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Abstract 

Machines that are sensitive to environmental fluctuations, such as autonomous and pet robots, are currently in 
demand, rendering the ability to control huge and complex systems crucial. However, controlling such a system in its 
entirety using only one control device is difficult; for this purpose, a system must be both diverse and flexible. Herein, 
we derive and analyze the feature values of robot sensor and actuator data, thereby investigating the role that each 
feature value plays in robot locomotion. We conduct experiments using a developed quadruped robot from which 
we acquire multi-point motion information as the movement data; we extract the features of these movement data 
using an autoencoder. Next, we decompose the movement data into three features and extract various gait patterns. 
Despite learning only the “walking” movement, the movement patterns of trotting and bounding are also extracted 
herein, which suggests that movement data obtained via hardware contain various gait patterns. Although the 
present robot cannot locomote with these movements, this research suggests the possibility of generating unlearned 
movements.
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Background
In nature, animals adapt their behavior to changes in the 
surrounding environment. This ability is not limited to 
animals: it is also required for robots. Thus, machines 
that are sensitive to environmental fluctuations, such as 
autonomous robots and pet robots, are now in demand, 
thereby making it increasingly important to be able to 
control systems that are both huge and complex. How-
ever, it is difficult to control all of such a system with one 
control device, and it is important that the system is both 
diverse and flexible. Studies have been conducted into 
system configurations and control methods to address 
those issues, and many of those studies were focused 
on robot locomotion. In particular, gait-pattern transi-
tions corresponding to the surrounding environment of 
quadruped (four-legged) animals, the gaits of which have 

long been observed and analyzed in detail [1–9], have 
attracted much attention in recent years [10–15].

Quadruped locomotion is classified into various gait 
patterns such as walking, trotting, and bounding (Fig. 1) 
[1]. The simple basic motion (e.g., walking, flying) of ani-
mals has multiple patterns; however, most are a combi-
nation of multiple periodic phenomena. Additionally, 
rich repertoires of complex behaviors are created from 
the flexible combination of a small set of modules [16–
21]. Looking at a different classification like these names 
already suggests that there is something qualitatively dif-
ferent between these movements. Besides, it is known 
that a quadruped tends to select the optimum gait pat-
tern according to the speed at which it moves [2, 3, 22]. 
In addition, the locomotion speed changes continuously, 
whereas the change in a locomotion pattern is discon-
tinuous; however, the animal suddenly changes its gait 
without falling over. The investigation of gait transitions 
in quadrupeds has a long history. Various observation 
methods have been used to study the limb coordination 
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in different gaits at the macroscopic level [1–3, 22–25]. 
For example, the reported factors causing gait switch-
ing include energy-related ones (i.e., minimizing energy 
costs) [2], durability ones (i.e., protection from overload) 
[23], environmental and morphometric ones [22], and 
mathematical ones [26]. Furthermore, the neural control 
of locomotion and coordination has been studied [5–9, 
27, 28]. Experiments using decerebrate cats can be cited 
as examples of studies to understand gait transitions in 
quadrupeds [7, 8]. In such experiments, although the 
cats cannot walk voluntarily, they can walk on a tread-
mill when electrical stimulation is applied below the 
midbrain; furthermore, they change their gait pattern 
according to their speed. Those experiments suggest that 
locomotion occurs autonomously at a rather low level, 
such as in the cerebellum and the spine, rather than being 
instructed at a high level such as in the cerebrum. The 
process whereby animal gait patterns are generated will 
be an interesting debate in the future given its relation to 
the generation of robot behavior.

Many studies of robot systems refer to biological con-
trol systems and attempt to create various movements by 
configuring the robot controller with either a central pat-
tern generator (CPG) or some type of oscillator [10–15, 
29, 30]. Indeed, a quadruped robot for which the CPG 
model was used successfully generated and transitioned 
to various gait patterns [10, 11]. However, regarding using 
a CPG to generate movement, although it is possible to 
realize periodic motion considering synchronization 
with the outside world, it is difficult to adjust the param-
eters to realize the desired movement. In particular, in a 
large-scale system such as one required for movement, 

innumerable variables are intertwined in complicated 
ways, and from among those relationships it is difficult 
to select a priori the required input/output relation-
ship. The issue of input/output determination cannot be 
potentially ignored when a target motion is regarded as 
one of the outcome by kinds of control systems. It seems 
to be worth investigating from the viewpoint of not only 
control systems but also datasets of motion.

Meanwhile, by using system theory to focus on the sys-
tem design and by analyzing possible system behaviors 
and trajectories, a behavioral approach has been pro-
posed [31–33]. In this approach, system design and anal-
ysis are performed using a set of temporal trajectories of 
the physical variables of the system without assuming an 
input/output relationship. Herein, we use the behavioral 
approach to construct a natural and flexible theoretical 
framework for analyzing the input/output relationship 
by means of machine learning. First, we give some exam-
ples of previous research that used system behaviors 
and trajectories [34–42]. In one case, focusing on only 
human motion trajectories, an unlearned motion pat-
tern was generated by learning two types of movement 
[37, 40, 41]. In another case, the two basic stepping pat-
terns in neonates were retained through development, 
augmented by two new patterns first revealed in tod-
dlers [34]. In the aforementioned studies, motion experi-
ments were used to produce angle or electromyography 
data, and only those data were used to extract movement 
features. However, motion involves many other param-
eters, including acceleration and leg sense. In the present 
research, we use not only trajectories but also hardware 
that can acquire force/speed information online at high 
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speed from sensors and actuators. We then decompose 
the gait patterns of a quadruped robot into lower levels 
(e.g., latent features) by performing feature-quantity anal-
ysis based on machine learning.

In the present paper, we report on a theoretical study 
of the coordination patterns that are inherent in the gaits 
of quadrupeds. We concentrate specifically on inter-
limb coordination by introducing a description that cap-
tures the relative timing of the rhythmic movements of 
the four limbs. Our aims are to derive and analyze the 
feature values of robot sensor and actuator data and to 
investigate the role that each feature value plays in robot 
locomotion. We also conduct experiments using a devel-
oped quadruped robot from which we acquire multi-
point motion information as the movement data, and 
we extract the features of those movement data using an 
autoencoder. From this, we decompose the movement 
data into three features and extract multiple different 
gait patterns. Despite learning only walking movement, 
the movement patterns of trotting and bounding are also 
extracted, which suggests that movement data obtained 
via hardware contain various gait patterns. Although the 
present robot can neither trot nor bound, this research 
suggests the possibility that one specific motion can 
reveal unlearned movements via hardware experiments. 
However, we use language that is operational in nature so 
that the basic concepts are well-defined experimentally 
and can be applied also to the study of actual (i.e., non-
idealized) gaits.

Gait patterns
Animal gait patterns
In this section, as preparation for the reported research, 
we describe those movements that are common to both 
quadruped animals and the present robot. The gait pat-
terns are defined by the leg patterns shown in Fig. 1; each 
gait pattern shows the differences among the left foreleg 
(LF), the right foreleg (RF), the left hind leg (LH), and the 
right hind leg (RH). The movement of each leg is clas-
sified as being in either the stance phase (in which the 
foot is in contact with the ground) or the swing phase (in 
which the foot is lifted and moved forward).

The classification of locomotion patterns is stated 
below with reference to previously conducted studies in 
the literature [1]. Walking is a gait pattern that appears 
at low speed, wherein two or more legs are always in the 
stance phase. The legs operate in the sequence of RH, RF, 
LH, LF, and the phase difference of each leg is a quarter. 
Pacing appears at a slightly higher speed than that of 
walking. At any time in this gait pattern, one fewer leg is 
in the stance phase compared to walking. Furthermore, 
the legs on the left side move in unison, as do those on 
the right side but with the opposite phase to those on 

the left. Trotting is a gait pattern that appears at medium 
speed. It is similar to pacing except that now it is diago-
nal legs that are in pairs and operate in antiphase. Bound-
ing (and galloping) is a gait pattern that appears at high 
speed. The specific order in which the legs move depends 
on the species of animal being considered; however, 
in each case the forelegs and the hind legs emphasize 
with almost the same phase. Strictly speaking, motion 
in which the forelegs and the hind legs emphasize with 
almost the same phase is classed as bounding. There is 
also a gait pattern known as pronking, in which all the 
legs operate in phase (e.g., springboks, kangaroos). There 
are many other gait patterns besides the aforementioned 
ones; however, herein we focus only on these.

Robot gait patterns
Here, we define robot gait patterns to determine the 
movement in which the robot is to be moved. Further-
more, in this study, a gait pattern (movement) is evalu-
ated by focusing only on the phase differences among the 
leg motions. At that time, because the phase relation of 
given gait patterns does not consider whether to actually 
locomote, we considered this as an element of the gait 
and defined each phase.

In practice, locomotion patterns are often stated by 
control schemes through feasible locomotion. In con-
trast, our method for investigating the resultant behav-
iors does not originate from the feasible locomotion 
itself but from the possibility for feasible locomotion. 
Regarding the possibility, we classified resultant move-
ments based on the relative phase differences between 
the rhythmic movements of the robot’s legs.

When the legs are operated in the sequence of RH, RF, 
LH, LF, this is taken as walking. When the legs on the 
left side are moved in unison, as are those on the right 
side but with the opposite phase to those on the left, this 
is taken as pacing. When the same is done but with the 
two diagonal pairs of legs, this is taken as trotting. When 
the forelegs and the hind legs emphasize with almost the 
same phase, this is taken as bounding. Finally, when all 
the legs emphasize with almost the same phase, this is 
taken as pronking.

Methods
Hardware development
Quadruped robot
To investigate the movement of the robot accurately, we 
realize various gait patterns, which requires hardware 
with high-speed motor control and sensing capabilities. 
In this research, we conduct experiments using a devel-
oped quadruped robot (Fig.  2a) from which we acquire 
multi-point movement information (Table  1). When 
stabilizing the posture of the robot and controlling the 
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positions of its legs, if the number of degrees of freedom 
(DOFs) is large, the necessary information becomes very 
complicated. Therefore, in this study, we set two DOFs 
for each leg.

Position control of toes
To control a leg by inputting its position, each joint angle 
is obtained from the leg position by inverse kinematics. 
There are two types of leg, namely left-handed and right-
handed ones (Fig.  3, Table  2), and each expression was 
obtained using inverse kinematics. Furthermore, the leg 
trajectory is set to a semi-ellipse whose major axis is par-
allel to the ground.

Sensors and actuators
The controlling actuators and monitoring sensor data are 
performed via main micro controller equipped the robot 
as shown in Fig. 4. The actuator of each joint (Dynamixel 
MX-64; Robotis) has a high maximum torque of 6  Nm, 

allows serial communication, and has a maximum con-
trol cycle of 10  kHz. The absolute angle of the motor 
is measured by a built-in absolute encoder and is also 
estimated and measured from the angular velocity and 
the torque applied to the motor as the current value. A 
gyro sensor and an acceleration sensor are fixed and set 
near the center of the trunk and provide measurements 
in each of the X, Y, and Z axes. The positive direction of 
the X axis is fixed toward the f of the body. A load cell 
(Nitta Co., Ltd.) is mounted on each leg, and the sen-
sor value is obtained using a voltage-divider circuit; the 

Fig. 2  Developed quadruped robot: a Overview of robot; b Circuit diagram of load-cell on toe

Table 1  List of sensors

Sensor #

Leg Joint Hip Angle 4

Hip Angular velocity 4

Hip Torque 4

Knee Angle 4

Knee Angular velocity 4

Knee Torque 4

3 Axes Acceleration 3

Body 3 Axes Gyro 3

Toe 1 Axis Load cell 4

Total Number 34

Left hand side

Right hand side
Fig. 3  Kinematics and coordination of legs

Table 2  Leg parameters

Parameter Value [mm]

Ih 88

Ik 143
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circuit diagram of the leg pressure sensor is shown in 
Fig.  2b. The resistance in the voltage-divider circuit is 
set to 10  KΩ. Overall, the developed robot provides 34 
types of sensor value, and all the movement information 
is obtained online at intervals of 25 ms. To perform the 
whole experiment, we used the premise of a robot mov-
ing on a treadmill, as shown in Fig. 5. 

Analysis methods
Extraction of feature quantities
In this research, we use an autoencoder [43] to extract 
the features of the movement data. An autoencoder is a 
neural network that acquires the characteristics of data 
by learning to make the input data and the output data 

the same. The effect of an autoencoder is broadly the 
same as that of principal component analysis; however, 
an autoencoder has much greater representational capa-
bilities because it can perform nonlinear feature extrac-
tion. Also, an autoencoder is not limited to normally 
distributed data and does not assume that the “principal 
components” [44] are perpendicular, thereby making it 
possible to extract the feature quantities of data while 
losing little of the quality of the original data.

The structure of the autoencoder was empirically deter-
mined through pretests (as explained in “Neural-network 
structure of autoencoder” section). In most cases, several 
unusual gaits often appeared based on the its structures. 
In practice, we continued to seek relevant gaits until the 
obvious motion dataset was obtained. Then, we chose a 
specific autoencoder that displayed well-known gait pat-
terns. Furthermore, we recorded datasets from the same 
12 experiments for each condition. This methodological 
sequence stands on the research objective of decompos-
ing one movement to several notable movements, dis-
playing significant phase differences between the robot’s 
leg movements.

Neural‑network structure of autoencoder
Figure  6 shows the structure of the autoencoder used 
in this study. Comprising encoder networks and 
decoder networks, an autoencoder is a neural net-
work that learns features from unlabeled data. As Fig. 6 
shows, this network contains seven layers, namely an 
input layer, hidden-layers  1–5, and an output layer. 
The weights used to encode the entire network and 
those used for decoding are related transpositionally. 
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Fig. 4  Device configuration of the developed robot system. The 
micro controller receives all of sensor data. The angler positions, 
velocities, accelerations, and current values (proportional to motor 
torques) are also monitored via motor driver board with RS485

Fig. 5  Experimental system consists of a treadmill controlled 
manually

Fig. 6  Structure of autoencoder for movement data extractions of 
feature quantities. The full of dynamical and mechanical data are 
incorporated as input to autoencoder. The autoencoder works to 
reduce the dimensions of data in Hidden-3 layer
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Furthermore, regularization (L2 norm [45]) to express 
with fewer feature quantities is applied to the entire 
network. The weight between the input layer and hid-
den-layer 1 is defined as W1, that between hidden-lay-
ers 2 and 3 is defined as W2, and so on for weights W3, 
W4,W5,and W6. We employed symmetric autoencoder 
(it provides W6 = W1T, W5 = W2 T, and W4 = W3 T.). 
A sigmoid function is used as the activation function, 
and a mean-squared function in outputs is used as the 
loss function.

We select hidden-layer 3 and assess how the loss 
function varies with the number of neurons in that 
layer, as shown in Fig. 7. We choose the eventual num-
ber of neurons in the layer by assessing where the loss 
function increases abruptly with decrease in the num-
ber of neurons. Thus, hidden-layer 3 is considered to 
contain three neurons. The redundant networks are 
not preferred in this study since the objective involves 
to generalize the motions and to decompose the move-
ment by the autoencoder. Therefore, we need to find 
the autoencoder with the minimum number of nodes to 
extract the feature of the movement data.

Next, we describe the detailed conditions regarding 
the layers and the learning. Between the input layer 
and hidden-layer 1, the features of each item of leg data 
(joint angle, joint angular velocity, joint torque) are 
extracted. Furthermore, because each leg has the same 
structure by design, we consider the same dynamic 
model and learn to make all weights related to each leg 
equal (the blue dotted lines in Fig.  6). Data related to 
the entire body (gyroscope, acceleration, leg pressure) 
are collected in a feature space that is different from 
that of the leg data. Between hidden-layers 1 and 2, the 
previously collected features of the modules of each leg 
are related to the features of the entire body. Because 
the relationship of data in each module was extracted 
in the previous section, we will look at the relationship 
between modules. Finally, between hidden-layers 2 and 

3, the feature of the movement of the robot is dropped 
into a latent feature space.

The computation related to learnings was carried out 
by a standard stochastic gradient descent method, back-
propagations. To improve convergence in learning, the 
pre-learning phases were conducted in every network 
weights from visible layers. Python on Anaconda was 
employed with the library for matrix handlings, and with-
out any libraries for machine learnings. It takes about 
15 h in each learning with CPU core i5-7300U @2.60 Ghz 
on a laptop.

Experimental setup
In this research, we perform experiments in which we 
acquire data about the robot’s movements on a tread-
mill shown in Fig. 5. We use a PC to control the tread-
mill speed via a speed conversion table. During the robot 
walking experiments, the treadmill speed is controlled 
so that the robot performs its locomotion in a fixed loca-
tion in the laboratory frame of reference. The robot is 
connected by means of wires to a pulley installed above 
the treadmill so that the robot can be lifted off the tread-
mill in the event of a malfunction; in normal operation, 
these wires are not in tension and do not affect the robot 
locomotion. There is another wire that is used to assist 
the walking; when the robot gets in the walking direction 
or the position becomes the rear part of the device, it is 
mounted to assist the robot with a certain force.

For each gait pattern, we use a pre-prepared computer 
program to realize that pattern in the robot and perform 
a walking experiment for 5 s. Each experiment is repeated 
13 times under the same conditions, and movement data 
are acquired from the sensors mounted on the robot.

Results
A gait corresponds to reproducible patterns of intra- and 
inter-limb coordination in locomotion. The intra-limb 
pattern is always cyclic in nature. In this work, we are not 
concerned with the intra-limb patterns except for ques-
tions regarding limb trajectory, stance–swing timing, 
body movement, and the like. Our focus is entirely on 
patterns of coordination between the limbs (hip joints). 
In this context, it is worth noting experimental perturba-
tion studies [7] that suggest that each multi-joint limb of 
a quadruped may be treated as a single functional unit.

Thus, in this study, we focus in particular on the phase 
differences among the leg movements. Moreover, it is 
shown that the cycle times of the stance phase and the 
hip-joint angles are almost the same [26]. Given this fact, 
we focus in particular on the hip movement of each toe 
and define the gait pattern by looking at the phase dif-
ferences among the hip movements. The experiment with 
four neurons was tested, but remarkable results were not 
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observed because of redundancy in latent features (see 
Additional file  1: Fig. S1). In practice, it was observed 
that the resultant data with four neurons are not replica-
ble even through more than 13 times trials. For example, 
only trot gait is induced in the one test, while all gaits are 
generated in the other. It is considered that there is the 
possibility of that the dimension reduction is not ade-
quately executed, that is, the given features are redun-
dancy so that uneven decoding in autoencoders may 
evoke various results. The mainstream of this study is not 
to find the better learning methods, but is to decompose 
the movement data and represent by the real hardware. 
Therefore, we focus on the results by experiments with 
three neurons in hidden-layers 3.

Experiment to acquire walk movement data (on 
a treadmill)
Quadrupeds tend to change their gait patterns from 
walking to trotting and from trotting to bounding. Con-
sidering that walking is the first pattern to appear (at 
low speed in Fig.  1), we select walking in the experi-
ment. In this experiment, the gait pattern is set to walk-
ing, the walking cycle time is set to 1 s (Additional file 2: 
Movie S1), and the experiment is conducted for 5 s. The 
sensor data are acquired averagely at intervals of 25 ms. 
After acquiring the movement data, the noise in the data 
(torque, gyro, acceleration, load cell) is removed using 
a low-pass filter. We assess the joint angular data to 

confirm that the robot was indeed walking, and we check 
the phase difference by looking at the peaks in the graph. 
Template matching is performed to check the peak values 
in the graph (Fig. 8). The data normalized are set to that 
the maximum value is equal to 1. This normalization is 
performed for displaying to confirm the phase differences 
specifically, but is not applied to the autoencoder train-
ing terms. Based on the result, the sequence RH, RF, LH, 
LF is confirmed, thereby confirming that the robot was 
indeed walking.

Furthermore, we conduct this experiment 13 times 
in the same process. Here, we define these data as the 
motion data for walking. Moreover, of the 13 sets of data 
acquired, we classify 12 as walking data and one as walk-
ing test data. Before training the autoencoder, we nor-
malize the data in every dimension to have zero mean 
and to be in the range [0, 1].

Results of autoencoder training
To extract the features of the movement data, we train the 
network using the movement data from this experiment. 
We use the autoencoder to reduce the input dimensional-
ity from 34 to three. After the training, we input the 5 s 
of walking test data into the autoencoder and, then, con-
firm the waveforms in hidden-layer 3 (Fig. 9). We confirm 
that waves with a period of 1 s and waves with a period of 
0.5 s appeared.
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Results of feature extraction
To determine the roles played by the extracted fea-
tures, we use the neurons in hidden-layer  3 one by one 

by turning off the other two neurons. While observing 
the movement of the robot, we input the angular data in 
the output layer to the robot. To calculate the phase dif-
ference of each leg, we use template matching with the 
template

and find ϕ with

We adopt the ϕ with the highest match value as the 
phase of the graph. Here, T is the largest cycle time of 
the hidden-layer-3 neuron. We found that the period T 
become almost equal to 1.00[s]. Practically, we adopt the 
average of peak-to-peak intervals in each given experi-
mental data.

We represent each phase by the angle that the hand 
of each circle forms with the vertical (Fig. 3), measuring 
negative to the left and positive to the right (Fig. 10, right 
panel) [26].

Before checking the neurons one by one, we check the 
output obtained using all the neurons in hidden-layer 3 
(Fig.  10, Additional file  3: Movie  S2). From the results, 
the sequence RH, RF, LH, LF was executed, meaning that 
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the robot was indeed walking. Thus, we reason that the 
training was successful because the output data are the 
same as the input data in the autoencoder.

Next, we check the role of the features one by one. 
From the results, we find other patterns of move-
ment in the feature of walking, namely pacing, trotting, 
and bounding movements. Each gait movement that 
appeared is shown in movies (see Additional file 4: Movie 
S3, Additional file  5: Movie S4, Additional file  6: Movie 
S5 online) and in Fig.  11. In the graphs on the left in 
Fig. 11, the peak is colored yellow. On the right in Fig. 11, 
the results of calculating the phase difference of each leg 
are shown. In Fig. 11a, the right and left legs move with 
opposite phases, and this phase difference in each leg is 
the same as for the pacing movement. Thus, a feature of 
the pacing movement is found in the walking movement. 
In Fig. 11b, the diagonal legs move with almost opposite 
phases, which is the same phase difference as for the trot-
ting movement. Here, a feature of the trotting movement 
is found. In Fig.  11c, the fore and hind legs move with 
almost opposite phases, and we argue that this feature 
contains an element of the bounding movement. These 
movements that appeared in the features differ entirely 
from the movement used in the training (walking data).

At the last, elements of the phase differences of other 
gait patterns appear despite learning with only the walk-
ing data. However, it should be noted that the robot 
cannot walk by itself if we use only one neuron in 
hidden-layer 3.

Experiment to acquire trot movement data (on a treadmill)
In addition to the experiment regarding gait patterns 
when moving on a treadmill, we investigated gait pat-
terns when trotting on a treadmill under the same con-
ditions as those in the former experiment. Template 
matching was performed to check the peak values in the 
graph (Fig. 12). Based on the result, the sequence RH, RF, 
LH, LF was confirmed, thus confirming that the robot 
was indeed trotting.

After the training, we input the 5 s of trotting test data 
into the autoencoder and, then, confirm the waveforms in 
hidden-layer 3 (Fig. 13). Likewise, in the result of walking 
experiment, it was confirmed that waves with a period of 
1 s and waves with a period of 0.5 s appeared. In the same 
manner, we represent each phase by the angle that the 
hand of each circle forms with the vertical (Fig. 3), meas-
uring negative to the left and positive to the right (Fig. 14, 
right panel).

Next, we procedurally checked the role of the features 
one by one in the same manner as that used in walk gait 
analysis. We found that the autoencoder with trot train-
ing could involve the trot (Additional file 7: Movie S6) 

and pronk (Additional file 8: Movie S7) gait as show in 
Fig. 15. In this experiment, as trotting gait was learned 
in advance, the pronk gait was non-obviously gener-
ated. Compared to the walk-training case, the trot gait 
did not generate various gaits such as walk and pace.
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Experiment to acquire walk movement data (in air)
We secure the robot to the air so that its legs do not touch 
the ground and its body does not move from side to side. 
Under these conditions, we conduct an experiment to 
acquire movement data, in which the robot executes the 
walking phase in the air (Additional file 9: Movie S8). We 
acquire 5  s of movement data 13 times, 12 as learning 
data and one as test data (hereinafter referred to as the 

“air data”). Under these conditions, the values obtained 
from the gyro, acceleration, and load-cell sensors do not 
change because the robot is attached to the air tightly and 
its body does not move. Given this, we remove these data 
from the neural network and check the output obtained 
using one neuron in hidden-layer 3 12 times.

Summary of results
Figure 16 shows the appearance ratio of each gait pattern, 
in which those ratios are calculated by doing the same 
training 12 times. The appearance ratio was calculated 
the following procedures: Firstly, the in-phase legs are 
defined if the difference of each ψ is within 0.5. This oper-
ation regards the legs with over 0.5π phase differences 
as out-phase. Secondly, the gate pattern is determined 
based on the combinations between in-phase legs in each 
experimental data. Some of them display the characteris-
tic gate patterns involving pace, trot, bound, and pronk, 
while there are no in-phase legs in several results. Finally, 
the appearance ratio is provided with percentage. Note 
that this procedure is applied to given data one by one. 
Therefore, summation of the percentage values can be 
over 100% when the trained autoencoder output the mul-
tiple gait patterns.

Furthermore, comparing with the walking experiment 
performed on the treadmill, the walking data confirms 
that the repeatability lowered more than the ground data. 
In summary, motion data on the ground could hold ver-
satile gaits; walk data could hold pace and bound, and 
trot data could often represent the pronk gait. However, 
there was no significant motion in air.
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Discussion
We decomposed the movement data into three features 
and found elements of other movement patterns in the 
features of the walking movement. Despite learning only 
the walking movement, movement of the patterns of trot-
ting and bounding was extracted. Although these move-
ments could not locomote, we reason that they show the 
possibility of generating another gait patterns. Primar-
ily, feasible locomotion cannot be realized because the 
autoencoder produces motor torque (current) outputs 
with low magnitude. This tendency is clearly observed 
because our tests were performed under inactivation of 
several neurons in the hidden layer.

The proposed method could support finding hidden 
latent features in measurement datasets; however, such 
features are limited to a set of static orbit on a graph. 
Thus, it lacks information related to the absolute time-
scale of a movement because the datasets used for the 
autoencoder comprise snapshots. Despite this limita-
tion, the proposed method seems to be effective in case 
of that the analysis target shows the periodic movements 
presented here. When the measurement data holds some 
rhythms, our method exposes the relative information 
between datasets without a decision of the input–output 
property in advance.

Our results are consistent with those of other theo-
retical works [46–48], which theoretically emphasize the 
role of motion in the main body along the roll, pitch, and 
yaw axes for generating gait transitions. Additionally, our 

results indicate the essential role of sensory feedback 
information as shown in Fig.  16, in which the locomo-
tion patterns often appeared only when the main body 
reactions involving both gyro and acceleration together 
with load cells were captured by the autoencoder. To 
quest for the reason why different motions were respec-
tively appeared after walking and trotting learning, we 
recorded every sensor dataset in both motions (Addi-
tional file 1: Fig. S2 for walk experiment and Additional 
file 1: Fig. S3 for trot experiment), and compared them. 
It is observed that the gyro sensor data in pitch involves 
the lower frequency rhythms (T s) in walking experi-
ment and the high frequency data (T/2 s) in yaw and roll. 
Meanwhile, trot experiment comparatively demonstrates 
only high frequency rhythms in gyro sensors. That is to 
say, motions in sagittal plain are contrasting because the 
acceleration data in x and z axis are also inter-connected 
with one in pitch. This imply that the main body move-
ment in pitch is one of the essential matter for gait pat-
terns variations. The extra experiment based on another 
paradigm could clarify the role of main body motions to 
gait pattern generations. Our method is expected to be a 
tool for exploring the significance of embodied systems 
in locomotive robots.

Another study succeeded in generating an unlearned 
motion pattern using a CPG and a controller incorporat-
ing such an oscillator [10]. However, the controller had 
to be designed beforehand and the robot was realized 
by a simple mechanism with one degree of freedom. By 

0

1

LF

0

1

RF

0

1

LH

0

1

0 1 2 3 4 5
Time[s]

RH

LF

LH

RF

RHelgn
A

pi
H

V
)dezila

mron(
eula

Hip Movement Graph Hip Phase Differences

1

1

2

2

1.87

Fig. 14  Results of using all neurons in hidden-layer 3 (Trot). Likewise, in the result in Fig. 10, it is confirmed that the decoder function in the network 
are trained in a trot gait case by comparing with the input data as shown in Fig. 12



Page 12 of 14Yamamoto et al. Robomech J            (2020) 7:29 

contrast, in the present research, without considering the 
input/output relationship, we (i) developed a robot with 
a relatively complicated mechanism, (ii) extracted fea-
tures of motion data by machine learning without using 
a controller, and (iii) successfully generated an element of 
an unlearned novel motion pattern. Specifically, the net-
work learned the movement of walking, and elements of 
the unlearned movements of trotting and bounding were 
generated in feature space. From this, we reason that (i) 
the movement pattern of walking includes elements of 
the movement patterns of trotting and bounding and (ii) 
the generation and transition of the gait pattern could be 
realized by promoting these features with some form of 
stimulus. However, the motion generated in this study is 
in the form of motion patterns only, and the robot cannot 
locomote by itself.

Furthermore, when the experiment was conducted 
floating in air, because the reproducibility of the appear-
ance of other movement patterns decreased remarkably, 
the state of the legs and the body, the load on the joints, 
there is the possibility that the relationship with the so-
called environment is necessary.

Notably, our work does not claim any energetic advan-
tage for locomotion; rather, it proffers that one specific 
gait motion can obtain several other motions by decom-
posing one specific motion to find hidden motions. 
From these findings, we reason that the internal ele-
ments of the system changed because of the diversity 
and redundancy of the neural network, and that informa-
tion about the dynamically changing environment and 
some form of self-model were created in the network. 
Therefore, we reason from the results that the relation-
ship with the environment is indispensable for self-body 
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model building, and that it created the new behavior pat-
tern. Finally, we suggest that there could be many other 
unlearned gait patterns.

Conclusion
In this study, we derived and analyzed the feature val-
ues of robot sensor and actuator data and investigated 
the role played by each feature value in locomotion. We 
decomposed the movement data into three features and 
found that several different gait patterns were extracted 
from the walking data. Despite learning only walk-
ing movement, the movement patterns of trotting and 
bounding were extracted. This suggests that movement 
data obtained through hardware contain various gait pat-
terns. Although the present robot could not locomote 
with these movements, this research suggests the possi-
bility of generating unlearned movements.

Future work involves the reproduction of the move-
ment controlled by the torque outputs from the autoen-
coder. This reproduction could then be evaluated to 
investigate how feature-abstraction based movements 
contribute to feasible locomotion via real hardware 
experiments.
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