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Abstract 

Automatic analysis of our daily lives and activities through a first-person lifelog camera provides us with opportuni-
ties to improve our life rhythms or to support our limited visual memories. Notably, to express the visual experiences, 
the task of generating captions from first-person lifelog images has been actively studied in recent years. First-person 
images involve scenes approximating what users actually see; therein, the visual cues are not enough to express the 
user’s context since the images are limited by his/her intention. Our challenge is to generate lifelog captions using a 
meta-perspective called “fourth-person vision”. The “fourth-person vision” is a novel concept which complementary 
exploits the visual information from the first-, second-, and third-person perspectives. First, we assume human–
robot symbiotic scenarios that provide a second-person perspective from the camera mounted on the robot and a 
third-person perspective from the camera fixed in the symbiotic room. To validate our approach in this scenario, we 
collect perspective-aware lifelog videos and corresponding caption annotations. Subsequently, we propose a multi-
perspective image captioning model composed of an image-wise salient region encoder, an attention module that 
adaptively fuses the salient regions, and a caption decoder that generates scene descriptions. We demonstrate that 
our proposed model based on the fourth-person concept can greatly improve the captioning performance against 
single- and double-perspective models.
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Introduction
Motivated by the availability of consumer wearable 
devices, lifelogging have been attracting increasing atten-
tion. By simply attaching a wearable device on their bod-
ies, people can easily accumulate daily records of their 
states, activities, or experiences as lifelog data. Accumu-
lated data are then analyzed and organized as an indexed 
digital collection that people can access whenever they 
want to review their lifestyle. For example, people with 
wrist-mounted sensors such as an Apple Watch can 
measure the number of steps, heart rates, or multi-axis 

acceleration in order to analyze their activities. Such 
biometric data are widely used to estimate health level, 
stress level, and number of calories burned, but these 
applications are limited to quantification of ones’ internal 
dynamics.

In contrast, lifelogging with images taken from a wear-
able camera such as SenseCam [1], GoPro HERO, and 
Narrative Clip offers us high-fidelity records of everyday 
visual experiences, which is specially referred to as visual 
lifelogging [2]. Wearable cameras are generally placed on 
the wearer’s chest or head to get a first-person perspec-
tive such that the images involve everyday scenes show-
ing what the wearer gazes, reacts to, manipulates, and 
any other interactions, throughout the day. By applying 
various methods of parsing image content, the pooled 
images are then tagged with characteristic attributes such 
as wearer’s activities, objects, colors, among others, and 
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that allows the users to explore the collection by using 
keywords. In comparison to a non-visual lifelog, observ-
ing the wearer’s social activities is easy in this case. There-
fore, the first-person vision has traditionally been utilized 
not only for visual lifelogging purpose but also for social 
modeling and path prediction.

In visual lifelogging, to make it easy to explore the 
large collection, the acquired images are cleansed and 
structured with semantic tags that represent wearer’s 
visual experiences. For example, at first, the uninforma-
tive images are filtered out [3] and the remaining ones are 
divided into homogeneous temporal segments [4]. Then, 
they are automatically indexed with predefined seman-
tic tags such as the types of wearer’s actions [5], places 
[6], and objects manipulated by hands [7], so that the 
user can search and retrieve the intended images/videos 
by specifying the visual characteristics in queries. The 
semantic tags can be extracted via various image rec-
ognition techniques such as object recognition, object 
detection, and semantic segmentation, which have been 
improving rapidly with the use of deep neural networks.

Till date, in the typical first-person vision field, recog-
nition/detection of sports action and detection of the 
grasping objects, among others, have been designated 
as principal tasks. In the meantime, with the progress of 
recent deep learning techniques, the attempt to describe 
the first-person images with natural language sentences 
is advancing [8, 9]. Natural language descriptions not 
only simply list the visual concepts present in an image 
independently for each object but also represent their 
relationships in a natural and free form. Simultaneously, 
research on encoding and semantic understanding of 
natural language sentences is also progressing. Thus, the 
visual lifelogging field can evolve from a keyword-based 
system to a human-friendly, text-based system. That 
offers us an accessible interface for visual lifelogging; for 
example, instead of listing keywords like {“dog”, “couch”, 
“playing”} from a predefined word dictionary, you just 
have to command “the moment of playing with my dog 
on the couch” in a natural manner.

As mentioned above, conventional visual lifelogging 
has relied on the first-person wearable cameras directly 
capturing the wearer’s visual experiences and object 
manipulation history. However, their visual information 
tends to be noisy or often has meaningless frames due to 
the wearer’s dynamic ego-motion, occlusion by hands, 
and unintentional fixing at a wall and a ceiling, which 
may obscure the events of interest. To tackle this prob-
lem, many studies have proposed preprocessing such as 
keyframe detection to filter out such frames [2]. However, 
even if the camera succeeds in photographing the static 
scenes, it is still insufficient to understand the context of 

the wearer’s behavior from the limited forehand scenes 
and the recorded collection is biased to static activities.

Therefore, herein, we consider combining the comple-
mental observer’s viewpoints. In this paper, we assume 
the multi-perspective vision system in the “intelligent 
space” wherein a human and a service robot coexist. The 
intelligent space is the room or the area that is equipped 
with various sensors or cameras, which has been widely 
studied in the robotics community because of its feasi-
bility with regard to human-robot coexistence [10, 11]. 
Although it is difficult for a standalone robot to observe 
the dynamic environment and operate diverse service 
tasks for humans with only onboard sensors, an intelli-
gent space enables it to expand its observation area. In 
this system, we can use a robot-view camera, not just the 
user’s first-person viewpoint. The camera is movable to 
follow and capture human behaviors and interactions 
with a human closely. We define such a camera agent 
as the second-person viewpoint. Moreover, the typical 
intelligent space has embedded cameras on the wall or 
the ceiling to observe the comprehensive state, which is 
used to track the human and the robot. We define this 
type of camera as the third-person viewpoint. Those 
observer’s viewpoints have the capability to capture exo-
centric information such as the user’s postures and place 
types, which are important cues to complement the first-
person description.

In this paper, we introduce the novel lifelogging con-
cept “fourth-person vision”, which complementary 
exploits the first-, second-, and third-person images 
as described above to generate accurate and detailed 
descriptions. The perspective term “fourth-person” was 
initially introduced into our previous study [12], which 
is an analogy of a storyteller or a book reader who 
picks up unique information within multi-perspective 
sentences and appreciates the storylines, as illustrated 
in Fig.  1. This paper aims to demonstrate that the 
fourth-person vision system improves the accuracy in 
the caption generation task required in the text-based 
visual lifelogging. To build this concept on the task, it 
is required to handle the visual complementarity and 
redundancy of the multi-perspective images and to 
learn visual-semantic relations, as depicted in Fig.  2. 
Therefore, we newly design a neural architecture to 
form a single natural language sentence describing the 
scene events from the synchronized multi-perspective 
images based on our concept. Through general caption 
evaluation schemes, we demonstrate that our proposed 
method can accurately generate sentences that contain 
visual attributes of multi-level granularity, as compared 
to methods with single or double input images. To the 
best of our knowledge, this is the first work that focuses 
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on multi-perspective images for improving caption 
generation. Our contributions can be summarized as 
follows.

•	 We propose a novel architecture to generate a sen-
tence from multi-perspective lifelog images captur-
ing the same moments in a human–robot symbiotic 
environment.

•	 We construct a new dataset composed of synchro-
nized multi-perspective image sequences that are 
annotated with natural language descriptions for 
each sequences.

•	 We conduct experiments of caption generation on 
perspective ablation settings and demonstrate that 
our approach achieves significant improvements on 
common metrics in the image caption generation 
task.

Related work
Our work relates to visual lifelogging and image caption-
ing. In this section, we review related work on these top-
ics and describe the approach of this study.

Visual lifelogging
The typical procedures of the visual lifelogging sys-
tem mainly consist of aggregating first-person images 
streamed from the user’s wearable camera, filtering 
frames, and tagging them automatically. The position of 
the wearable camera is generally chosen from the user’s 
head or chest [2]. The head-mounted camera provides 
the field of view that the wearer is possibly looking at 
and that can be used for modeling the wearer’s attention, 
however, the acquired images are often noisy and blurred 
due to the ego-motion. In contrast, the chest-mounted 
camera has been widely used to record more stable and 
focused views of the wearer’s manipulative workspace. 
Such visual information from the first-person perspective 
provides important clues to characterize the streamed 
images [5–7] and transform them into the indexed col-
lection, so that the users can retrieve the image by speci-
fying query keywords recalled by scenes. However, the 
motion of the first-person perspective is dynamic and 
un-intensional. Although the motion information itself 
contributes to wearer’s action recognition task [13], the 

Fig. 1  The fourth-person perspective in the intelligent space. The “fourth-person” is a concept of the omniscient perspective which complementary 
combines the first-, second-, and third-person information acquired in the intelligent space

Fig. 2  Our concept of lifelogging caption generation in a 
human–robot symbiotic environment. The system is composed 
of the first-person perspective from a human, the second-person 
perspective from a service robot, and the third-person perspective 
from an embedded camera. Fragmental visual concepts are 
adaptively weighted and processed to predicting each word
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acquired images often contain motion blur or meaning-
less frames such as ones filled with sky, ceiling, etc. A 
general approach to mitigating this problem is to detect 
and filter out the meaningless frames [3].

Most studies in visual lifelogging have been using the 
first-person wearable camera since its perspective is very 
close to camera wearers’ visual experiences. In contrast, 
most visual recognition tasks reside on the observer’s 
perspective because a large number of stable snapshot 
images can be aggregated from the web, which is one of 
the factors of recent advances in deep neural networks. 
In the context of visual lifelogging, such third-person 
perspective can be utilized through cameras fixed in the 
room [14]. The images are well-focused and less blur, 
however, a resolution for each object region and occlu-
sions could be problems depending on the positioning. 
To take complemental advantages in the first and third-
person perspectives, Sigurdsson  et al. [15] proposed a 
neural mechanism to share knowledge between them for 
the human action recognition task. Xu et al. [16] simul-
taneously segmented identical person regions. Fan et al. 
[17] identified first-person images from multiple camera 
wearers in the third-person videos. On the other hand, 
our goal is to generate a caption describing the human 
and the context by jointly adopting the wearer’s first-per-
son perspective and the observer’s perspective images. 
Particularly, we investigate the effects of second-person 
observer and third-person observer as mentioned in 
Sect. “Introduction” .

Image captioning
Beyond the task of recognizing the object categories and 
the spatial locations on images, recent studies include 
understanding the relationships between the objects. 
Particularly, image captioning has attracted consider-
able attention in the communities of computer vision 
and natural language processing [18–20]. The task is to 
generate captions describing a given image with respect 
to positional relationships or interaction between salient 
objects. Recent studies can be categorized into two main 
streams: dataset proposals to generate custom captions 
such as with styles and sentiment, and model proposals 
to improve caption quality on public benchmarks.

In terms of visual lifelogging, expressing an image in 
natural language is promising for text-based interfaces, 
and it has the potential to jointly describe social interac-
tions, scene types, and human actions, which have been 
studied as separate tasks till date. As an initial study in 
this area, Fan et al. [8] applied existing image captioning 
technique [18] on the first-person images and evaluated 
the caption-based image retrieval system. Bolaños et  al. 
[9] proposed a technique to generate captions condi-
tioned by temporally ordered images.

Datasets
Owing to a large number of images, the Microsoft COCO 
dataset [21] is widely used in image captioning bench-
marking. COCO contains over 160k images, each with 5 
reference captions, which were selected from Flickr “to 
gather images containing multiple objects in their natu-
ral context” [21]. There is no annotation protocol about 
the camera perspective or the photographers. Similarly, 
Flickr8k and the extended version Flickr30k also contain 
5 captions for each image.

As another paradigm toward visual lifelogging appli-
cation, Fan et  al. [8] collected 696 first-person images 
obtained from chest-mounted wearable cameras (Narra-
tive Clip) and produced an average of 14.7 captions per 
image. The sentences are built with two manners from 
a grammatical perspective. One describes the image 
through the third-person perspective to represent what is 
happening. The other is through a first-person perspec-
tive that instead focuses on the relationship between the 
camera wearer and the scene. For example, the first-per-
son caption is diary-like sentence starting with “I am”.

In contrast to the previous studies, we construct the 
caption dataset composed of multi-perspective images 
to generate lifelog captions. The experiments by Fan et al. 
[8] demonstrated that the COCO-trained model was not 
the best for evaluating their original dataset and one of 
the reasons was the difference in sentence styles. There-
fore, we do not consider the grammatical perspective of 
sentences but unify them into the third-person style to 
utilize the visual diversity and word vocabulary of pub-
licly available large datasets such as COCO. The collec-
tion procedure and the detailed statistics are described in 
Sect. “Dataset”.

Models
In general formulation, the captioning model is trained 
by maximizing the cumulative likelihood of words in a 
reference caption.
ShowTell: Vinyals et  al. [18] analogized the auto-

matic generation of image captions as “machine transla-
tion from an image to a description” and succeeded to 
train deep networks that generate a template-free cap-
tion from a given image. The approach extended the 
encoder–decoder model proposed in the machine trans-
lation field wherein an image feature is abstracted by a 
pretrained CNN encoder and the sequential likelihoods 
of vocabulary words are predicted step by step from an 
RNN decoder. Model training is formulated to maximize 
the cumulative log-likelihood of reference captions.
ShowAttendTell: In addition, Xu et al. [19] applied 

an attention mechanism that was proposed in machine 
translation field to improve the word alignments 
between the source and target languages. The attention 
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mechanism is a type of a dictionary model that has a set 
of feature candidates from an encoder. At each decoding 
step, the input features are adaptively selected with hard/
soft weights computed by the top-down signal from a 
decoder. In this manner, the model can efficiently prop-
agate the source information to predict the sequential 
results. In the context of the image captioning task, the 
attention mechanism receives the CNN feature maps as 
grid features so that it bridges specific image regions and 
prediction of each word in a caption. This approach has 
significantly improved caption quality.
UpDown: More recently, Anderson et  al. [20] pro-

posed a novel approach where the attention mechanism 
receives a set of region-of-interest (ROI) features as 
candidates, instead of the grid features as in ShowAt-
tendTell. With this modeling, the visual concepts in 
both foreground and background appear in the image are 
encoded as object features while the ShowAttendTell 
model possibly disassembles them into several grid fea-
tures. In this manner, the context and the relationships of 
salient objects can be accurately reflected in the caption.

Contrary to the ShowTell model that takes an image 
as a global feature to be used in the caption decoder, 
the attention-based models, ShowAttendTell and 
UpDown, can pool multiple feature candidates that are 
spatial grids or salient regions. Our key idea for multi-
perspective image captioning is “attend to fuse”, that is, 
to organize the feature candidates across complementary 
multiple images acquired from a human–robot symbi-
otic environment. Moreover, we assume that the atten-
tion module pretrained with captions per image using 
a dataset such as COCO [21] generalizes to the fea-
ture candidates scattered on images that have different 
perspectives.

Fourth‑person vision
In this section, we introduce a novel lifelogging concept, 
“fourth-person vision”. We assume the multi-perspective 
vision system in the “intelligent space” wherein a human 
and a service robot coexist. The intelligent space is the 
room or the area that is equipped with various sensors 
or cameras, which has been widely studied in the robot-
ics community because of its feasibility with regard to 
human-robot coexistence [10, 11]. Herein, let us classify 
the available cameras in terms of the perspective.

First‑person vision
As the typical source for visual lifelogging, we can use the 
images from the human’s wearable camera, which can be 
referred to as the first-person perspective. The first-per-
son images involve objects that the user pays attention to 
or scenes of object-hand interaction, which are important 
clues to characterize the streamed images. However, their 

visual information has problems such as lack of user con-
text, noises, and occlusions, due to the unintentional self-
motion and the narrow field-of-view.

Second‑person vision
The co-living service robot can offer a different perspec-
tive. Unlike the other unintentional or fixed cameras, the 
service robot can control its viewpoint by moving so that 
it can also track and capture the dynamic human move-
ments exclusively. Therefore, the viewpoint can produce 
stable visual cues for describing human activities. In 
addition, the user’s subtle behaviors can be observed up 
close in the interaction situations such as handing-over of 
household items and conversation. This perspective can 
be defined as the second-person.

Third‑person vision
Last but not least, the environment has embedded cam-
eras that are used to monitor and track the human and 
the robot. The embedded cameras offer the images com-
prehensively including the human, the robot, household 
items, and their interactions, which can be defined as 
the third-person perspective. However, the third-person 
cameras are not suitable to analyze detailed parts within 
the images such as human’s activities, since the cameras 
are fixed on the wall or ceiling and involve occlusions. To 
deal with the problems naively, it is required to increase 
the number of third-person cameras to fill up the gaps.

Fourth‑person vision
Thus we complementary combine three types of perspec-
tives acquired from the intelligent space to describe the 
scenes accurately. Notably, we refer the concept as to 
“fourth-person vision”. The perspective term “fourth-per-
son” was initially introduced into our previous study [12], 
which is an analogy of storytellers or readers of books. As 
illustrated in Fig. 1b, the reader can pick up all intrinsic 
and extrinsic information from the first-, second-, and 
third-person sentences and build the omniscient per-
spective to understand the comprehensive situations 
accurately. In our daily life, the intrinsic information such 
as ones’ interests and sights is unknown to others. The 
proposed fourth-person aims to observe the information 
through the distributed cameras in the intelligent space 
and build the meta-perspective that complementary 
combines them to suppress the ambiguity in the scene 
description.

Our approach
In this paper, the task is defined to generate a single cap-
tion by jointly processing his/her first-person image, 
the second-person image from the service robot, and 
the third-person image from the embedded camera. To 
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configure such multi-image captioning model and to 
validate how much each perspective contributes to the 
resulting caption, we extend the state-of-the-art image 
captioning model UpDown by Anderson et  al. [20]. The 
architecture is illustrated in Fig. 3. UpDown first enumer-
ates salient regions within a given image, encodes the 
spatial feature into a fixed-size vector per region Sect. 
(“Image encoding” ), and feeds them into the caption-
ing process with an attention mechanism Sect. (“Cap-
tion generation”). For our multi-perspective situation, 
the region features are given from each perspective and 
are fed into the captioning process as attention candi-
dates to decode words. In this study, we especially focus 
on how we can reorganize the attention candidates from 
the multi-perspective images. We propose a bottom-up 
fusion step that clusters the salient region features to 
suppress the appearance of the identical instances over 
multiple viewpoints Sect. (“Salient region clustering”). 

Image encoding
Suppose that we are given a set of synchronized multi-
perspective images from the human’s egocentric view-
point (first-person), bystander robot’s viewpoint 
(second-person), and birds eye viewpoint on a fixed cam-
era (third-person). For each perspective, a set of region-
of-interests (ROIs) are detected and encoded into the 
feature vectors according to their visual attributes, which 

are attention candidates for subsequent captioning mod-
ules. We refer to the feature set of three images as V.

We use Faster R-CNN [22] detector, modeled in UpDown 
[20], to detect objects or salient regions as bounding box 
assigned to 1,600 object classes and their 400 attribute 
classes of Visual Genome [23]. The detected raw regions 
are processed with non-maximum suppression to filter 
out overlapping, and for each selected region the mean-
pooled feature is extracted from the penultimate layer of 
the object/attribute classifiers as vi . Each feature vi rep-
resents high-level semantic information about the partial 
scene of the image.

Salient region clustering
As shown in Fig.  4a, we found even the baseline model 
can generate reasonable captions by simply bundling 
the multi-perspective feature sets and being followed by 
the decoding step (hereinafter called Ensemble), since 
the attention module can implicitly fuse the correlated 
ROIs responding to the same top-down signal from 
the decoder. However, the implicit fusion by the top-
down signal may result in biased weights on repetitively 
occurred objects or may fail to co-occur the ROI features 
of the identical object due to the subtle difference in the 
subspace. 

Therefore, in this paper, we propose a bottom-up 
fusion approach of the multi-perspective feature sets. 
As described in the Sect. “Image encoding”, the image 
encoder is pre-trained to classify the diverse object classes 
and attributes so that the encoded ROI features represent 
well-abstracted semantics. Regarding this property, many 
studies have demonstrated that CNN-coded features can 
be diverted for image retrieval tasks due to the fact that 
semantically similar images are embedded to be close in 
the learned feature space [24]. Similarly, we assume dif-
ferent views of an identical object are embedded close 
together in the high-dimensional feature space. Therefore, 

(1)V = {v1, . . . , vN }, vi

Fig. 3  Baseline model UpDpwn [20]. The block Attn denotes 
the attention module. vt and pt denote an attended feature and 
vocabulary logits at time step t, respectively. ht−1 denotes the 
previous states of the RNN decoder

Fig. 4  Proposed methods. a Ensemble is fundamentally equivalent to the baseline UpDown [20]. All salient regions intact are subject to the 
attention module Att. b In KMeans, a clustering algorithm is applied to salient region features and the k centroid features are subject to attend
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our bottom-up approach first clusters the set of multi-
perspective features into a number of groups by a stand-
ard clustering algorithm such as k-means [25], as shown 
in Fig. 4b. When converged, we finally select the centroid 
vectors as attention candidates. With our assumption, each 
centroid vector averages a similar set of semantic informa-
tion across multiple viewpoints. We consistently employ 
an L2 distance for inter-sample dissimilarity so that mean-
pooled centroids can be adapted to the top-down soft 
attention. We refer to the reorganized set of features as Ṽ . 
This clustering approach can easily be extended to a tem-
poral extent so as to smoothen out captions in sequential 
images. We report the performance improvement by the 
approach in Sect.“Temporal batch clustering”.

Caption generation
We use the decoder model of UpDown [20] to generate a 
sequence of words S = {s1, . . . , sT } from a set of atten-
tion candidate vectors Ṽ  . The words st are represented 
with one-hot vectors where the dimension is equal to the 
number of vocabulary words K. The decoder is composed 
of two stacked long short-term memories (LSTMs) and an 
attention module, as shown in Fig.  5. At timestep t, each 
LSTM updates its hidden state ht given previous hidden 
state ht−1 and an input vector xt .

For the input of the first LSTM (“Attention LSTM” in 
Fig.  5), a previous word st−1 is first embedded with a 
learned embedding We and concatenated with a mean-
pooled features V  and the previous hidden state h2t−1

 
of the second LSTM (“Language LSTM” in Fig.  5). We 
denote the concatenated vector as x1t :

Subsequently, the attention module computes a normal-
ized weight αi,t for each candidate vector vi in parallel, 
given the signal h1t  from the first LSTM:

(2)ht = LSTM(xt ,ht−1)

(3)x1t =

[

West−1,V ,h2t−1

]

where wa , Wv , and Wh are the learned parameters. The 
second LSTM then inputs a vector combining the hidden 
state h1t  and the attended feature vt is computed as a con-
vex combination of all attention candidates vi.

Finally, a probability distribution pt over the predefined 
vocabulary words is generated at each time step t, given 
by the classifier.

We applied beam-search decoding with a beam-width of 
5. Only stopwords such as “a”, “and”, or “the” are allowed 
to be sampled more than once in decoding. 

Experiments
In this section, we provide an evaluation dataset that 
we newly constructed, the experiment setups, and the 
performance.

Dataset
To evaluate the independent effect of each perspec-
tive, we collected perspective-aware lifelog videos in our 
experimental room and corresponding scene descrip-
tions for each video. Fig.  6a shows the appearance of 
the experimental room to collect the lifelog videos. In 
the experimental room, various pieces of furniture are 
equipped such as tables, chairs, a bed, a tv, and kitchen 
facilities. When recording data, we randomly arranged 
household items such as bottles, books, cups, and a plant. 
We employed five participants for the dataset construc-
tion and for each recording two out of them were asked 
to wear action cameras (GoPro HERO). Similar to the 
related work [8, 9], the action camera was attached to 
their chests as shown in Fig. 7a, where we found that pro-
duced stable results than the head-mounted way. One 
participant is an actor (a role of a residential person) 
who was asked to perform everyday activities such as 
reading books, walking around, washing dishes, and the 
recorded videos are labeled as the first-person. On the 
other hand, another participant is an observer (a role of 
a service robot) who was asked to adaptively monitor the 

(4)ei,t =w⊤
a tanh(Wvvi +Whh

1

t )

(5)αi,t =
exp(ei,t)

∑|V |

k=1 exp(ek,t)

(6)vt =

M
∑

i=1

αi,tvi

(7)x2t =

[

vt ,h
1

t

]

(8)pt = softmax(Wph
2

t )

Fig. 5  Details of the attention module and the decoder module of 
UpDpwn model [20]
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actor, and the recorded videos are labeled as the second-
person. We requested the observer to follow two moving 
policies: to capture not just the actor in close but also his/
her forehand manipulations and to respond to interac-
tions from the first-person actor such as handing objects. 
Simultaneously, another action camera is fixed on the 
wall to provide the third-person perspective to capture 
both participants as shown in Fig.  6b. The position of 
the third-person camera is randomly selected for each 
recording. We collected the data for seven rounds with 
different combinations of 5 participants, while each video 
is recorded in several seconds. All perspective videos 
were captured in 1920× 1080 resolution at 30 fps with 
133.6◦ diagonal angle of view. Subsequently, the videos 
are downsampled to 640× 360 with bilinear interpola-
tion. The total number of synchronized video sets is 230 
and the total number of frames is 24,587 for each per-
spective. Examples of the captured images can be seen 
in Fig.  11. The bottom two examples are sampled from 
the interactive scenes where the participants are handing 
over household items. 

We built an annotation interface to generate reference 
captions. As we exclusively focus on modeling an actor’s 
daily living, annotators are asked to describe the actor’s 
activities and interactions viewed through the multi-
perspective videos with a single sentence in English. We 
collect five captions for each video set and the total anno-
tation comprises 1,150 captions. The annotated caption 

comprises 12.8 words on average. Fig.  8 provides data-
set statistics based on semantic tuples frequently occur-
ring in the captions. There are three types of semantic 
tuples: object tuples, attribute tuples, and relational 
tuples, which are extracted by parsing the captions. The 
detailed procedure is described in Sect. “Evaluation met-
rics”. According to the statistics, the annotations cover 
possible situations and contain several phrases related 
to the interaction between the actor and the household 
commodities. 

Evaluation metrics
For metrics to evaluate the quality of a generated caption 
against references, we employ the widely used BLEU [26], 
ROUGE [27], METEOR [28], CIDEr [29], and SPICE [30]. 
Each metric defines the similarity between a candidate 
sentence and a set of reference sentences based on word 
agreement in various granularities. BLEU is a weighted 
geometric mean of precisions over unigrams (1-grams) 

Fig. 6  An experimental room for data collection. a Various pieces of 
furniture are equipped such as tables, chairs, a bed, a tv, and kitchen 
facilities. b The blue sectors denote the positions of the third-person 
cameras

Fig. 7  Setup of a wearable camera. a A wearable camera mounted 
on the chest (yellow box). b The corresponding first-person image 
acquired from the camera
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to n-grams with a penalty for sentence brevity, which 
was proposed for the machine translation task. ROUGE 
is an n-gram based recall proposed for document sum-
marization task. We use a modified version, ROUGE-L, 
which computes a recall-biased Fβ-score based on the 
longest subsequence matched between a candidate and 
a set of references. METEOR is a recall-biased Fβ-score 
based on unigrams with a penalty for alignment frag-
mentation, which was proposed for the machine transla-
tion task. The unigram alignment is based on stemming 
and synonym matching with a large lexical database of 
English. Besides these metrics, CIDEr and SPICE are 
explicitly designed for evaluating image captions and 
are better correlated to human judgments. CIDEr is an 
average cosine similarity of n-grams weighted by their 
Term Frequency-Inverse Document Frequency (TF-
IDF). The weights contribute to suppressing the effect 
of the n-grams commonly occurring in references such 
as stop words. We use CIDEr-D that removes stemming 
and adds a length penalty. SPICE is an F1-score based on 
scene graph tuples. The scene graph is a directed graph 
parsed from sentences with synonym matching, where 
an object node is connected by attribute nodes and/or 
relation nodes. A set of object, attribute, relation tokens 
forms the tuple, and the similarity score is calculated over 
the tuples between candidate and reference captions.

Implementation details
The dataset used for training is the Microsoft COCO 
dataset [21] that includes 113,287 images for training, 
5000 images for validation, and 5000 images for testing, 

as defined in Karpathy splits [31]. The baseline model 
UpDown is trained on pairs of an image and five cap-
tions in the training split. The captions do not have 
any punctuation and are unified in lower case. The 
vocabulary is pruned by defining any words that have 
a count less than five as a particular <unknown> word. 
The final vocabulary comprises 10,010 words. We use 
our PyTorch re-implementation of UpDown model 
originally written in Caffe [20]. For the Faster R-CNN 
detector, we choose ResNet-101 [32] as a backbone 
and perform ROI pooling on pool5 feature maps so as 
to encode each region into a 2048-D vector. For each 
image, we select up to 100 candidate regions according 
to the predicted scores. Since the number of candidate 
regions is small, the clustering step had little effect on 
the whole process time in our experiments. Following 
the baseline [20], The model is trained with the crite-
rion of minimizing cross-entropy of reference captions 
and Self-Critical Sequence Training (SCST) [33] that 
directly optimizes the CIDEr scores of sampled cap-
tions. We perform beam search decoding with a beam 
width of 5 until reaching the end token or the maxi-
mum length of 20. We restrict the occurred times of 
words to one except for stop words.

Quantitative analysis
In this section, We systematically evaluate the similar-
ity scores between generated and reference captions, 
the effects of clustering settings, and the performance 
of extended approach on the temporal extent, using our 
dataset.

Fig. 8  Three types of top-20 frequent semantic tuples of our dataset. Same as in SPICE [30] described in Sect. “Evaluation metrics”, the “object”-, the 
“attribute”-, and the “relation”-elements are parsed from a set of reference captions, and they form the three types of tuples lined as the bins. As seen 
in “relation” frequency (right), our dataset contains several phrases related to the interaction between a person and household commodities
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Perspective ablation
To validate the effects of each perspective, we 
herein generate captions from different combina-
tions among the three types of perspective images. 
We hereinafter identify the approaches with a name 
<method>− <perspectives> , e.g., Ensemble-123 
denotes the ensemble features from the first-, second-, 
and third-person perspective images. All generated cap-
tions are individually evaluated with reference captions.

In Table 1, we provide the scores of five types of met-
rics evaluated on our dataset. UpDown [20] is a base-
line method which inputs a single-perspective image. 
Ensemble is a method that bundles attention candi-
dates from two or three perspectives and inputs them 
to the UpDown decoder. KMeans is our proposed 
method to construct attention candidates by clus-
tering multi-perspective ROI features into k groups 
beforehand and then input the k centroids to UpDown 
decoder. We initially set 32 to the number of clusters 
k, which is close to the best number of attention can-
didates reported in UpDown results on COCO data-
set [20]. The centroids are initialized with k-means++ 
[34] algorithm and iteratively updated until converged. 
As seen in Table 1, KMeans-123, a proposed method 
for inputting images from three perspectives shows the 
best scores in all evaluation indices. Focusing on dou-
ble input models (middle), the score of the proposed 

KMeans is higher than that of Ensemble for any 
input combination, indicating the effectiveness of bot-
tom-up clustering. We note that the SPICE scores of 
UpDown-1 and UpDown-2 are close; however, even 
Ensemble-12 that simply combines the first- and 
second-person images boosts the performance. It can 
be considered that each perspective has complemental 
visual cues to generate actor-related descriptions. This 
observation can also be seen the most in the case of 
the third-person perspective although the image itself 
is confusing to exclusively extract the actor’s features. 
Another important observation is that Ensemble-12 
is better than Ensemble-123 while KMeans-123 
performs better than KMeans-12 with the adoption of 
the bottom-up fusion clustering. 

Table  2 shows the relative improvement rates of the 
triple input model against the double input model, in 
that, the contribution of the ablated perspective. For 
example, the “First-Person” scores are computed from 
KMeans-123 and KMeans-23. For precision-based 
BLEU metrics, the second-person perspective shows 
the highest rates. Notably, for the other metrics, the 
first-person perspective shows the highest rates. It can 
be considered that the second-person images explicitly 
and exclusively capture the actor’s scenes to generate 
an actor-wise description, but the other important vis-
ual cues reside on the other perspective images.

Table 1  Ablation study of image captioning performance on our dataset

Highest values are in italic

Input perspective Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDEr-D SPICE

First UpDown [20] 51.20 33.47 20.41 11.25 38.85 17.45 21.44 12.19

Second UpDown [20] 60.86 43.24 31.12 21.19 45.60 19.46 16.94 12.08

Third UpDown [20] 42.80 26.56 16.17 9.70 31.34 13.73 6.79 6.28

Second Third Ensemble 59.14 41.97 30.45 21.06 44.09 19.13 15.18 11.40

Second Third KMeans 62.31 45.34 33.16 22.91 46.22 20.19 17.76 12.21

First Third Ensemble 59.06 42.78 30.47 20.28 45.16 20.33 27.71 14.37

First Third KMeans 60.83 44.71 32.03 21.48 46.27 21.16 30.10 15.02

First Second Ensemble 62.08 45.37 32.82 22.47 47.67 21.68 30.03 15.04

First Second KMeans 62.43 45.78 32.90 22.19 47.61 21.87 30.76 15.24

First Second Third Ensemble 63.12 46.37 34.08 23.71 47.92 21.72 29.52 14.99

First Second Third KMeans 65.09 48.93 36.02 24.78 49.13 22.79 33.41 15.72

Table 2  The relative improvement rate (%) of triple input vs ablated double input. For example, the “First-Person” scores 
are computed from KMeans-123 and KMeans-23 

Highest values are in italic

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDEr-D SPICE

First-person KMeans +4.5 +7.9 +8.6 +8.1 +6.3 +12.9 +88.1 +28.7

Second-person KMeans +7.0 +9.4 +12.4 +15.4 +6.2 +7.7 +11.0 +4.7

Third-person KMeans +4.2 +6.9 +9.5 +11.7 +3.2 +4.2 +8.6 +3.1
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Detailed results of SPICE
The SPICE F-score is computed based on semantically 
parsed sentences and can be subdivided into six mean-
ingful criteria: object, relation, attribute, color, count, 
and size [20]. Table  3 summarizes the results as the 
same format as Table 1. Although our triple input model 
KMeans-123 still outperforms in the object category; 
in other categories, single- or double-input models are 
better. The first-person model is remarkably superior 
to others in the color category. That indicates the joint 
attention of ROI features across multiple perspectives 
possibly obscures the detailed visual concepts, mean-
while stably generating captions that includes important 
concepts such as the actor or other items. 

Clustering setting
Herein, we report performance comparison in cluster-
ing algorithms based on KMeans-123. For clustering 

algorithms, we compare basic k-means [25] that produces 
k centroids, x-means [35] that adaptively subdivides the 
clusters under the Bayesian information criterion, and 
k-medoids [36] that update medoids instead of cen-
troids. All algorithms are initialized with the k-means++ 
[34] algorithm. For the number of clusters, we sweep 
{4, 8, 16, 32, 64} for each algorithm. We note that only 
x-means may increase the number in updating, and 
all algorithms could be equivalent to Ensemble-123 
when the number of clusters reaches the number of 
attention candidates. Fig.  9 shows CIDEr-D and SPICE 
scores on various methods of clustering algorithms and 
Ensemble-123 without clustering. For both metrics, 
the peaks are at k = 32 in k-means and x-means algo-
rithms, while the k-medoids algorithm that “prunes” 
attention candidates reduces both scores as the number 
of clusters decreases. Although k-medoids algorithm 
is known as robust to noises and outliers, each selected 

Table 3  SPICE subcategory scores on our dataset

Highest values are in italic

Input Perspective Method SPICE (All) Object Relation Attribute Color Count Size

First UpDown [20] 12.19 26.36 1.42 3.52 2.38 0.00 0.00

Second UpDown [20] 12.08 26.66 1.30 1.45 0.02 0.00 0.00

Third UpDown [20] 6.28 14.62 0.46 0.17 0.04 0.11 0.00

Second Third Ensemble 11.40 25.42 1.13 0.87 0.00 0.00 0.00

Second Third KMeans 12.21 27.40 1.08 0.86 0.00 0.00 0.00

First Third Ensemble 14.37 30.48 2.15 3.30 0.17 0.00 0.00

First Third KMeans 15.02 32.02 2.13 3.16 0.15 0.00 0.00

First Second Ensemble 15.04 31.96 1.98 3.63 0.04 0.00 0.00

First Second KMeans 15.24 32.56 1.90 3.41 0.14 0.00 0.00

First Second Third Ensemble 14.99 32.02 2.01 3.35 0.02 0.00 0.00

First Second Third KMeans 15.72 33.74 1.96 3.18 0.05 0.00 0.00

Fig. 9  CIDEr-D and SPICE scores with different methods of clustering. The number of clusters k is swept among {4, 8, 16, 32, 64} for each. Both 
metrics show the best scores at k = 32
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medoid is subject to only one salient region while the 
other algorithms use centroids in which clusters are aver-
aged. We see that indicating roughly grouped centroids 

still preserve the visual features and that enables us to 
encourage implicit joint attention across perspectives 
and to reflect in the captions. 

Fig. 10  CIDEr-D and SPICE scores with temporal batch clustering. The number of frames to be obtained is investigated among {1, 2, 4, 8, 16, 32, 64}

First-person Second-person Third-person

Method Caption

First A person is reading an open book with papers.
Second A woman sitting on her bed in an room.
Third A man and woman playing in an room with some chairs.
Ours A woman sitting on the bed reading an open book.

Reference A person sitting on the bed is browsing a book.

First-person Second-person Third-person

Method Caption

First A person’s hand on the computer keyboard.
Second A man is sitting on his bed in the room.
Third A yound boy is standing in front of an open bed.
Ours A person is sitting on the bed with his keyboard.

Reference A person sitting on the bed is typing a keyboard.

First-person Second-person Third-person

Method Caption

First A person is holding an open refrigerator door.
Second A man is standing in the kitchen looking.
Third Two children standing in the living room with the tv.
Ours A man standing in front of an open refrigerator.

Reference A person standing in front of the refrigerator is holding a can.

First-person Second-person Third-person

Method Caption

First A view of an empty refrigerator in the kitchen.
Second A man is standing in an empty kitchen.
Third Two children standing in a large kitchen looking at the sink.
Ours A young boy standing in front of an open refrigerator.

Reference A person is looking inside an empty refrigerator.

First-person Second-person Third-person

Method Caption

First A young man holding an empty bottle of beer.
Second A man standing in front of an open refrigerator.
Third Two children are standing in a large room.
Ours Two children are playing with a bottle of water.

Reference A person is passing a red box to other in a white shirt.

First-person Second-person Third-person

Method Caption

First The man is holding a bottle of water in their hand.
Second A woman standing in the kitchen holding something.
Third Two men standing in a living room with one beds.
Ours Two men standing in a kitchen holding water.

Reference A man in a white shirt is passing a green plastic bottle to the other in a room.

Fig. 11  Example captions with the single perspective model and our proposed model. Methods “First”, “Second”, and “Third”: UpDown model with a 
single image. Method “Ours”: KMeans model with three types of images. All results are generated with beam search decoding
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Temporal batch clustering
As mentioned in Sect. “Salient region clustering”, the 
clustering approach can easily be extended to a tem-
poral extent so as to smoothen out captions in sequen-
tial images. Herein, we report the performance of 
KMeans-123 and Ensemble-123 where the attention 
candidates are aggregated across the consecutive frames 
and not just only perspectives. For the number of pooled 
frames, we sweep {1, 2, 4, 8, 16, 32} for both approach. As 

seen in Fig. 10, both approaches boost the performance 
as the number of frames increase. 

Qualitative analysis
Generated captions
In Fig.  11 we show some caption examples of the first-
person (UpDown-1), second-person (UpDown-2), third-
person models (UpDown-3), and our fourth-person 
model (KMeans-123). The bottom two examples show 

E
n
s
e
m
b
l
e

K
M
e
a
n
s

E
n
s
e
m
b
l
e

K
M
e
a
n
s

E
n
s
e
m
b
l
e

K
M
e
a
n
s

Fig. 12  Top-down attention maps of KMeans and Ensemble. The yellow rectangular regions have a large attention weight and the group of 
regions in column conditions the decoder in generating each word. It can be observed that our proposed method KMeans discriminates instances 
against Ensemble. Best viewed in color
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interactive scenes where the participants are hand-
ing over household items. The first-person perspective 
captions tend to briefly describe the relationship of the 
actor and objects manipulated by hands, whereas there 
is no explicit phrase about context such as the type of 
place. In contrast, the second-person perspective cap-
tions succeed at describing where the actor is and his/
her postures, which are invisible concepts from a first-
person perspective. However, in some cases, the types of 
activities are not clear due to their visual granularity. The 
third-person perspective captions are more ambiguous in 
terms of the participants’ situation, while novel objects 
not visible in other perspectives are described. Finally, 
our proposed approach generates more detailed captions 
about the actor and the context. For instance, on the top 
left figure, the caption by our method includes the actor’s 
posture, location, and detailed activity, which could only 
be described partially through single perspective cases. 
Moreover, in interactive cases on the bottom, we can see 
that our proposed method improves the third-person 
captions with the additional phrase about the manipu-
lated objects derived from the first-person and/or the 
second-person image sources. Qualitatively, we see that 
the critical visual concepts are potentially in the first- and 
second-person perspectives, while the third-person per-
spective contributes to describe the interactive scenes. 
Although the verbal expression is slightly different for 
each perspective, we can see our method successfully 
produced reasonable description integrating three types 
of perspectives semantically. It can be considered that 
our clustering on ROI feature space effectively works to 
summarize the multi-perspective images. 

Visualizing ROI attention
To verify how salient regions are attended in decod-
ing each word, we here visualize the attention weights α 
in Eq.  6 associated with ROIs. We colorize all detected 
salient regions according to the attention weights. 
The weights vary in each decoding step and show us 
which regions are contributed to predicting each word. 
In Fig.  12, we provide three instances each of which 
has two types of results from Ensemble-123 and 
KMeans-123. We can see remarkable differences in pre-
dicting human-related words. Ensemble-123 model 
incorrectly focuses on different people or either of which, 
while our KMeans-123 model successfully focuses on 
the same person in the second- and third-person images. 
That indicates our proposed bottom-up approach is 
effective to improve instance-correspondence in the top-
down weighting.

Conclusion
In this paper, we proposed a novel approach to auto-
matically generate lifelog captions using multi-perspec-
tive images in human–robot symbiotic scenarios, these 
involve, the first-person image from a wearable camera, 
the second-person image from a camera mounted on a 
robot, and the third-person image from an embedded 
camera in the intelligent space. To generate captions 
from the triplet images, we introduced a bottom-up 
fusion step that clusters salient region features across 
the perspectives, and we integrated it with the atten-
tion-based image captioning architecture. Next, in a 
living environment with furniture and daily necessi-
ties, we collected the fourth-person lifelog images and 
multiple reference captions assuming human–robot 
symbiosis scenarios. Finally, we demonstrated the 
effectiveness of our proposed approach through per-
spective-aware ablation studies. The results showed 
that simply increasing and decreasing candidates do 
not contribute to the caption scores in our multi-per-
spective setting, as demonstrated in our experiments 
of perspective ablation and clustering modification. A 
limitation is in that our mechanism still does not have 
a function to explicitly specify the human regions to be 
described. Future work includes the development of a 
compositional captioning method to exclusively con-
trol visual attention to avoid confusing a human with 
a robot. Moreover, we will scale-up the types of envi-
ronments to be recorded and evaluate the approach in 
terms of lifelogging searchability.
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