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Abstract 

In this paper, a navigation and environment mapping method is presented for small exploration robots that use 
hopping motion. While previous research about hopping rovers mostly focuses on mobility and mechanical design, 
the motivation for the proposed method is to provide a fully autonomous navigation system using only a monocular 
camera. The method accurately estimates the hopping distance and reconstruct the 3D environment using Structure 
from Motion, proving that a monocular system is not only feasible, but accurate and robust at the same time. The 
relative scale problem of the reconstructed scene and trajectory is solved by the known gravity and parabolic motion 
constraints. After each hop, the error in landing position is corrected by a modified Iterative Closest Point algorithm 
with non-overlapping part elimination. The environmental point cloud is projected onto a 2D image, that is used to 
find the most suitable landing position for the next hop using protrusion based obstacle detection, and navigate the 
robot towards the goal direction. Both virtual environment simulations and real experiments confirm the feasibility 
and highlight the advantages of the presented method.
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Introduction
In recent years there is extensive research in outdoor, 
space and field robotics. While traditional wheeled robots 
continue to be an essential part of space exploration, dif-
ferent approaches to robot mobility are also emerging. 
Space exploration rovers MINERVA-II1 launched by the 
Japan Aerospace eXploration Agency (JAXA), success-
fully landed and recorded images of an asteroid surface 
the first time while moving with hopping motion [1]. The 
low gravity of small celestial bodies make it possible to 
utilize non-traditional movement types with low energy 
consumption. In traditional rovers, the wheel diameter 
limits the size of obstacles the robot can traverse, small 
hopping robots can simply hop over an obstacle, elimi-
nating the need for detour as demonstrated in Fig. 1.

An additional benefit of using small robots is the pos-
sibility to launch multiple units with a single rocket, or 
piggy back loading them with other cargo, greatly reduc-
ing the cost of space exploration missions. Multiple 
deployed robots can also work together in distributed 
exploration [2]. Figure  2 shows the different possible 
designs and working mechanism of hopping rovers the 
proposed navigation system is intended to be used for. An 
actuator tensions the spring that stores the energy used 
for hopping, while either a single large wheel attached 
to one end of the robot is used to turn the robot to the 
desired direction, or two wheels are used for turning and 
moving small distances [3, 4].

Previous research about small hopping rovers mostly 
focused on the mobility and mechanical design, and 
only a few methods have been proposed for navigation 
or visual odometry for such rovers. This paper proposes 
a novel approach to the navigation system and image 
processing of small hopping rovers, with the main moti-
vation of reducing complexity and therefore reducing 
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the size and weight of the robot. Since hopping motion 
includes a higher risk of hitting obstacles, reducing the 
weight of rovers can be beneficial due to the lower impact 
forces, as well as reducing the necessary energy used for 
hopping.

Previously proposed navigation methods use stereo 
vision for at least the initialization step, and may have 
used multiple cameras facing different directions for 
trajectory reconstruction and scale estimation [5–7]. By 
reducing the size of the rover, the baseline between ste-
reo cameras also becomes smaller especially compared 
to the hopping distance, reducing the accuracy of ste-
reo reconstruction. Therefore, a fully monocular camera 
system is proposed. Taking advantage of the fact that 
the rover has to prepare for the next hop after landing, 
images can be batch processed in an offline manner with-
out any real-time requirement. A Structure from Motion 
(SfM) pipeline is used for reconstruction, that provides 
more accurate and detailed results compared to tracking 
or optical flow based visual odometry, that uses images 
sequentially for reconstruction. The proposed method 
relies on accelerometers to calculate the gravity vector, 
and a sun direction sensor to determine the heading of 
the rover, both of which can be miniaturized with ease.

The main challenge of monocular systems is the scale 
ambiguity problem, i.e. not being able to reconstruct 
the absolute scale without additional information. To 
solve this problem, parabolic motion constraints are 
introduced to determine the real scale and orientation 
compared to the gravity vector. The reconstructed envi-
ronment point cloud is evaluated based on protrusion 
from the ground plane to find obstacles, and image pro-
cessing is used to determine the navigation path, taking 
the uncertainties of motion into account. To achieve 
global consistency and eliminate the position error 
caused by unpredictable motion after landing, the envi-
ronmental point clouds of successive hops are matched 
with an Iterative Closest Point (ICP) based algorithm 
with non-overlapping part estimation, where only a 
section of the point clouds are matched. Conventional 
ICP performs poorly when there is only partial overlap 
between the point clouds, however iteratively eliminat-
ing non-overlapping parts can make the result converge 
to the global minimum. This position correction step 
not only eliminates the position error caused by land-
ing, but also helps to create a seamless global map of the 
environment.

Figure 3 shows the overview of the proposed hopping 
rover navigation system. The proposed method is fully 
autonomous and is able to reconstruct the trajectory of 
hops and create a map of the environment, that is used 
to determine the navigation path, proving that a truly 
monocular system is not only feasible, but can accurately 
localize the rover and provide a detailed map of the envi-
ronment as well. The following sections present each part 
shown in the overview, and finally results of the experi-
ments conducted in simulation and real environments 
are presented and conclusions are drawn.

The next section explains the scene reconstruction 
technique, including sparse and dense reconstruction. In 

Fig. 1  Advantages of hopping motion compared to wheeled robot 
paths (illustrated on a Mars image by NASA [1])

Fig. 2  Different hopping rover designs [4]

Fig. 3  Overview of the navigation system
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the following section, the scale and trajectory estimation 
process is presented, that is one of the main contribu-
tions of the proposed system and makes it possible to use 
a monocular camera. Next, the position correction step 
is discussed, that is performed after every hop to cor-
rect the position error introduced by the uncertainties 
of landing. In the following section, the target selection 
method is introduced along with the criteria to select the 
most suitable navigation path. The next section shows 
the global map creation after performing multiple hops. 
In the final section, experimental results are presented 
to prove the feasibility and effectiveness of the proposed 
system.

Scene reconstruction
In extraterrestrial missions, exploration and mapping are 
both significant tasks alongside sampling and data acqui-
sition. Although a Simultaneous Localization And Map-
ping (SLAM) [8] or Visual SLAM (VSLAM) approach 
could be used for localization and mapping, Structure 
from Motion (SfM) and Multi-View Stereo (MVS) recon-
structions outperform them in terms of quality, but sacri-
ficing computational speed [9].

However, in space exploration the robot has time to 
process data between hops and real-time operation is 
not required, making it possible to use the more accurate 
SfM and MVS. While the most common use for SfM is 
to reconstruct a sparse point cloud of a photographed 
subject or scene, it simultaneously recovers the poses of 
used cameras from the input images, that can be used 
to reconstruct the flight trajectory. Figure  4 shows how 
image frames are collected during hopping.

Since in the case of hopping rovers images are taken 
in order, the matching process can be sped up by using 
sequential matching, where correspondences are only 
searched in a number of consecutive frames, instead of 
exhaustive matching where every image frame is com-
pared with every other. During reconstruction, images 
are added to the scene one by one. The newly added 
images’ camera positions in the world coordinate system 
are determined by solving the Perspective-n-Point (PnP) 
problem. A triangulation process tries to estimate the 3D 
coordinates of the common points of the newly added 
image and images already added to the scene.

SfM has the benefit of using every image taken dur-
ing a hop together for reconstruction, with the ability 
to disregard outliers that can introduce errors. Fur-
thermore, Bundle Adjustment can be used, which is 
an optimization step minimizing the projection error 
of images [10]. Only some state of the art SLAM algo-
rithms utilize BA, and usually only in a limited form. 
With MVS, every pixel of an image can be projected 
to a line and its spatial position can be determined by 

epipolar geometry, and a more detailed dense point 
cloud can be reconstructed, that can be used to identify 
and reduce the risk of hitting obstacles, unlike SLAM 
where only the extracted and matched feature points 
are mapped, creating only a sparse reconstruction. The 
dense point cloud is used to visualize the environment 
as well as to determine the position of the next hop for 
navigation in the target selection step.

Figure 5 illustrates the difference between the level of 
detail found in sparse and dense reconstruction using 
the same images. In sparse reconstruction only the 
3D position of feature points used to solve the camera 
poses are calculated, just like in SLAM algorithms. In 
dense reconstruction, with the known camera poses 
stereo imaging is used to calculate the 3D position 
of every pixel in the image, creating a highly detailed 
cloud, that can be used to identify obstacles and select 
the navigation path.

An additional benefit of using an SfM approach is that 
it is more robust against accidental rotations and blur 
caused by fast motion. If it is not possible to calculate 
the camera poses from multiple images at some stage of 
the hop, other section of the motion can still be used to 
achieve accurate reconstruction for the whole hop, since 
all frames are processed together.

From our experience, as well as based on surveys on 
the performance of various methods, our system uses the 
COLMAP pipeline [11, 12].

Fig. 4  Images taken during hopping in a simulated environment [19]
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Trajectory and scale estimation
The main difficulty of monocular camera systems is 
finding the real scale factor to get scale-accurate dis-
tance measurements. While some conventional meth-
ods utilize stereo vision for initialization before hops 
to determine the scale factor, the proposed method 
relies only on monocular vision, and solves this chal-
lenge by a trajectory and scale estimation method with 
the introduction of parabolic motion constraints and 
the a priori knowledge of the gravity vector, that can 
be acquired by the accelerometers already equipped by 
the robot. Since no external forces work on the robot 
during flight it’s center of gravity is moving along a 
parabola. The proposed algorithm finds the correct ori-
entation and scale from the known gravity vector and 
time information. From this, the scale factor is deter-
mined with high accuracy while eliminating the need 
for additional cameras, thus saving weight and reduc-
ing the size of the rover, that is one of the key motiva-
tions of the presented navigation system. The flowchart 
of the scale and trajectory estimation process and it’s 
place in the whole system can be seen in Fig. 6.

If the camera focal point is not in the center of mass 
but fixed to the robot, a simple geometric transformation 
can be used to adjust the reconstructed camera positions 
to the center of mass using the known distance between 
the two and the rotation of the camera.

where T is the local-to-world transformation matrix cre-
ated from the reconstructed camera position and rota-
tion, �P is the local vector pointing from the camera to 
the center of mass and �P′ is the world coordinate of the 
adjusted camera position.

A point cloud is created from these adjusted camera 
positions using the Point Cloud Library framework [13]. 
The camera positions are expected to be on a parabolic 
trajectory. By fitting a plane to the points, a plane that 
is parallel to the gravity vector can be obtained. Outlier 
camera positions with large position errors could dis-
tort this plane. Therefore, RANSAC (RANdom SAmple 
Consensus) algorithm is used for plane fitting [14], that 
has the advantage of disregarding outliers, improving the 
accuracy of scale estimation. The points are then pro-
jected to the plane and the plane is rotated to match the 
XY plane. The camera position of the first image that is 
taken at the start of the hop is translated to the origin of 
the coordinate system, reducing the three-dimensional 
problem to two-dimensional. However, at this stage the 
the rotation of the parabola is still unknown. To find the 
rotation, a conic section is fitted to the points using least-
squares method.

The equation of a general conic section is:

Since the first camera position was moved to the origin, 
by assuming that the conic section contains this point, F 
can be eliminated.

Therefore the conic section is searched in form:

The equation contains five parameters, that is the mini-
mum number of points that define a general conic sec-
tion. To get the unknown parameters with least-squares 
method, the following function needs to be minimized:

This can be solved by taking the derivatives with respect 
to each parameter, such as:

(1)�P′ = T�P

(2)Ax2 + Bxy+ Cy2 + Dx + Ey+ F = 0

(3)ax2 + bxy+ cy2 + dx + ey = 0

(4)

f (x, y) =

n
∑

i=1

(ax2i + bxiyi + cy2i + dxi + eyi)
2 = min

Fig. 5  Difference in detail in sparse and dense reconstruction from 
the same images. a Sparse reconstructio. b Dense reconstruction 
with an SfM pipeline and MVS
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and so on for each parameter. These can be arranged to 
form an equation system. The resulting equation system 
forms a symmetric matrix, where the eigenvalues hold 
the solution for the parameters assuming a non-trivial 
case where parameters are non-zero.

The rotation of the conic section can be calculated as:

θ either shows the angle of the axis of symmetry or the 
angle of the diretrix. Therefore, after rotating the point 
around the origin with θ , the points form a parabola 
where the axis of symmetry is parallel to either the X or 

(5)

∂

∂a
f (x, y) =

∂

∂a

n
∑

i=1

(ax2i + bxiyi + cy2i + dxi + eyi)
2

=

n
∑

i=1

2ax4i +

n
∑

i=1

2bx3i yi +

n
∑

i=1

2cx2i y
2
i

+

n
∑

i=1

2dx3i +

n
∑

i=1

2ex2i yi = 0

(6)θ =
1

2
arctan

(

b

a− c

)

where 0 ≤ θ ≤
π

4

Y axis. To find out the orientation, two parabolas are fit-
ted to the points with least-squares using the following 
equations:

In the correct orientation, the sum of least-square errors 
is significantly lower than the other. If the axis of symme-
try is parallel to the X axis, the points are rotated around 
the origin with 90◦ . To ensure that the flight trajectory 
starts in the x ≥ 0, y ≥ 0 quadrant, if x values are nega-
tive the points are rotated around the Z axis by 180◦ . If 
c > 0 in the y = a+ bx + cx2 parabola fitted to these 
points, the points are rotated around the X axis by 180◦ . 
After fixing the orientation, more points that do not fit 
the parabola are disregarded by calculating the quad-
ratic distance between the parabola and each point. If the 
parabola equation is y = a+ bx + cx2 , the square of the 
distance between the parabola and point (xi, yi) is:

(7)y = a+ bx + cx2 and x = a+ by+ cy2

(8)r2 = (x − xi)
2 + (y− yi)

2

= (x − xi)
2 + (a+ bx + cx2 − yi)

2

Fig. 6  Flowchart of the scale estimation process
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Since r ≥ 0 , the solution can be found by minimizing r2 
instead of r:

The resulting cubic function can be solved using the 
Cardano formula. Renaming the coefficients of equa-
tion  9, we get the form ax3 + bx2 + cx + d = 0 , 
that can be reduced to a depressed cubic function 
χ3 + pχ + q = 0 by substituting χ − b

3a for x, where 
p = 3ac−b2

3a2
 and q = 2b3−9abc+27ad

27a3
 . Since the curve and 

points are real, it is safe to assume that the cubic function 
above has one real solution and a complex conjugate pair 
that are irrelevant. The real solution also has to be posi-
tive, since r is positive. Therefore, the following equation 
can be used to find the solution for χ:

To refine the parabola equation, every point whose dis-
tance is larger than the mean of distances is disregarded 
and the parabola is refitted for the last time using Eq. 7. 
An example of camera positions and the calculated 
parabola can be seen in Fig. 7.

Calculating the real scale
The vertical component of the hopping launch angle �v is 
estimated from the derivative of Eq. 7.

(9)

∂(r2)

∂x
= 2c2x3 + 3bcx2

+ (b2 + 2ac − 2cyi + 1)x + (ab− byi − xi) = 0

(10)

χ =
3

√

√

√

√

−
q

2
+

√

q2

4
+

p3

27
+

3

√

√

√

√

−
q

2
−

√

q2

4
+

p3

27

From Eq.  7, the axis of symmetry can be calculated as 
xsym = − b

2c
Because in projectile motion the horizontal component 

of velocity is constant, the following proportionality is 
true for every point: xi

xsym
= ti

tsym
 , where xi is the x coordi-

nate of point i, xsym is the axis of symmetry, ti is the 
timestamp of point i (the first point in the origin has a 
timestamp of 0) and tsym is the timestamp at the maxi-
mum height of the trajectory. Time at the maximum 
height is interpolated by calculating tsym for every point 
and getting the median of the values. The vertical compo-
nent of the hop is uniformly accelerated linear motion 
where the initial speed can be calculated as:

where g is the known gravitational constant.
From this, the scale factor is:

where the numerator is the axis of symmetry calculated 
and denominator xsym is the axis of symmetry of the cur-
rent point cloud.

The points are then scaled by the scale factor, and all 
of the previous transformation steps are applied to the 
dense environmental point cloud as well. Figure 8 shows 
the reconstructed environment and camera positions 
with adjusted scale and orientation.

Position correction to eliminate error caused 
by bounces after landing
When landing the rover can hit the ground or an obsta-
cle in a way that it bounces off to an unknown direction. 
Furthermore, depending on the gravity and type of sur-
face, secondary bounces can also occur. However, in suc-
cessive hops the launch position of a new hop is assumed 
to be the estimated landing position of the previous hop. 
The uncertainty in landing position deviation can be 
estimated, but since the robot is too close to the surface 
while resting on the ground, localization is challenging 
and unreliable using only the camera image.

To overcome the problem of this accumulating posi-
tion error and make it possible to create an accurate 
global map and find the robot position in world coordi-
nates, a position correction step is introduced using the 
created point environmental point clouds of successive 
hops. Because the camera has a wide field of view and the 

(11)
∂

∂x
a+ bx + cx2

∣

∣

∣

∣

x=0

= b = tan(�v)

(12)v0 =
tsym · g

sin(�v)

(13)S =
v0 · cos(�v) · tsym

xsym
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Fig. 7  Camera positions in 2D with the estimated trajectory, vertical 
launch angle and axis of symmetry
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hops are performed in a way that there is a large overlap 
between visible areas, the created dense point cloud of 
successive hops can be aligned.

Alignment could be performed by minimizing the dif-
ference between the two point clouds using the Iterative 
Closest Point (ICP) algorithm [15]. However, ICP per-
forms poorly when there is only partial overlap between 
the point clouds. This problem is solved by iteratively 
eliminating non-overlapping parts of the clouds. A 
smaller section of both point clouds are extracted by 
establishing boundaries in X and Z coordinates (where 
the Y axis is parallel to the gravity vector) slightly ahead 
of the second hop landing position, where overlap is 
expected even if the heading direction changed. Due to 
the possibly large non-overlapping parts relative to the 
section size, the ICP algorithm will most likely converge 
to a local minimum. After alignment, the point clouds are 
cropped with new boundaries set by the more limiting 
extremas of the two clouds, and ICP is performed again. 
This cropping step is iterated until the biggest difference 
in each respective boundary value of the two clouds gets 
below a set threshold, or in other words the number of 
cut points converge to zero. With the proposed method, 
correct alignment can be achieved, while using conven-
tional ICP algorithm the point cloud often converges to 
a false alignment. The transformation matrix that aligns 
the point cloud of the last hop to the previous cloud is 
applied to the camera positions as well. One major ben-
efit of the proposed correction step is that it fixes trans-
lational as well as rotational error that could cause a large 
position deviation after several hops.

Figure  9 shows the result of the position correction 
algorithm and the aligned clouds. Although there are 

about 10 times more points in the same area in the sec-
ond cloud seen in red due to the area is closer to camera 
in the second hop and therefore more detailed than the 

Fig. 8  Reconstructed camera positions and point cloud of the environment

Fig. 9  Result of the position correction

Fig. 10  Dense point clouds before and after alignment
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first hop points seen in blue, the algorithm gets accurate 
alignment as long as the overlapping parts are eliminated.

Figure  10 shows the transformation matrix resulting 
from the algorithm being applied to the second hop’s 
dense point cloud. The first hop points are shown in red, 
and the green and blue points are the second dense cloud 
before and after alignment respectively. The top left of 
the figure shows a detail of a rock from above. It can be 
clearly seen that the alignment improved the localization 
and successfully merged the two point clouds.

Target selection with uncertainty calculation
Path planning in most traditional navigational systems 
are performed using a priori information about the envi-
ronment and obstacles [16, 17]. However, the proposed 
system relies on the environmental information acquired 
by the previous hop, therefore information is limited and 
the rover only selects the next hop landing position, while 
knowing the desired direction of travel. After estimating 
the current position of the rover, it is necessary to select 
a suitable area for the next landing, taking into considera-
tion the uncertainty of the landing position to guarantee 
the safety of the rover. The environment is evaluated in 
an autonomous process to find suitable areas for land-
ing. The uncertainty and position error of the real land-
ing position compared to the intended one increases with 
hopping distance. On the other hand, too short hopping 
distance produces less frames used for reconstruction 
as well as environment point cloud creation. Looking at 
the amount of energy used to traverse the robot horizon-
tally, an ’ideal’ launch angle would be 45◦ , but based on 
our experimental results the proposed system prefers 60◦ , 
that increases the number of images taken during hop-
ping and decreases the possibility of large position error 
after landing due to larger impact angle from the ground 
plane.

Image processing is used for target selection. A square 
section of the dense point cloud around the current (esti-
mated) landing position is projected to the XZ plane to 
create a 2D image, where the current goal direction is 
upwards. During projection, each dense point is assigned 
to a pixel based on its coordinate values. If multiple 
points correspond to the same pixel, the arithmetic mean 
of values for each color channel is assigned. The square 
image size is chosen in a way that half of the image size 
is somewhat bigger than the maximum allowed hopping 
distance. The image resolution has to be selected accord-
ingly to the camera resolution and field of view, that have 
a direct effect on the distance between neighboring dense 
points. If the resolution is too low, details are lost and the 
resulting image is blurred. If it is too high, unassigned 

black pixels will remain especially in the regions more 
distant from the rover. Black pixels can be treated as 
noise and removed by applying a median filter to the 
image creating more uniform areas. However, some 
larger areas will still have no data, such as areas of the 
terrain not visible by the cameras due to being obscured 
by large obstacles. Occlusions can cause areas of the map 
to have missing information. These are treated as possi-
bly dangerous areas. However, since the size of obstacles 
are much smaller than the hopping distance, occlusions 
does not affect the robustness of the navigation system.

Figure  11 shows an example of image creation. The 
image is 500 ×  500 pixels that covers a 6 ×  6 m area 
around the robots position, which means that 1 pixel is 
equal to 1.2 cm in real coordinates.

Obstacle detection
Celestial surfaces usually have large rocks and boul-
ders that the robot has to avoid hitting. The intended 
operational environment of the hopping rover is a rela-
tively flat surface of softer soil covered in smaller and 
larger rocks, meaning the safe areas and obstacles can 
be classified based on protrusion. It is possible that the 
rover is located on a slight hill or slope so this ground 
plane is not necessarily parallel to the to the XZ plane, 
that has a normal vector parallel to the gravity vector. 
However, locally large deviations in the shape of the 
ground are not expected and are considered obstacles. 
A plane is fitted to the dense points to get an estimated 
ground plane using RANSAC to exclude the points of 
obstacles that can distort the ground plane orientation. 
If the distance of a cloud point from this plane is larger 
than a threshold value, it is considered an obstacle. This 
threshold value can be set accordingly to the environ-
ment considering the size of the rover, the intended 
hopping distance and height as well as the size of the 

Fig. 11  2D image creation from the dense point cloud, a Original 
dense cloud, b 2D image ( 1 pixel = 1.2 [cm])
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previously encountered obstacles. A binary image mask 
is then created from these points with the same size as 
the 2D image map created beforehand, to classify areas 
into obstacle and non-obstacle. To remove noise and 
create more uniform areas, median filtering and clos-
ing (dilation followed by erosion) is applied. Figure 12 
shows the created obstacle mask overlaid on the origi-
nal image. The protrusion threshold is set to 8 [cm] in 
this environment.

Error ellipse for landing position
To increase the safety of the rover and find the most suit-
able areas for landing, uncertainties of motion have to be 
taken into consideration. The expected deviation from 
the planned landing position can be estimated by a num-
ber of factors, namely the angular error of the hop �� , 
launch speed error �v and uncertainty of the current 
position �s that can be gathered during experiments. 
Since the robot uses a loaded spring to hop, the launch 

speed is linear to the compression distance. Therefore, �v 
is independent of the hopping distance. �� comes from 
the uneven surface and misalignment and also independ-
ent of the hopping distance. Figure  13 shows the error 
ellipse of a hop and the different uncertainties the system 
accounts for.

To simplify error calculations, the altitude difference 
between the launching and landing point is assumed to 
be zero. In this case the hopping distance can be calcu-
lated as:

where d is the hopping distance, �v is the vertical launch 
angle, v0 is the launch speed and g is the gravity con-
stants. Since the variables are independent of each other 
and the errors are assumed to have Gaussian distribution, 
the variance formula can be used to calculate error prop-
agation. The major axis of the error ellipse can be calcu-
lated as:

And the minor axis of the error ellipse as:

The major and minor axes of the ellipse are calculated 
for each pixel that was not marked as an obstacle but 
has values assigned. A binary image mask is then created 
with this ellipse. If the ellipse overlaps with unknown or 

(14)f (v0,�v) = d =
v20
g
sin(2�v)
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Fig. 12  Areas identified as obstacles

Fig. 13  Error ellipse and types of uncertainties Fig. 14  Areas safe to land on
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obstacle areas, the ellipse center pixel is marked unsafe 
for landing.

The blue areas of Fig. 14 show the areas considered safe 
for landing.

Landing point selection
After creating a mask with possible landing positions, 
the most suitable landing position needs to be selected. 
The landing position with the lowest possibility of hit-
ting obstacles is the one most distant from dangerous 
areas. Therefore, a distance map is created from possi-
ble areas. Distance transform is performed by calculat-
ing the Euclidean distance of each pixel from the closest 
black pixel. Due to the physical limitations of the rover 
and to avoid high speed impacts during landing, the 
maximum hopping distance is limited. Furthermore, 
a minimum hopping distance limit is also set to make 
sure there are enough images for trajectory reconstruc-
tion and the camera covers a sufficiently large area for the 
environmental reconstruction as well. A maximum of 90◦ 
horizontal deviation is allowed from the desired travel 
direction, but smaller angular deviation is preferred. To 
quantify these requirements a simple weighting function 
is defined:

where u and v are the pixel coordinates, �h is the hori-
zontal hopping angle defined by the angle between the 
line of the desired direction (up) and the line defined 
by (u, v) and the image center (uc, vc) , dmin and dmax are 
the mimimum and maximum allowed hopping distances 
respectively. Figure 15 shows the distance map of the safe 
areas and the created gradient map.

(17)Igradient(u, v) =










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cos(�h) =
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�

�

�

�

vc − v
�

(uc − u)2 + (vc − v)2

�

�

�

�

�

,

if dmax ≥
�

(uc − u)2 + (vc − v)2 ≥ dmin and v ≤ vc
0, otherwise

Gradient maps like this can be used as weighting func-
tions to find the most suitable points based on applica-
tion specific criteria [18]. The distance and gradient 

map can be blended together by calculating the pixel-
wise weighted average, excluding unsafe and unknown 
regions. This method makes it possible to select a single 
best candidate, based on any number of independent cri-
teria. The weights can be set to enforce a certain crite-
ria more strictly, the safety aspect with the distance map 
or goal oriented travel with the gradient map. The next 
target for hopping is the highest pixel value of resulting 
selection image. The current position and next target can 
be seen in Fig. 16, where the dangerous areas are marked 
red.

The pixel coordinates are transformed into real world 
coordinates and the required launch speed and angle can 
be calculated from Eq. 14. To avoid hitting obstacles dur-
ing hopping, possible collision is checked. Every point 
that is closer to the next translation plane than the largest 
protrusion of the rover’s body measured from it’s center 
of mass is projected to this plane. The distance of these 
points from the next trajectory are calculated using Eqs. 8 
and 9. Points closer to the trajectory than the larges pro-
trusion are considered to be on collision course. To 
exclude possible outliers, at least a number of points have Fig. 15  Landing position selection. a Distance map, b Gradient map

Fig. 16  Selected target for next landing showing the current 
position, error ellipse and dangerous areas
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to be on collision course to disregard the current trajec-
tory. If collision is detected, the current error ellipse in 
the image used for target selection is masked black and 
the next best landing position candidate is examined. 
The horizontal component of the hopping angle can be 
calculated from the current and target landing positions. 
Before loading the spring with the necessary force, the 
horizontal orientation of the robot is adjusted using the 
information from the equipped sun direction sensor. Sun 
direction sensors are a set of photodiodes mounted in a 
configuration that can be used to calculate the direction 
of a light source [2].

Global map creation
The surface of a planets and asteroids hold valuable 
information and mapping these surfaces to find areas of 
interest as well as to gather data is one of the objectives 
of space missions. Therefore, to map the surface, dense 
point clouds are projected to the XZ plane and a 2D color 
image is created the same way as for target selection. Fig-
ure 17 shows the reconstructed trajectories and environ-
ment of a series of hops.

The global map resulting from 5 hops and a false color 
image showing the areas visible by each hop can be 
seen in Fig.  18. The false color image shows that there 
is enough overlap between point clouds even when 
the angular difference between hopping directions is 
substantial.

Results and discussion
To prove the feasibility of the proposed system, multiple 
tests were conducted in simulated as well as real environ-
ments. First the motion model of hopping is discussed.

During hopping the only force affecting the rover is 
gravity. Therefore, the hopping trajectory is a parabola on 
a plane that is perpendicular to the ground plane (defined 
by the gravity vector as normal vector). By design, the 
center of mass is not perfectly in line with the spring 
force at launch, which introduces a constant rotation 
of the rover during the hop. Since the takeoff surface is 
not necessarily parallel to the ground plane, the rotation 
plane and translation plane are also not parallel. How-
ever, during experiments with hopping rover designs not 
discussed in this paper, we found that the rotation dur-
ing hops is minor, and it is guaranteed that even a single 
camera observes the terrain during the whole hop. Fur-
thermore, experiments concluded that reconstruction 
is successful even in extreme cases, where multiple full 
rotations occur before landing. With the presented SfM 
approach, the trajectory can be reconstructed as long as 
at least 3 different image frames cover a common ground 
area at any point in the trajectory, but accuracy and the 
detail of the reconstructed environment increases with 
the number of reconstructed camera positions.

Since the computational cost rapidly increases with 
the images used, the framerate has to be considered. We 
found that using roughly 50 images is a good compro-
mise in quality/computational cost. The framerate has to 
be set accordingly to the environment, since gravity and 
the desired hopping distance correlates to the time spent 
hopping. Generally the rover is designed to hop 1–10 [m] 
spending a few seconds off the ground.

Especially after launch and near landing, the velocity of 
the rover is high and the camera is close to the ground, 
which increases motion blur. Therefore motion blur was 
implemented in the simulation environment experiments 
as well, although we found that even though it is notice-
able it has minor effect on the reconstruction and map 
creation.

Evaluation in simulation environment
Chains of successive hops were performed in simulated 
environments. The purpose of this evaluation is to show 
that the proposed method is able to reconstruct the flight 

Fig. 17  Reconstruction of a series of hops

Fig. 18  Global map created after 5 successive hops. a True color b 
False color
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trajectory as well as the environment accurately, and 
also navigate by choosing targets for landing without 
hitting obstacles. The criteria for evaluation is the posi-
tion error of the launch point of each hop compared to 
the ground truth, that is easily accessible in a simulation 
environment. Furthermore, the performance of the posi-
tion correction step is also evaluated to show that it can 
successfully eliminate position errors caused by landing. 
A highly detailed photoscanned surface model of a rock 
sandstone desert environment [19] was imported into a 
popular 3D graphics and rendering software [20] to be 
used as ground truth. Using the built in physics engine 
with addons [21], the hops of the rover can be simulated. 
A wide angle camera is fixed to the rover and the frames 
such as ones seen in Fig.  4 are used for reconstruction. 
The camera was facing 45◦ downwards and pointing in 
the direction of travel and the robot had no rotational 
motion during hopping. However, the deviation from the 
landing position to the next hop starting position caused 
by secondary hops is simulated, to test the correction 
algorithm’s performance. The average hopping distance 
was 0.98 [m], average number of frames taken during 
hopping was 49 with the average hopping time of 1.6 [s] 
in 1.62 [ m

s2
 ] simulated Moon gravity. The reconstruction 

results can be seen in Fig. 17.
Table  1 contains the ground truth and estimated 

starting position of each hop for every coordinate, the 
adjusted distance of the position correction step and the 
absolute and relative error, that is defined by the absolute 
error divided by the traveled distance from the origin 
both with and without the position correction step. Since 
the navigation relies on the data acquired by the previous 
hop, the rover can operate long distance independently 

and select targets even if the self-position is inaccurate. 
However, the accumulation of absolute error is much 
larger without the correction step. Furthermore, with 
the help of the introduced correction method, the dense 
point clouds were successfully merged to a seamless 
global map. From the data as well as the created dense 
point cloud of the environment, we can conclude that the 
system is able to reconstruct its surrounding environ-
ment as well as self-position with high accuracy, and also 
navigate independently without hitting obstacles.

Evaluation in real environment
To test the ability of the proposed a system in a real 
environment, several experiments were performed in 
a sandbox at a Japan Aerospace eXploration Agency 
(JAXA) test facility, where many currently operational 
or previously successful space exploration rovers are 
being tested. Here a celestial surface-like environment 
and lighting can be recreated. The environment con-
sists of a large sandbox with natural and artificial rocks 
and boulders scattered randomly. A single large spot-
light was placed approximately 20 m away to imitate 
sunlight and create hard shadows.

Since the robot is designed to operate in a gravity 
much lower than Earth, it cannot be used to hop long 
distances with enough image frames. Therefore, a spe-
cial launch equipment was created to throw a wide 
angle camera instead, shown in Fig. 19 to test the pro-
posed system independently of the hardware limita-
tions. Due to the physical limitations of higher gravity, 
successive hops and long distance navigation were not 
performed. Since the ground is soft, the camera sank 
into the sand after every landing without secondary 
bounces. This made it possible to verify the hopping 
distance by a simple measuring tape with cm accuracy, 
providing ground truth for the hopping distance esti-
mated by the proposed method. The purpose of this 
evaluation is to show that the proposed method is able 

Table 1  Estimated positions compared to  ground truth 
after multiple hops

hop 1 hop 2 hop 3 hop 4 hop 5

GT x [m] 0 1.350 2.450 3.740 4.920

GT y [m] 0 – 0.050 – 0.070 – 0.090 – 0.071

GT z [m] 0 0.300 0.260 0.120 0.191

est. w/o ICP x [m] 0 1.157 2.144 3.320 4.444

est. w/o ICP y [m] 0 0.028 0.037 0.052 0.067

est. w/o ICP z [m] 0 – 0.133 – 0.255 – 0.184 – 0.208

error w/o ICP [m] 0 0.480 0.609 0.538 0.636

error w/o ICP [%] 0 34.718 24.689 14.362 12.921

ICP [m] 0 0.235 0.141 0.277 0.078

est. w/ ICP x [m] 0 1.250 2.331 3.619 4.868

est. w/ ICP y [m] 0 – 0.004 – 0.023 – 0.009 0.019

est. z w/ICP [m] 0 0.080 0.179 0.356 0.141

error w/ ICP [m] 0 0.017 0.025 0.067 0.095

error w/ ICP [%] 0 1.239 0.995 1.788 1.936

Fig. 19  Launch equipment
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to accurately reconstruct the hopping trajectory in real 
environments, even in low light conditions.

The launch equipment is constructed from aluminum 
frames and a 3D printed camera holder tray slides along 
a rail. The launch energy is provided by a rubber band. 
As soon as the holder hits the end of the rail, the cam-
era flies toward the goal facing the ground with some 
rotation. A 94.4◦ vertical field of view wide angle cam-
era was used. Since it is facing towards the ground, the 
reconstructed point clouds cover a smaller area than in 
simulated environments. The launch angle was approxi-
mately 45◦ and the average hopping distance roughly 5 
[m] with the hopping time of about 1 [s]. To compen-
sate for the difference in gravity, the framerate of the 
camera was increased and faster shutter speed was used 
to decrease the effect of motion blur. This consequently 
means that the images are slightly underexposed, fur-
ther pushing the limits of the already low light environ-
ment. One of the advantages of the proposed method is 
that it can calculate the trajectory and scale even when 
the launch was imperfect and the robot unexpectedly 
rotates during hopping.

Experimental results show that the average error 
between the calculated hopping distance and the real 
measured distance was less than 4% and never exceeded 
10% or roughly 15 [cm]. This was verified by a meas-
uring tape between distinct points in the real environ-
ment and comparing it to the distance calculated from 
the cloud coordinates. Even in extreme conditions, 
when the robot performed several full rotations during 
hopping, the trajectory and scale estimation succeeded 
and only details of the dense point cloud was lost due 
to the missing frames when the camera was not facing 
the ground. Figure 20 shows an example of the environ-
mental reconstruction. Even in low light conditions and 
highly reflective and uniform looking sand, not only 
the obstacles but the ground plane is reconstructed, 
although missing patches and noise is more visible then 
in simulation environment.

Conclusions
In this paper a novel monocular navigation system was 
presented for hopping exploration robots using SfM. 
The proposed trajectory and scale estimation method 
is able to accurately determine the real scale and ori-
entation of the environment for single hops. The intro-
duced position correction method is able to eliminate 
errors caused by landing, making long distance naviga-
tion and mapping possible. Furthermore the proposed 
target selection process can navigate the robot towards 
the desired direction without hitting obstacles. From 
the experimental results it can be concluded that the 
presented method is feasible and makes it possible to 
use single monocular cameras, simplifying hardware 
and widening the possibility for low-cost space explo-
ration. The proposed system is also robust and adapt-
able to different environments and lighting conditions 
as well as unaffected by the accidental rotations during 
hopping.

Limitations of the system are the required compu-
tational power, that makes it difficult to implement a 
similar system to applications where fast operation 
is required, and the required external light sensor to 
accurately determine the orientation before hopping.

Future work includes the implementation of the system 
on hopping rover prototypes to perform more experi-
ments analyzing the placement and type of camera used 
and robustness of navigation under different conditions.
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