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Abstract 

Locomotion is a fundamental human skill. Real-time sensing and feedback is a promising strategy for motion train-
ing to reconstruct healthy locomotion patterns lost due to aging or disease, and to prevent injuries. In this paper, we 
present a pilot study on locomotion training via biomechanical modeling and a wearable haptic feedback system. 
In addition, a novel simulation framework for motion tracking and analysis is introduced. This unified framework, 
implemented within the Unity environment, is used to analyze subject’s baseline and performance characteristics, 
and to provide real-time haptic feedback during locomotion. The framework incorporates accurate musculoskel-
etal models derived from OpenSim, closed-form calculations of muscle routing kinematics and kinematic Jacobian 
matrices, dynamic performance metrics (i.e., muscular effort), human motion reconstruction via inertial measurement 
unit (IMU) sensors, and real-time visualization of the motion and its dynamics. A pilot study was conducted in which 6 
healthy subjects learned to alter running patterns to lower the knee flexion moment (KFM) through haptic feedback. 
We targeted three gait parameters (trunk lean, cadence, and foot strike) that previous studies had identified as having 
an influence on reducing the knee flexion moment and associated with increased risk of running injuries. All subjects 
were able to adopt altered running patterns requiring simultaneous changes to these kinematic parameters and 
reduced their KFM to 30–85% of their baseline values. The muscular effort during motion training stayed comparable 
to subjects’ baseline. This study shows that biomechanical modeling, together with real-time sensing and wearable 
haptic feedback can greatly increase the efficiency of motion training.
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Introduction
Despite the positive health effects, there is a high inci-
dence of lower extremity injuries during running  [1, 2]. 
Although estimates suggest that 10–20% of Americans 
run regularly, with 40–50% of these injured annually [3], 
causation is more complex, with a survey of results across 
17 published studies, involving a range specific popula-
tion characteristics (age, experience, gender, etc.) show-
ing annual injury rates can vary from 19 to 79%  [4]. 

Among these injuries, half occur at the knee joint, with 
patellofemoral pain (PFP) being the most common diag-
nosis [2, 4]. PFP can lead to severe pain and disability and 
is a precursor of knee osteoarthritis [5].

Joint moments can be used as an indicator of joint load-
ing and have potential application for sports performance 
and injury prevention. Peak knee flexion moment and 
flexion moment impulse are related to the progression 
of patellofemoral joint (PFJ) osteoarthritis [6]. Increased 
knee flexion moment is suggestive of greater quadriceps 
force requirements and has been reported to result in 
higher PFJ reaction force and stress [7, 8].

Real-time feedback is a promising strategy for 
motion retraining. Visual or tactile feedback have been 
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implemented to alter knee and impact loading [9–13]. 
The use of vibrotactile feedback in several medical and 
non-medical areas has been established [14]. Individu-
alized data-driven models were used to train novel gaits 
involving a combination of kinematic modifications [15]. 
In a comparative study by [16], haptic feedback com-
bined with visual feedback yielded better task learning 
performance for the lower extremity, compared to visual 
feedback or haptic feedback alone. A more recent review 
by [17] documented that studies focused on the clinical 
applications of wearable feedback for human gait often 
used haptic and auditory feedback sensations. Both vis-
ual-auditory feedback and visual-tactile feedback provide 
advantages in reducing reaction times and improving 
performance [18]. Visual-tactile feedback is more effec-
tive when multiple tasks are performed and cognitive 
workload conditions are high [18]. In a study that evalu-
ated assistive navigation systems for the blind, auditory 
feedback resulted in a 22 times higher cognitive load than 
haptic feedback [19]. Previous studies have observed that 
vision feedback provides a high degree of precision [12]. 
Vibration provides simple and intuitive feedback, par-
ticularly when vision is otherwise occupied [15]. In addi-
tion, vibration conveys Cartesian space directional cues 
well.

Haptic feedback is increasingly becoming an essential 
component for maximizing the effectiveness of the inter-
action between the human user and a machine. Using 
touch to communicate with users, haptic feedback pro-
vides a relative sensation that is important in daily explo-
ration tasks. It can also be a means of delivering cues to a 
user learning new motor skills [20] or for patients under-
going rehabilitation therapy [21]. As haptic systems are 
being developed as wearable devices, this technology is 
finding a surge of applications in healthcare, virtual real-
ity, remote assistance, and robotics [22]. Some common 
examples of haptic feedback in everyday life includes the 
vibration alerts in a modern smart watch or the resist-
ance given to the driver by the car’s electric power steer-
ing system. There are many different types of haptic 
feedback modalities that are used for different tasks and 
applications. This paper explores the different modalities 
used and discusses the use of vibrotactile feedback dur-
ing locomotion.

During skin stretch, the surface of the haptic device 
imparts a shear force on the user’s skin to excite its 
mechanoreceptors. By stretching the skin tangentially, 
skin-stretch feedback can give directional information 
to the user [23]. A study by Norman et al. demonstrates 
the effectiveness of a simple fingerpad skin stretch device 
to guide a user’s arm via haptic cues and real-time cor-
rective feedback [24]. With the motivation to increase 
embodiment between amputees and their prosthetic 

device, Battaglia et  al. evaluated the ability of a rota-
tional skin-stretch haptic wearable to convey propriocep-
tive information of a robotic hand [25]. For lower limb 
amputees, Husman et  al. proposes the use of a lateral 
skin-stretch haptic wearable to cue the user of gait events 
during ambulation [26].

During electrotactile feedback, electric signals stimu-
late nerves in the skin via surface electrodes. The main 
benefit of this modality is that there are no moving parts 
and it can deliver a variety of different sensations com-
pared to other forms of feedback [27]. An experiment by 
Pamungkas et al. describes an electrotactile feedback sys-
tem that conveys surface properties of a remote object to 
the back of the user’s hand [28]. Using amplitude mod-
ulated electrotactile feedback to the neck, Arakeri et  al. 
developed a system that provides information regarding 
the grip force and closure of a hand grasping an object 
[29].

Vibrotactile feedback is perhaps one of the most com-
monly recognized types of haptic feedback as it is found 
in mobile phones and gaming console controllers. Vibro-
tactile actuators become ideal in many haptic applica-
tions due to its low cost, small size, and its ability to be 
effective when placed at almost anywhere on the body 
[30]. When combined with motion capture technology, 
vibrotactile feedback can be used to help students learn 
a new motor skill such as playing the violin [20]. More 
notably, vibrotactile feedback systems are researched in 
areas that would help improve gait performance for the 
elderly that suffer from the risk of falling or patients that 
experience a functional disability after stroke. A study by 
Lee et  al. demonstrates the efficacy of vibrotactile cue-
ing to prevent falls using a split-belt treadmill to simulate 
unpredictable perturbations [31]. A portable gait asym-
metry rehabilitation system by Azfal et al. delivers vibro-
tactile cues based on gait phase measurement to improve 
gait symmetry for individuals with stroke [21, 32]. Two 
studies demonstrated that haptic feedback can be used to 
identify and retrain gait parameters such as toe-in/toe-
out configuration and stride length during walking [33, 
34]. A separate study have shown positive results among 
patients who require gait guidance and suffer from gait 
abnormality due to lack of balance for rehabilitation [35].

Researchers proposed using multiple haptic modalities 
in their device to provide multimodal sensory feedback. 
Alonzo et  al. proposed stacking vibrotactile stimula-
tors on top of electrotactile stimulators to make the sys-
tem more compact [36]. Another wearable haptic device 
could deliver skin-stretch, pressure, and vibrotactile to 
convey information about the status of the teleoperated 
robot and it has been shown to effectively improve the 
user operation performance [37]. Skin stretch is a natural 
sensing mode for proprioception, thus making it ideal to 
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intuitively convey proprioceptive information to the user 
[25], even when compared to vibrotactile feedback [38]. 
As an alert scheme, vibrotactile feedback was found to 
be superior to electrotactile feedback in terms of accu-
racy and user comfort [39]. Vibrotactile feedback systems 
have also been shown to be an effective and non-invasive 
method to convey information or cues that is safer than 
electro- and thermal feedback [40].

Computer simulations with accurate musculoskeletal 
models can provide detailed insights into the biome-
chanics of walking [41] and running [42] during treat-
ments. In the biomechanics community, highly accurate 
human models of lower and upper extremities taken 
from cadaveric specimens have been used to investigate 
muscle coordination to identify sources of pathological 
movement and to establish a scientific basis for treatment 
planning and design [43, 44]. Several studies have utilized 
biomechanical modeling and dynamic simulations of the 
musculoskeletal system to identify the contributors to an 
individual gait [45–53]. Metabolic cost models have also 
been introduced for the improvement of robotic assis-
tance that considered passive dynamics [54] and fully 
actuated systems for human walking [55–58]. OpenSim 
[59] is a widely used biomechanical modeling and analy-
sis application that introduced several innovations in: 
joint modeling [60], multi-body and contact modeling, 
and numerical methods [61] to the biomechanics com-
munity. It provides biologically accurate joint and muscle 
models that can be used to create anatomically accurate 
musculoskeletal systems. However, since OpenSim uti-
lizes numerical methods to estimate motion dynamics, it 
cannot be used to simultaneously track and analyze the 
dynamics of motion in real-time.

There exists a plethora of simulation software that 
can be used to model and analyze multi-body systems, 
some of which are commercially available, while others 
are in open source. Current software systems that can 
be used to build and analyze human and animal models 
include: LifeModeler (commercial) [62], AnyBody (com-
mercial) [63], Visual3D (commercial) [64], SIMM [43], 
D-Flow (commercial) [65, 66], V-REP (commercial) [67], 
and OpenSim [59] (open source). AnyBody, Visual3D, 
and D-Flow are only capable of inverse dynamics. Other 
software systems can be used for forward dynamics, but 
they require pre-calculated muscle activations, thus lim-
iting their use for predicting patient response to medi-
cal interventions [68]. OpenSim, Anybody, LifeModeler, 
and SIMM lack live dynamic simulation capabilities; 
they cannot be used to simultaneously track and ana-
lyze motion in real-time. D-Flow, Visual3D, and V-Rep, 
although capable of live simulations, are not open source. 
Moreover, simulation development within these soft-
ware systems is often cumbersome, and interfacing with 

third-party systems (i.e. VR equipment, IMUs, haptic 
systems) is not straightforward for the average developer. 
Developing a simulation framework within a widely sup-
ported engine, such as Unity or Unreal Engine, would be 
much more practical because the resulting products can 
be designed to be scalable, highly customizable, easy-to-
use, and open source.

Despite all the recent advances in biomechanics, 
robotics, and computer animation research, there is no 
established scientific understanding of how real-time 
multi-modal feedback integrates into locomotion train-
ing to improve motor learning and performance [14]. In 
addition, vibrotactile stimulation as a feedback tool in 
sports has not been supported by scientific evidence [14]. 
Finally, there is no unified and portable framework that 
integrates real-time sensing and feedback with human 
biomechanical models.

In this paper, we present a pilot study on locomotion 
training via a wearable haptic feedback system and the 
use of biomechanical modeling. This provide us with 
preliminary results to understand the effect of real-time 
vibrotactile feedback to elicit motor adaptation in loco-
motion. This work builts upon on our recent results on 
human perception accuracy of vibrotactile feedback 
during locomotion [69]. In addition, a novel simulation 
framework for motion tracking and analysis is intro-
duced. This unified framework, implemented within the 
Unity environment, is used to analyze a subject’s baseline 
and performance characteristics, and to provide real-time 
haptic feedback during locomotion. A notable advantage 
of building the framework within the Unity environment 
is that the user has access to Unity’s extensive Asset Store 
[70], which contains a plethora of assets that the user can 
integrate with the simulation framework when build-
ing custom motion analysis applications. The framework 
incorporates accurate musculoskeletal models derived 
from OpenSim, closed-form calculations of muscle rout-
ing kinematics and kinematic Jacobian matrices, dynamic 
performance metrics (i.e., muscular effort) [71], human 
motion reconstruction via IMU sensors, and real-time 
visualization of the motion and its dynamics.

Methods
The following sections present the aim, design, and set-
ting of the study, including the description of the simu-
lation software, motion reconstruction and analysis 
methods, subjects and subject preparation, the experi-
mental protocol, the haptic feedback system, and the type 
of statistical analysis used.

Software
The simulation framework was developed specifically 
to interpret and build OpenSim models within Unity. 
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The framework implements OpenSim’s musculoskeletal 
definitions and incorporates many of OpenSim’s unique 
behaviors, such as: conditional muscle path points, mov-
ing muscle path points, cubic spline joint connectivity, 
and coordinate coupling constraints. The framework was 
also designed to be used within Unity’s editor window in 
order to give the user the ability to load and customize 
dynamic models while in edit mode. The framework pro-
vides matrix operations and symbolic calculus function-
ality via interprocess communication with MIT’s Math.
NET Symbolics [72], the C++ Mathematical Expression 
Toolkit Library (ExprTk) [73], and the ALGLIB numeri-
cal analysis and data-processing library [74]. The inter-
face with Math.NET Symbolics provides the user with 
the ability to symbolically calculate the kinematic and 
muscular Jacobians of a multi-body model during runt-
ime. The output of the symbolic calculation is a sym-
bolic expression that can be interpreted using ExprTk. 
However, symbolic interpretation is computationally 
expensive, especially for large expressions (i.e. kinematic 
Jacobian). In order to circumvent this problem, we added 
dynamic compilation capabilities to the framework that 
enables the user to compile symbolic expressions during 
runtime and save the output assemblies to disk for future 
instances. This runtime-compilation, in combination 
with the closed-form symbolic computation provided 
by Math.NET Symbolics, is the reason why the frame-
work is able to perform complex dynamic computations 
at a simulation frame rate of 100 FPS or higher while 
simultaneously tracking motion (using 6 core Intel(R) 
Core(TM) i7-8700K CPU @ 3.70GHz, 32GB of RAM, 
and a Nvidia GeForce GTX 1080Ti graphics card with 27 
GB of GPU memory.). The framework provides a generic 
motion tracking interface by implementing the motion 
decomposition algorithms from [75–77] to decompose 
the transform of a body into the generalized coordi-
nates of a multi-body model. This motion tracking inter-
face is independent of the motion-capture system used 
and solely relies on the motion of the body that is being 
tracked; this enables the user to use the framework with 
pre-constructed humanoid models, which often come 
with the Unity packages of motion-capture systems. The 
Unity environment provides a framework with the abil-
ity to be interfaced with Unity-compatible, third-party 
systems, such as the Oculus Rift [78] and the abovemen-
tioned IMU system. Moreover, the Unity API can be used 
alongside the simulation framework to create intuitive 
and easily customizable user interfaces that provide the 
user with the ability to interact with the loaded multi-
body models. Figure  1 shows the simulation framework 
within the Unity environment with real-time motion 
reconstruction using the Perception Neuron Pro IMU 
motion-capture system [79].

Muscle Jacobian and effort implementation
The ForceSet element of the OpenSim format contains 
the definitions of the forces in the model. The OpenSim 
format supports various types of forces, such as external 
point forces and spring generalized forces [19, 20]. How-
ever, within our framework, only the muscle path actua-
tor type has been implemented. The muscle path actuator 
type refers to a force-generating element that applies 
controllable tension along a defined geometry path. The 
force-generating behavior of this actuator type is defined 
by the muscle definitions that derive from it. Each of 
these muscle definitions contains a unique definition that 
describes the muscle’s force-generating behavior. These 
unique definitions are, however, out of the scope of our 
framework since the full implementation of the listed 
muscle types is currently not part of the framework’s 
requirements.

At the current state of our framework, the only ele-
ments that are actively utilized are the “MaxIso-
metricForce” and “GeometryPath” elements. The 
“MaxIsometricForce” element is used for the muscle 
effort calculations. The “GeometryPath” element con-
tains the path points that the muscle actuator must fol-
low sequentially in every simulation frame as well as the 
properties that pertain to the visualization of the muscle 
element. Within the framework, the “GeometryPath” ele-
ment contains the definitions for the muscle actuator’s 
“PathPointSet” elements that contain the definitions of 
each path point that outlines the geometric path of the 
muscle actuator. In accordance to the adopted Open-
Sim format, all the path point types must contain defini-
tions for the path point’s “location” and “body” elements. 
The “location” element contains three numerical entries 
which refer to the XYZ location (or starting location) 
of the path point with respect to the reference frame of 
the defined “body” element. The ConditionalPathPoint 
and MovingPathPoint types contain additional elements 
that must be defined in order to represent their unique 
behaviors.

As it pertains to a multibody musculoskeletal model, 
the muscle Jacobian represents the muscle moment arm, 
which is a measure of the effectiveness of a muscle’s con-
tractual force in generating torque about a given joint 
[80]. The Jacobian of a muscle can be calculated by taking 
the partial derivatives of the muscle’s total length with 
respect to the system’s independent generalized coordi-
nates. For a multi-body system with muscle actuators, the 
muscle Jacobian of each muscle can be vertically concat-
enated to represent the system’s muscle Jacobian matrix. 
The muscle Jacobian matrix can then be used to relate the 
muscle forces to the muscle-induced joint torques along 
the system’s generalized coordinates by using the rela-
tionship introduced in [80]. Within our framework, all 
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point-to-point muscle connections are linear; there are 
no curved muscle paths. In fact, for muscle wrapping, 
the framework uses point-to-point connections between 
moving path points and conditional path points to emu-
late a curved path. The framework also assumes that the 
length of a muscle is purely kinematic and depends only 
on the configuration. It also assumes that the muscle 
routing kinematics always take the shortest muscle path 
under a given set of muscle via points. Finally, the muscu-
lar effort criterion is implemented as introduced in [80] 
using the generalized operational space forces for a given 
task and the physiomechanical advantage function [71]. 
The joint space equation of motion for an open-chain 
multi-body system is implemented in the framework. 
Modeling the centrifugal and Coriolis terms is compu-
tationally expensive, especially for large multi-body sys-
tems. For this reason, the Coriolis and centrifugal terms 
are currently not implemented within the framework. 
The gravity, mass matrix, and generalized coordinate 
derivative terms are, on the other hand, implemented.

Motion tracking and reconstruction
Within our framework, a generic interface was imple-
mented [81] by developing a motion-tracking element 

that decomposes the transform of any referenced object 
into the generalized coordinate values required to actu-
ate the imitating “Joint” or “Body” element towards the 
transform of the referenced object. The referenced object 
can be a hierarchy of objects. In this case, the transform 
that the motion-tracking element will try to decompose 
is the transform of the last element in the object hier-
archy with respect to the frame of the root object. The 
motion-tracking element is characterized as generic 
because it does not depend on the type of motion capture 
system that is being used; it depends solely on the trans-
form of the object that it is tracking. This characteristic is 
valuable because most motion capture system companies 
that provide interfaces between their devices and Unity 
also provide a rigged humanoid model that can simply 
be dragged and dropped into the Unity environment and 
work with the motion capture system out of the box. The 
limbs of the humanoid model can then be assigned to the 
appropriate motion-tracking elements, which in turn fol-
low the translation and orientation of the assigned limbs 
without being directly connected to the motion capture 
system. Within the our framework, the generic motion-
tracking element is represented by the JointTracker class. 
The transform decomposition is achieved by extracting 

Fig. 1  Motion tracking and reconstruction in our framework. The blue line illustrates the ground reaction forces during single leg balancing motion
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the translational and rotational components of a refer-
enced object’s transform and then projecting those com-
ponents onto the generalized coordinates of the body 
that is trying to imitate the referenced object’s transform.

In order to evaluate the performance of the Joint-
Tracker element, Perception Neuron full-body IMU suit 
was integrated into the framework. As expected, Noi-
tom already provides the software (Axis Neuron) and the 
rigged humanoid model required to use the IMU motion 
capture system within Unity. As designed, the only task 
that must be completed to use the IMU motion capture 
system with the our framework is to connect the indi-
vidual limbs of the humanoid model to the appropriate 
JointTracker elements. The ground reaction forces are 
estimated by our framework using the motion data from 
IMU and the subject-specific mass matrix. Both the kin-
ematic and kinetic values estimated by our framework 
were validated against the data reported in the literature 
[6].

Haptic feedback system
We used miniature soft-mounted (i.e., vibrotactile) 
actuators [82–84] to ensure light haptic devices did not 
impede the natural motions of the human body where 
they are mounted. The vibration signals were generated 
as follows: (1) “continuous” vibration (500 ms) and (2) 
five “discrete” pulses (100 ms) [85]. The feedback pat-
terns were randomly spaced out by 5 s, 10 s, and 15 s. The 
torso feedback was in the form of continuous vibrations 
on the upper back or staggered vibrations on the lower 
back. The subject was instructed to lean forward while 
they experience continuous vibrations on the upper back 
and lean back when they experienced staggered vibra-
tions on the lower back while they were running. The 
knee feedback was in the form of continuous or staggered 
vibrations on the lateral knee joints. The subject was 
instructed to increase cadence when they experienced 
continuous vibrations and reduce cadence when they 
experienced staggered vibrations while they were run-
ning. The ankle feedback was in the form of continuous 
or staggered vibrations on the lateral ankle joints. The 
subject was instructed to increase foot-drop angle when 
they experienced continuous vibrations and reduce foot-
drop angle when they experienced staggered vibrations 
while they were running. The technical specifications 
of the haptic feedback system and vibration types were 
introduced in our recent study [69].

Experiments
Subjects and subject preparation
Eight healthy subjects (4 male, 4 female; avg. age: 25.375 
years, range: 20–39 years; avg. BMI: 22.912 kg/m2 , range: 
19.1–27.4 kg/m2 ) participated after giving informed 

consent in accordance with the California State Uni-
versity Long Beach Institutional Review Board. Eight 
subjects were sufficient for identifying a knee flexion 
moment reduction based on a priori sample size calcula-
tions. To have scientifically correct subject-specific scal-
ing for the modeling purposes in our future work, we did 
not include children or the elderly. Inclusion criteria for 
subject recruitment are the following: (1) between ages of 
18 and 40 years old; (2) familiar with running on a tread-
mill; and (3) run at least 8 miles/week for 4 weeks prior 
to participation. Exclusion criteria for subject recruit-
ment are the following: (1) history of lower extremity 
or low back surgery that may affect running kinematics, 
kinetics or muscle activation; (2) lower extremity or low 
back pathology that causes pain or discomfort during the 
experiment or within 3 months prior to participation; 
and (3) any physical or mental condition that may pre-
vent the subject from running safely.

Each subject was prepared with a lycra-based athletic 
compression suit. The suit included vibrotactile motors 
that provided haptic feedback on six locations. The loca-
tions of the vibrotactile motors included the upper back, 
lower back, lateral knee joint (both knees), and lateral 
ankle joint (both ankles). In addition to the compres-
sion suit, the subject also wore a Perception Neuron Pro 
IMU full-body suit over the compression suit. 17 sensors 
placed on each subject were used to track the whole-
body motion. The location of the sensors are included in 
the following list: head, upper back, shoulders (left and 
right), upper arms (left and right), forearms (left and 
right), hands (left and right), lower Back (waist), upper 
legs (left and right), lower legs (left and right), feet (left 
and right). Experimental set up took approximately 15 
min. Figure 2 shows the subject wearing the sensing and 
feedback system.

Motion training
The objective of the experiment was to adjust the sub-
ject’s posture while running with haptic feedback. We 
targeted three gait parameters that previous studies had 
identified as having an influence on reducing the knee 
flexion moment: trunk lean [8], cadence [86, 87], and 
foot strike [88, 89]. Each of these kinematic variable has 
been shown to associate with increased risk of running 
injuries. As specified in [15], data was collected/sampled 
every 25 steps, as this was a sufficient number of steps to 
modify a single motion parameter.

The experiment consisted of three major parts. The 
first major part of the experiment collected the subject’s 
baseline information from a 90-s running session. The 
subject then took a 2 min break before moving on to the 
second major part of the experiment to avoid fatigue. The 
second major part of the experiment was the first haptic 
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feedback session that consisted of three 120-s runs with 
2 min breaks in between each run. The subject expe-
rienced 1 of 3 types of haptic feedback during each run 
of the first feedback session. These vibrations guided the 
subject to adjust specific kinematic variables during the 
run. The three types of haptic feedback included the fol-
lowing: torso feedback (increase/decrease trunk lean), 
knee feedback (increase/decrease cadence), and ankle 
feedback (increase/decrease foot drop angle). The sec-
ond major part of the experiment was the second haptic 
feedback session that consisted of four 120-s runs with 
2 min breaks in between. The subject experienced com-
binations of 2 types haptic feedback as follows: torso 
and knees (increase/decrease trunk lean and increase/
decrease cadence), torso and ankles (increase/decrease 
trunk lean and increase/decrease foot drop angle), 
and knees and ankles (increase/decrease cadence and 
increase/decrease foot drop angle) during each run of the 
second feedback session. Vibrations were sent in either 
continuous or staggered mode [69] to indicate the subject 

must increase or decrease the kinematic variable of inter-
est. The subject was asked to try to maintain a posture 
and pace that resulted in no haptic feedback for a total of 
15 s. The subject ran a maximum of 15.5 min throughout 
the experiment. However, this time can be less depending 
on the subject’s success of meeting the posture and pace 
goal. Immediately after the experiment, subjects were 
also asked to report the comfort level during locomotion 
using bipolar Likert-type ten-point scales.

Data analysis
The motion data was acquired using Perception Neu-
ron Pro suit at 120 Hz sampling rate. The musculoskel-
etal model was scaled to each subject’s total mass and 
height. The ground reaction forces and the angles in the 
lower limb joints were determined throughout the entire 
stance phase using our simulation framework. Kinematic 
parameters including trunk lean angle, cadence, foot drop 
angle, and running speed were determined for the base-
line and haptic training. The net internal ankle, knee, and 
hip joint moments in the sagittal and frontal planes were 
calculated using a Newton-Euler inverse dynamics tech-
nique implemented in our simulation framework. All net 
joint moments were normalized to subject’s baseline. In 
addition, the average peak values of KFM during stance 
phase of running were determined. The whole-body 
effort was calculated using the algorithm presented in the 
previous sections. Figure 3 shows the motion reconstruc-
tion using a scaled human biomechanical model in our 
framework. An example of subject’s baseline data is also 
shown in Fig. 3.

Statistical analysis
To evaluate statistical differences in the results of the 
experiment, analyses of variance ANOVAs were per-
formed. Repeated measures ANOVAs were performed 
to compare the results within subjects. When significant 
main effects were identified, paired t-tests were used to 
compare cases. Correlation coefficients were calculated 
to determine if the percent reduction in KFM was cor-
related with the effort or the baseline KFM. Alpha was set 
at 0.05 for all statistical analyses.

Results and discussion
Results
All 8 subjects responded to the haptic feedback devices 
by running with the new patterns, and reduced their 
KFM with haptic feedback compared with baseline. The 
new running patterns resulted in increases in trunk lean 
angle, foot drop angle, and cadence, and they resulted 
in a decrease in KFM. The final KFM was significantly 
lower than baseline in all cases p < 0.01 . The com-
puted effort remained comparable to subject’s baseline. 

Fig. 2  Subject wearing the wireless sensing and feedback system
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Post-experiment bipolar Likert-type surveys indicated an 
average comfort level of 8.5 in ten-point scales. A typical 
example of subject’s baseline generated by the framework 
is shown in Table  1. Figure  4 shows the post-training 
KFM values as a percentage of the subjects’ baseline.

Tables  2 and 3 show average speed, best feedback 
type, average peak KFM, and average effort for each 
subject. The magnitude of reduction in the KFM var-
ied from 14.78% to more than 80%. The average peak 
of the KFM was significantly lower in the post-train-
ing case ( p < 0.01 ). The average KFM reduction was 

41.27% for male and 32.61% for female subjects. There 
was a significant positive correlation between the single-
parameter feedback post-training percent KFM values 
and the effort ( r = 0.64 ). Similarly, there was a signifi-
cant positive correlation between the multi-parameter 

Fig. 3  Simulation framework: real-time motion reconstruction and subject’s baseline data acquisition

Table 1  Sample subject’s baseline generated 
by the framework

Effort 21.47

Cadence (steps/min) 155.22

Trunk lean (deg) 0.04

Max. trunk lean (deg) 0.48

Min. trunk lean (deg)  − 0.33

Foot drop (deg) 5.68

Speed (m/s) 2.19

Fig. 4  Knee flexion moment response to model-driven, single- and 
multi-parameter motion training for individual subjects
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feedback post-training percent KFM values and the effort 
( r = 0.72 ). No statistical difference was found between 
single- and multi-parameter feedback. Post-training run-
ning patterns evidenced increases in kinematic variables 
(trunk lean, foot drop, and cadence) as shown in Table 4 
( p < 0.05 for all variables).

Discussion
This pilot study showed that providing real-time feed-
back based on biomechanical modeling and haptics was 
an efficient locomotion training method for reducing the 
KFM. This real-time feedback approach for a repetitive 
task has the potential to greatly improve the effective-
ness of subject-specific motion training and reduce the 
risk of injuries. Our study conforms to previous studies 
that identified the kinematic variables as having an influ-
ence on reducing the knee flexion moment: trunk lean 
[8], cadence [86, 87], and foot strike [88, 89]. Increasing 
trunk lean, cadence and foot drop angle decreased the 

KFM during stance, which aligns with the previous work. 
In addition, the results of our pilot study showed the 
combined effect of the kinematic variables on KFM via 
a fully-portable feedback system. Although the direction 
of change for each running kinematic variable was gen-
erally consistent across subjects, the amount of change 
varied considerably. This was due to subject-specific dif-
ferences in degree of influence of running parameters on 
the KFM.

The best feedback type for each subject is shown in 
Tables  2 and 3. Baseline and trained running kinemat-
ics were shown in Table  4. In single-parameter train-
ing, the foot drop angle (i.e., forefoot strike) had a 
significant impact on the KFM (average KFM reduction: 
46.33%, p < 0.01 ). Additionally, increased trunk lean and 
cadence caused reductions in the average peak of the 
KFM. The average reduction in KFM was 35.43%, 46.33%, 
and 14.78% with single-parameter trunk lean, foot drop, 
and cadence feedback, respectively. In multi-parameter 

Table 2  Results for all subjects by single feedback type

KFM is the average value of the peak knee flexion moments during the training. Moments are scaled by subject’s baseline. The final KFM was significantly lower than 
baseline in all cases p < 0.01 . The effort remained comparable to subject’s baseline

Subject Gender Avg. speed (m/s) Best feedback type Avg. KFM (% Baseline) Avg. effort (% Baseline)

1 m 1.89 Foot drop 46.38 114.39

2 m 2.19 Trunk lean 75.99 176.31

3 f 1.49 Trunk lean 69.71 88.93

4 m 1.83 Trunk lean 81.58 113.25

5 f 1.56 Foot drop 37.92 114.19

6 f 2.14 Foot drop 76.73 99.98

7 f 1.51 Cadence 85.22 107.53

8 m 1.84 Trunk lean 30.97 34.56

All 63.06 (21.28) 106.14 (38.85)

P-Value p < 0.001

Table 3  Results for all subjects by multiple feedback type

KFM is the average value of the peak knee flexion moments during the training. Moments are scaled by subject’s baseline. The final KFM was significantly lower than 
baseline in all cases p < 0.01 . The effort remained comparable to subject’s baseline

Subject number Gender Avg. speed 
(m/s)

Best feedback type Avg. KFM (% Baseline) Avg. effort (% Baseline)

1 m 1.89 Foot drop + trunk lean 13.37 44.68

2 m 2.19 Foot drop + trunk lean 102.80 167.11

3 f 1.49 Foot drop + trunk lean 92.39 101.76

4 m 1.83 Trunk lean + cadence 75.41 121.14

5 f 1.56 Foot drop + cadence 123.96 127.99

6 f 2.14 Foot drop + cadence 100.37 83.47

7 f 1.51 Foot drop + cadence 80.91 57.27

8 m 1.84 Foot drop + trunk lean 47.03 35.53

All 79.53 (34.98) 92.37 (45.64)

P-Value p < 0.001



Page 10 of 13Demircan ﻿Robomech J            (2020) 7:19 

training, the combination of trunk lean and foot drop 
angles had a significant impact on KFM (average KFM 
reduction: 36.09%, p < 0.01 ). The second most effective 
multi-parameter training was the combination of trunk 
lean angle and cadence, which decreased the average 
KFM by 24.58%. The combination of foot drop angle and 
cadence didn’t have significant effect on the KFM. Over-
all, the computed effort remained comparable to subject’s 
baseline. This finding evidenced that the new running 
patterns did not significantly increase muscle efforts, and 
thus remained comfortable to the subject.

In summary, this study showed that biomechanical 
modeling with haptic feedback is an effective method 
for improving posture for efficient running patterns. 
Significant KFM reductions were evidenced in every 
individual due to the subject-specific variations and 
without altering subject’s effort. Novel running patterns 
were identified and adopted in multiple training ses-
sions using a model-based, portable sensing and feedback 
system. In the future, we plan to extend our framework 
and experiments to include multimodal cues and assess 
the retention of the adopted motion patterns. Plans for 
multi-modal feedback include to provide both concur-
rent and terminal feedback for running. A retention test 
will be implemented while subjects walk without any 
feedback. Terminal feedback has been found to promote 
motor learning and facilitates motor retention [90]. In 
addition to visual feedback, participants of the study will 
receive tactile feedback. To verify and validate the types 
of feedback, a between-participant design will investigate 
participants’ abilities to detect the feedback. In the tactile 
condition, participants will receive a vibratory stimulus 
and self-select a running speed for a duration of 15 min. 
The timing and location of the feedback while running 
will be determined by a ’priority’ schedule used by [85]. 

Participants will be asked to respond to the feedback 
by indicating to experimenters they felt the vibration or 
repeat the body part that was provided by the auditory 
feedback.

Conclusions
Since the 1970s, running popularity has continuously 
grown as a professional and recreational sport. It is esti-
mated 65 million people participated in this activity in 
United States alone in 2017 [91]. Between 1990 and 2013, 
road race finishers grew from five millions to over 19 
million [92]. Contributing to its popularity, running was 
proved to have major health benefits, such as improving 
cardiovascular endurance and overall quality of life, and 
decreasing the prevalence of Type 2 diabetes, obesity, and 
hypertension [93]. In the U.S., 10–20% of the population 
run regularly, with 40–50% of those injured annually [3]. 
Among these injuries, half occur at the knee joint, with 
patellofemoral pain (PFP) being the most common diag-
nosis [2, 4]. PFP can lead to severe pain and disability and 
is a precursor of knee osteoarthritis [5]. There lies a huge 
potential for sports science and physical therapy to use 
feedback mechanisms as intervention tool [14]. One of 
the advantages of motion feedback is the enhancement of 
a user’s ability to function in a cognitively overloaded sit-
uation, such as a multi-task scenario (e.g., running while 
adapting to postural changes for one or more segments). 
Our framework is unique in that it integrates portable 
sensors, models motion dynamics in real-time, and pro-
vides concurrent feedback to improve running.

A limitation in this study was that motion training was 
performed on healthy subjects without prior injury. To 
have scientifically correct subject-specific modeling and 
scaling for our biomechanical model in this study, we did 
not include patients or the elderly, although this can be 

Table 4  Baseline and trained running kinematics for all subjects

The optimal KFM state kinematics highlight the subject-specific nature of the motion training

Subject Trunk lean (deg) Foot drop (deg) Cadence (steps/min)

Baseline New Change Baseline New Change Baseline New Change

1 0.12 4.17 4.04 − 4.10 13.06 17.17 169.52 180.23 10.71

2 0.03 12.35 12.31 5.68 6.38 0.70 154.98 169.79 14.81

3 − 0.15 12.09 12.25 6.51 16.71 10.19 156.76 161.2 4.44

4 − 0.02 10.93 10.96 9.96 6.76 − 3.20 152.75 159.23 6.48

5 0.05 2.93 2.87 − 1.58 − 11.12 − 9.54 175.06 158.47 − 16.59

6 0.22 21.70 21.48 11.79 5.37 − 6.42 172.55 181.08 8.53

7 − 0.03 − 1.38 − 1.34 − 3.01 8.91 11.93 167.26 172.81 5.55

8 0.07 − 3.00 − 3.07 − 2.79 7.36 10.16 172.31 175.43 3.12

All 0.03 (0.11) 7.47 (8.27) 7.43 (8.25) 2.80 (6.39) 6.68 (8.15) 3.87 (9.76) 165.14 (8.90) 169.78 (9.18) 4.63 (9.35)

P-Value p < 0.05 p < 0.05 p < 0.05
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extended in future work. History of lower extremity or 
low back surgery may affect running kinematics, kinet-
ics or muscle activation. Similarly, lower extremity or low 
back pathology may cause pain or discomfort during run-
ning. Older patients may also have difficultly remember-
ing gait modifications trained with real-time feedback, 
particularly if the new gait patterns were a complicated 
combination of movement alterations. Other future 
work includes the integration of a multi-modal feedback 
mechanism in the framework, as subject’s perception of 
feedback modalities may vary based on the age, gender, 
fitness level, and injury history.

This pilot study demonstrated the feasibility of provid-
ing real-time haptic feedback for motion training using a 
fully portable, model-based framework. While the pro-
posed framework and pilot study address improving run-
ning kinematics and associated health outcomes, future 
studies should be associated with utilizing the framework 
with modified models for use with activities of daily liv-
ing (ADL) and sport activities. Improved performance of 
ADL’s will assist with elderly populations in fall reduction 
and disabled communities with impaired sensory sys-
tems. With the rapid increase in repetitive sport injuries, 
use of our framework with sport specific modeling pro-
cedures and learning protocols may provide mechanisms 
to analyze and improve kinematics and kinetics for the 
purposes of injury reduction and improved performance.
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