applying water pressure to the membrane, the mem-
brane had a circular disk shape, as shown in Fig. 4a, b. Sec-
ond, when we applied water pressure to the membrane, the 
membrane expanded as a curved surface, and the displace-
ment was determined as δ1(r) , as shown in Fig.4a, c. Here, 
r is the radial coordinate of the circular plate. Third, when 
we applied electric voltage to the membrane, it expanded 
further according to the electrostatic voltage, and we deter-
mined this displacement as δ2(r) , as shown in Fig.4a, d. 
Therefore, total displacement of the DEA δ(r) is written as 
follows and it is a function of r.

We analyzed the deformation of the DEA by using two 
models: (i) circumferentially supported disk model with 
distributed load for water pressure: δ1(r) (Fig.4c) and (ii) 
the curvature shell model with distributed load for an 
electric voltage: δ2(r) (Fig.4d) [33].

We assume that the membrane is a disk supported at 
its circumference, and the distributed load is applied to 
the disk to express prestretching with water pressure, as 
shown in Fig. 4c. Normally, deflection δ1(r) can be calcu-
lated by solving infinitesimal deformation models of the 
disk. However, when the out-of-plane deformation of the 
disk is larger than the thickness of the disk, the infinitesi-
mal deformation model is not valid and this large deflec-
tion can be solved by using the energy method [38]. Thus, 
we employed the energy method for the analysis of our 
system. Considering conservation of energy, deflection 
energy of the disk U is a sum of bending energy U1 and 
expanding energy U2 and these can be written as follows.

(4)δ(r) = δ1(r)+ δ2(r)

(5)U1 =
1

2

∫ 2π

0

∫ a

0

(

Mr
1

R1

+Mθ

1

R2

r

)

dθdr

(6)U2 =
1

2

∫ 2π

0

∫ a

0

(Nrεr + Nθ εθ r)dθdr

a

b

c d

Fig. 3  Experimental system of DEA actuation with water pressure. 
a Schematic of the experimental system. b Photograph of the 
experimental system, c DEA without electric voltage, d DEA with 
electric voltage



Page 5 of 10Koike and Hayakawa ﻿Robomech J             (2021) 8:2 	

Here, Mr and Mθ are bending moments, R1 and R2 are 
curvature radii in r and θ directions, respectively. Also, 
Nr , Nθ are stresses and εr , εθ are strains of the middle sur-
face in the r and θ directions, respectively. By using a rela-
tionship of bending moments Mr , Mθ , curvature radii R1 , 
R2 , and bending rigidity D = Et3/12(1− ν2) , U1 can be 
written as follows.

Here, ν is the Poisson’s ratio of the material. Furthermore, 
curvatures R1 and R2 can be rewritten by derivatives of 
deflection δ1 by using geometric relationships as follows.

Next, U2 can be written as follows by using a relationship 
between stress Nr , Nθ , and strain εr , εθ.

(7)
U1 = −

D

2

∫ 2π

0

∫ a

0

[(

1

R1

+
ν

R2

)

1

R1

+

(

1

R1

+
ν

R2

)

1

R1

]

rdθdr

(8)
U1 = πD

∫ a

0

[(

d2δ1

dr2

)2

+
1

r2

(

dδ1

dr

)2

+2ν
1

r

dδ1

dr

d2δ1

dr2

]

rdr.

(9)

U2 =
π tE

(1− ν2)

∫ a

0

[

(εr + εθ )
2
− 2(1− ν)εrεθ

]

rdr

When we set a displacement in the radial direction as 
u(r), εθ and εr can be written by using u(r) as follows.

Thus, U2 can be rewritten as the following equation by 
using Eqs. (9), (10) and (11), as follows.

Here, we assume that the deflection of the disk δ1(r) can 
be written as follows, which is written in analogously to 
the infinitesimal deformation model.

In our model, a circumferential supported disk with 
distributed load should not deform at the center and 

(10)εθ =
2π(r + u)− 2πr

2πr
=

u

r
,

(11)εr =
du

dr
+

1

2

(

dω

dr

)2

(12)

U2 =
πEt

1− ν2

∫ a

0

[(

du

dr

)2

+
1

4

(

dδ1(r)

dr

)4

+
du

dr

(

dδ1(r)

dr

)2

+
u2

r2

+ 2ν
u

r

{

du

dr
+

1

2

(

dδ1(r)

dr

)2
}

]

rdr.

(13)δ1(r) = δ1(0)

(

1−
r2

a2

)2(

1−
5+ ν

1+ ν

r2

a2

)

(a)

(b) (c) (d-1) (d-2)

Fig. 4  Analysis model of DEA prestretched with water pressure. a Schematic of three phases of the DEA, structural mechanics model for: b 
pre-water pressure application, c post-water pressure application, d post-water pressure and electric voltage application
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circumference in the radial direction. Thus, radial dis-
placement u(r) can be written under these boundary con-
ditions as follows.

Here, c0 , c1 , c2 · · · are undetermined constants, and we 
used the second-order term of this equation in this study. 
c0 and c1 can be determined as the strain energy U, which 
become the minimum turning points as follows.

 Then, we acquire following values for c0 and c1 by calcu-
lating integral of Eq. (12).

 Here, we used the value of ν = 0.5 . By using these values 
of c0 and c1 , we can calculate U1 and U2 as follows.

Virtual work W by external force p can be calculated as:

By using Eqs. (17)–(19), the minimum deflection energy 
Umin can be derived by the following equation.

 From this condition, we acquire the following equation.

 In the case of the deflection δ1(0) is much larger than the 
thickness of the disk t, the first term is negligible. This 
approximation is equivalent to ignore the bending energy 
U1 . Then, we acquire the maximum deflection δ1(0) by 
solving Eq. (21) and it can be written as follows.

From Eqs. (13) and (22), δ1(r) can be written as follows.

(14)
u = r(a− r)(c0 + c1r + c2r

2
+ · · · )

= c0ar + (ac1 − c0)r
2
+ · · ·

(15)
dU

dc0
= 0,

dU

dc1
= 0.

(16)c0 = 0.799
δ1(0)

2

a3
, c1 = −0.148

δ1(0)
2

a4

(17)U1 = 0.441π
Et3

a2
δ1(0)

2

(18)U2 = 0.402π
Et

a2
δ1(0)

4

(19)W =

∫ 2π

0

∫ a

0

pδ1(r)rdθdr =
5

11
πa2pδ1(0).

(20)
d(Umin −W )

dδ1(0)
= 0

(21)0.882
E

a2
t3δ1(0)+ 1.61

E

a2
tδ1(0)

3
=

5

11
a2p

(22)δ1(0) = 0.657a
(pa

Et

)
1
3

.

Results
Then, we experimentally and theoretically evaluated the 
deformation of DEA with prestretching by water pres-
sure. Figure  5a, b are typical examples of δ1(r) acquired 
by experimental and theoretical calculations. These 
results were acquired with conditions of p = 1.37 (kPa), 
a = 16.0 (mm), ν = 0.5 , and E = 0.80 (MPa). The experi-
mental picture from the side and the perspective view of 
theoretical results seem to be in a good agreement with 
these shapes. Additionally, the maximum displacements 
at the top of the DEA δ1(0) are 7.84 mm in experiments 
and 7.71 mm in analysis, and these values agree well.

Next, we compared the experimental results and theo-
retical results with various diameters of acrylic pipes and 
water pressures. Figure  5c, d show the cross-sectional 
view of the δ1(r) at the center of the DEA. In the results 
in Fig.  5c, water pressures of 1.37 kPa were applied to 
DEA with diameters of acrylic pipe a = 9, 13, 16 mm. 
Additionally, In Fig. 5d, water pressures of 1.17 kPa, 1.27 
kPa, and 1.37 kPa are applied to DEA with an acrylic pipe 
radius of 16 mm. These results, especially the results of 
a = 9 and 13 mm in Fig. 5c, theoretical and experimental 
are quantitatively in good agreement.

Evaluation of DEA with water pressure and electric 
voltage
Analytical solution of deformation of DEA with water 
pressure and electric voltage
To evaluate the deflection δ2 of the membrane with water 
pressure and electric voltage, we again employed follow-
ing two assumptions similar to the previous section; (i) 
PDMS membrane is analyzed by using a flexural model of 
a spherical shell. (ii) PDMS membrane has linear consti-
tutive law (Hooke’s law). We treat the electrostatic force 
generated by applying electric voltage as a distributed 
load on the membrane. First, we assumed the equilibrium 
of the force of infinitesimal area, as shown in Fig.  4d-2. 
The area is subjected to forces in the circumferential Nθ 
and meridional directions Nφ , and electrostatic force 
is applied in the normal direction of the area Z. These 
forces are written as follows.

Here, r1 , r2 are curvature radii in each direction. These 
forces cause strain εθ , εφ in each direction and these are 
written as follows.

(23)

δ1(r) = 0.657a
(pa

Et

)1/3
(

1−
r2

a2

)2(

1−
11

3

r2

a2

)

(24)Nθ =
r2

2
Z, Nφ = −

3

2
r1Z
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where v is displacement in the tangential direction of 
the meridian and δ2 is the displacement of the normal 

(25)εθ =
ν

r2
cot φ −

δ2(φ)

r2
, εφ =

1

r1

dv

dφ
−

δ2(φ)

r2

direction of the middle surface. By using Hooke’s low, 
these equations can be written as follows.

Here, t is the thickness of the membrane. Then, deflec-
tion of the shell δ2(φ) is derived by Eqs. (24), (25) and 
(26), as follows.

Finally, we acquired the equation of deflection of the 
DEA δ(r) as a function of water pressure p and electro-
static force Z is written as follows.

Here, εr and ε0 are dielectric permittivity of PDMS and 
vacuum, respectively.

Results
Then, we also experimentally and theoretically evalu-
ate the deformation of DEA with water pressure and 
electric voltage. Figure  6a, b are typical examples of 
δ(r) = δ1(r)+ δ2(r) that are acquired by experiments and 
theoretical calculations, respectively. These results were 
acquired with conditions of p = 1.37 (kPa), a = 16 (mm), 
ν = 0.50 , E = 0.80 (MPa) and V = 3.0 (kV). The experi-
mental picture and theoretical results seem to be in good 
agreement with these shapes. Additionally, the maximum 
displacement at the top of the DEA δ(0) was 8.99 mm in 
the experiments and 8.84 mm in analysis. The values of 
deformation δ(0) acquired with experiments and theoret-
ical calculations are slightly different.

Next, we compared experimental results and theo-
retical results with various electric voltages. Figure 6c 
shows the cross-sectional view of the δ(r) at the center 
of the DEA. In the results in Fig.  6c, water pressure 
p = 1.37 (kPa), and electric voltage V is varied as 1.0, 
2.0, and 3.0 kV. These experimental and theoretical 

(26)εθ =
1

Et
(Nφ − νθ ), εφ =

1

Et
(Nθ − νNφ)

(27)

δ2(φ) =
r2 cos2 φ

1− r2 cos2 φ

1

Et

×

[

r1(Nφ − νNθ )−
r2

cos2 φ(Nθ − νNφ)

]

(28)

δ(r) = δ1(r) + δ2(r) = δ1(r) + δ2(φ) cosφ

= 0.657a
(pa

Et

)
1
3

(

1−
r2

a2

)2(

1−
11

3

r2

a2

)

+
r2 cos3 φ

1− r2 cos2 φ

1

Et

×

[

r1

2
(r2 + 1.5r1)Z −

2r2

cos2 φ(r2 + 1.5)Z

]

,

Z = εrε0
V 2

t2

a

b

c

d

Fig. 5  Evaluation of DEA with water pressure. a Experimental picture 
of DEA with a water pressure of 1.37 kPa. b 3D plot of the analytical 
solution of Eq. 23. c Comparison of theoretical and experimental 
data with changing diameter a. d Comparison of theoretical and 
experimental data with changing pressure p 
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results are qualitatively in agreement but the values 
are a little different. This difference is thought to be 
caused because of assumptions of our model. We 
assume that the actuator has shapes of a part of spheri-
cal shell and uniform thickness, as shown in Fig.  4d. 
However, actual actuators might have different shapes 
and non-uniform thicknesses.

We also evaluated the maximum deflections at the 
center of the DEA δ(0) , by applying electric voltage 
from 0 to 3.0 kV, as shown in Fig.  7. From Fig.  7, the 
maximum differences of theoretical values from exper-
imental values are +0.40/− 0.15 mm and these values 
are +5.15/− 1.64 % of δ(0) . Thus, our model is suitable 
for predicting the values of the maximum deformation 
δ(0) of the DEA in our system.

Discussion
Here, we note the actual values of strains of PDMS 
and discuss the applicable range of our model. Basi-
cally, we analyzed the deformation of DEA by assum-
ing that PDMS has linear mechanical characteristics. 
References [33, 34] shows that PDMS has almost linear 
mechanical characteristics up to 50% strain. Thus, we 
derived the deformation of DEA with water pressure 
and electric voltage with a constant Young’s modu-
lus. By using this model, we acquired quantitatively 
good results in a = 9 and 13 mm conditions in Fig. 5c. 
However, the results in a = 16 mm and the theoretical 
results are a little different from experimental values. It 
is thought to be because of the large deformation of the 
PDMS.

Thickness strains of PDMS in conditions of a = 9 
and 13 mm in Fig. 5c are 53.7% and 56.4%, respectively. 
These values exceed the value 50%. However, the results 
of deformation in these conditions are quantitatively in 
good agreement with experiments. On the other hand, 
thickness strain of PDMS in condition of a = 16 mm in 
Fig. 5c is 57.1% and theoretical results in this condition 
are quantitatively in not good agreement with experi-
ments. Thus, the thickness strain ≈ 55% is thought to 
be a border of the applicable range of our model assum-
ing linear mechanical characteristics of PDMS. Under 
this value of thickness strain, our model is thought to 
be applicable to quantitatively predict deformation 
shapes of the balloon-type DEA made of PDMS. These 
limitation can be resolved by introducing nonlinear 
characteristics of the material as studied in Ref. [39] 
However, for larger strain as shown in Figs. 6 and 7, the 
deformation shapes of the theoretical results are quali-
tatively in agreement with the experimental value and 
maximum deformation δ(0) can be acquired within the 
error of +5.15/− 1.64%.

a

b

c

Fig. 6  Evaluation of DEA with water pressure and electric voltage. a 
Experimental picture of DEA with a pressure of 1.37 kPa and electric 
voltage 3.0 kV. b Theoretical data with the same conditions as the 
experiments in a. c Comparison of experimental and theoretical data 
with changing voltage

Fig. 7  Maximum deflection δ(0) acquired by experiments and 
theoretical calculations with varies electric voltage 0 kV to 3.0 kV
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Conclusions
In this study, we analyzed deformation shape of bal-
loon-type DEA prestretched with water pressure. We 
derived the analytical solution of the deformation shape 
based on structural mechanics. We evaluated deforma-
tion of the balloon-type DEA with theoretical calcula-
tions and experiments and compared them. Theoretical 
results of our model are quantitatively in good agree-
ment with experimental results up to ≈ 55% of thick-
ness strains. Thus, the model can be used to design the 
balloon-type DEA with desired deformation.
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