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Abstract 

In a musculoskeletal system, internal tensile forces are generated among the muscles because it is a redundant 
system. The balancing of the internal tensile forces for a given posture generates a potential field in the system. 
Therefore, the potential field is utilized for the sensorless feedforward position control and improvement of stabil-
ity based on the feedback method. However, the stability of the internal tensile forces is strongly influenced by the 
muscular arrangement. Previous studies showed that a stable condition can be identified through the minimization 
of the potential at a desired posture, and the sufficient condition has been theoretically established; however, the 
geometric condition of the muscular arrangement has not been determined. To effectively exploit the characteristics 
of the internal tensile forces, the geometric condition must be elucidated in the design of a musculoskeletal system. 
This paper aims to clarify the geometric condition to generate stable internal tensile forces. Based on the conditions 
generating the potential that is minimum at the desired posture, the paper analyzes that the geometric condition on 
a musculoskeletal structure with two-link and six-muscle. Additionally, the identified condition is assessed based on 
simulations. As a result, we revealed the geometric condition of the muscular arrangement to generate stable internal 
tensile forces. By designing the muscular arrangement to satisfy the condition, the stability of the internal tensile 
forces is ensured, and consequently, a control method utilizing the characteristics of the internal tensile force is stably 
implemented.
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Introduction
Human can generate a variety of adequate motions to 
adapt to their environs and specific tasks. The generation 
of robot motion that is akin to that of a human is one of 
the most important goals in robotics engineering.

To produce human-like motion, the mechanical struc-
ture of the human body should be investigated in detail. 
The human body possesses a musculoskeletal struc-
ture, which is composed of joints, muscles, and tendons 
that connect muscles to bones. Consequently, a human 

generates voluntary motion by coordinated contraction 
of a muscle group. This is a redundant-driven-system 
because muscles and tendons can transmit only tensile 
forces to the skeletal structure. Because of this redun-
dancy, the system is an ill-posed problem [1]. Moreover, 
the system can adjust the mechanical impedance of joints 
to adapt to its surrounding environment.

As an alternative approach, it considered the motor 
control in a human. Although the motor generation prin-
ciple has not been clarified entirely; several generation 
hypotheses have been proposed. Bizz et al. proposed the 
“Equilibrium point (EP) hypothesis” where the equilib-
rium point between agonistic and antagonistic muscles 
is regulated [2]. Kawato et  al. proposed a motor gen-
eration method that uses the inverse dynamics model 
acquired based on the feedback-error [3]. In these motor 
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generation hypotheses, the primary focus is on the feed-
forward input from the brain as a crucial factor.

Based on the aforementioned, musculoskeletal struc-
tural systems and tendon-driven systems have been stud-
ied in the analysis of human motor control systems; for 
example, Kumamoto et  al. [4] indicated that biarticular 
muscles that actuate two joints contribute to the achieve-
ment of human-like motion. Kozuki et al. [5] produced a 
musculoskeletal humanoid robot to address the analysis 
of human motion generation. In addition, some robot-
ics systems were designed to be human-like and utilized 
characteristic advantages of the musculoskeletal struc-
ture; for example, by Koganezawa et al. [6], Mitsuda et al. 
[7], Ozawa et  al. [8], Hitzmann et  al. [9] and Shin et  al. 
[10].

Kino et  al. determined that the internal tensile forces 
among the muscles produce their own potential field 
that is strongly dependent on the muscular geometric 
arrangement, and that the characteristic can enable feed-
forward positioning by inputting balanced internal forces 
at the desired posture [11, 12]. Expanding on this method, 
Matsutani et al. noted that the stability of the time delay, 
which affects the feedback-system, is improved by stable 
equilibrated internal tensile forces among the muscles 
[13]. These positioning methods that use internal tensile 
forces do not require complex calculations based on real-
time and sensory feedback information like EP hypoth-
esis. It is interesting that the positioning methods do not 
use muscular viscoelasticity unlike EP hypothesis; how-
ever, they utilize only characteristics of the muscular geo-
metric arrangement.

Moreover, the feedforward positioning control-
ler might be unstable depending on the position of the 
attachment point of a muscle. Kino et al. mathematically 
established a sufficient condition to achieve feedforward 
positioning control for a two-link musculoskeletal system 
driven manipulator with six muscles. This was achieved 
by analyzing the quasi-static potential using a second-
order Taylor expansion of the relationship between the 
joint angles and muscular lengths [14]. Based on the 
analysis, it was possible to determine the coefficient con-
dition of the Taylor expansion.

Those studies revealed that the internal tensile forces 
have stability, and the stability depends on the position 
of the attachment point of a muscle. The internal tensile 
forces are used in the system; for example, adjustment of 
the mechanical impedance and stiffness, tensing mechan-
ical muscles. When the structure generates the unstable 
internal tensile forces, the structural system negatively 
affects postural retainment and motion control even for 
feedback control systems. Therefore, the unstable muscu-
lar arrangement must be avoided in the system; however, 
the previous studies did not directly determine the mus-
cular geometric arrangement condition, hence it is diffi-
cult to utilize this result in structural designs.

Expanding on the work [14], this study analyzes the 
stability of the internal tensile forces on the two-link and 
six-muscle musculoskeletal system as shown in Fig.  1, 
and clarifies the geometric condition for the muscular 
arrangement to achieve stable equilibrium at the desired 
posture. The result will be utilized in the design of a mus-
culoskeletal system.

a Model imitating human upper arm
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b Symbols of the model
Fig. 1  Musculoskeletal structural model (two-link with six-muscle)
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“Musculoskeletal system” section provides the details of 
the musculoskeletal system, kinematics, and internal ten-
sile forces. “Stability of the internal tensile forces” section 
describes the stability analysis based on the quasi-static 
potential generated by internal tensile forces. “Analysis 
of geometric muscular arrangement conditions” section 
demonstrates the analysis of the geometric condition of 
the muscular arrangement based on the analysis of “Sta-
bility of the internal tensile forces” section. “Stability veri-
fication of geometric muscular arrangement conditions” 
section verifies the resultant condition through simula-
tions. Finally, the conclusions are presented in “Conclu-
sion” section.

Musculoskeletal system
Target model
In the field of robotics, a musculoskeletal structure is uti-
lized in human-like robots. The structure of these robotic 
systems consists of links instead of a skeletal system and 
utilize mechanical muscles such as actuator units to 
transfer tensile forces along wire cables [5, 8].

In this study, a mechanical muscle, such as a unit of 
an actuator and a wire cable, is called “muscle” as shown 
in Fig.  2. Additionally, the aspect of the musculoskel-
etal structure determined by fixing points of muscles on 
the links or base is called “muscular arrangement”. The 
musculoskeletal system is a redundant-driven-system 
because it consists of antagonistic muscles, and it gener-
ates internal tensile forces among these muscles. In this 
study, the following assumptions are made for the target 
system:

•	 The system has two joints and six muscles as shown 
in Fig.  1. This model consists of four simple-joint 

muscles (1–4) and two biarticular muscles (5 and 6). 
The joint angles are controlled by those six muscles 
and the resultant motion has a planar motion that is 
not affected by gravity.

•	 The target structure is designed based on a human 
upper arm. Therefore, the muscular arrangement 
does not differ significantly from that of a human 
musculoskeletal structure.

•	 Each muscle directly connects to points on the links/
base, and contract linearly. Furthermore, each muscle 
does not interfere with any mechanical parts.

•	 The muscles only transmit tensile forces but not 
pushing forces; they usually generate tensile forces 
and do not slack.

•	 In the presented analysis, the joint angles can move 
in the range from 0 [deg] to 180[deg]. Additionally, 
the posture satisfies “Vector Closure [15]” and it has 
an antagonistic muscular structure during motion. 
Non-singularity is satisfied during motion.

•	 The paper analyzes the quasi-static structural condi-
tion generating stable internal tensile forces; there-
fore, it does not especially consider dynamics param-
eters: the masses, the inertia, the viscoelasticity of the 
system.

System static relations
This section explains the static relations of the system. 
Table 1 shows the symbols of the musculoskeletal struc-
tural parameters using in the section. As shown in Fig. 1, 
the linkage lengths are L1 , L2 , and the muscular lengths 
are qi (i = 1, . . . , 6) , respectively. q = (q1, . . . , q6)

T repre-
sents the muscular length vector. The 1st to 4th muscles 
represent simple-joint muscles. The 5th and 6th muscles 
represent biarticular muscles. The tensile force generated 
on the i-th muscle is expressed as αi , and the tensile force 
vector is defined as α = (α1, . . . ,α6)

T . Each muscle gen-
erates only a tensile force, so αi > 0 for all i at any time. 
The tensile forces are positive in the pulling direction. 
The joint angles θ1 , θ2 represent the shoulder and elbow 

a

b
Fig. 2  Model of the mechanical muscle

Table 1  Symbol list of  the  musculoskeletal structural 
parameter in the Section: System static relations

Symbol Meaning

L1 , L2 The linkage lengths

i = 1, . . . , 6 The number of the muscles

q = (q1, . . . , q6)
T The muscular length vector

α = (α1, . . . ,α6)
T The tensile force vector

θ = (θ1 , θ2)T The joint angular vector

τ = (τ1, τ2)
T The joint torque vector
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angles, where θ = (θ1 , θ2)T is the joint angular vector. The 
joint torques τ1, τ2 represent the generated torques on the 
joints, where τ = (τ1, τ2)

T is the joint torque vector.
The relation between the joint torque vector τ and the 

tensile force vector α is expressed as follows:

where W (θ) ∈ R
2×6 is a Jacobian matrix. The positive 

direction of the tensile force αi is inverse to the positive 
direction of the muscular length qi in the equation.

The relationship between the muscular lengths and the 
joint angles are non-linear because the muscles are fixed 
on the link/base and driven linearly without any interfer-
ing mechanical parts, such as a guide-pully. Therefore, 
the Jacobian matrix W  is non-linearly changed by the 
joint angles θ.

The inverse relationship of Eq. (1) is written as follows:

where W+(θ) is the pseudo inverse matrix defined as 
W+(θ) = W T (θ)(W (θ)W T (θ))−1 . The second term v(θ) 
represents the internal tensile force among the muscles 
that belongs to the null-space of W (θ) at the posture θ , 
and is expressed as

where ke ∈ R
6×1 is determined arbitrarily.

Stability of the internal tensile forces
Relationship between internal tensile forces and potential
This section considers the case of a target system in 
which the input internal tensile force vd balances a 
desired posture θd as follows:

where,

The arbitrary numbers in the vector ke are selected such 
that the muscles do not slack as follows:

In a later analysis, the vector ke is defined as a constant 
vector.

When α = vd , a joint torque is not generated at the 
desired posture θd as shown in the follows:

(1)τ = W (θ)α,

(2)W (θ) = −
(

∂q

∂θ

)T

.

(3)α = W+(θ)τ + v(θ),

(4)v(θ) =
(

I −W+(θ)W (θ)
)

ke ,

(5)α = vd ,

(6)vd = v(θd) =
(

I −W+(θd)W (θd)
)

ke .

(7)vdi > 0 for any i (i = 1, . . . , 6).

However, at another posture θ  = θd , the joint torque is 
generated as follows:

When the torque is generated for the desired posture, the 
internal tensile forces are stable at the desired posture. 
However, when the torque is generated for a different 
posture from that of the desired one, the internal tensile 
forces are unstable at the desired posture.

Kino et  al. indicated that the internal tensile force vd 
generates a particular potential field, according to the 
characteristics described in the preceding section; there-
fore, the internal tensile forces are stable when the quasi-
static potential defined as follows is minimized at the 
desired posture [11, 12]:

By using the stability of the internal tensile forces, they 
achieved feedforward positioning control by inputting 
constant tensile forces in the muscles as Eq. (5), and sub-
sequently analyzed the dynamic stability of the feedfor-
ward positioning controlled system with two-link and 
six-muscle by using the Lyapunov function [14]. The 
control method is simply used to input constant equilib-
rium tensile forces at the desired posture. Therefore, the 
system can be controlled without any displacement feed-
back or complex real-time computing [13].

The previous analysis revealed that the shape of the 
potential P(θ) that influences the stability of the internal 
tensile forces is sensitive to the muscular arrangement 
[12]. For example, in the case of two-muscular systems 
as shown as Fig. 3a and b, the arrangement Fig.  3a has 
a  little offset d to the muscle fixed points. However, the 
arrangement Fig.  3b does not have the offset d.

Figure 4 represents the resultant shapes of the poten-
tial for the desired posture θd = (90, 90)T [deg] and 
ke = (1...1)T on the muscular arrangements Fig. 3a and b. 
As shown in Fig. 4a, the shape of the potential P is mini-
mized at the desired posture θd for the arrangement 3a. 
Therefore, the internal tensile forces have stability, and 
they generate convergent torque at the desired posture 
θd . However, as shown in Fig.  4b, the potential of the 
arrangement Fig. 3b is not minimized at the desired pos-
ture; hence, the internal tensile forces are unstable, and 
they do not generate convergent torque at the desired 
posture θd.

This example demonstrates that the shape of the poten-
tial P is strongly dependent on the muscular arrange-
ment. The system’s stability and convergence at the 
desired posture are similarly affected by the shape of 

(8)τ = W (θd)vd = 0.

(9)τ = W (θ)vd �= 0.

(10)P(θ) =(q(θ)− q(θd))
T vd .
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the potential. Although only the case of θd = (90, 90) 
[deg] is shown as an example, the other cases at arbitrar-
ily desired postures in the possible motion range exhibit 
the same characteristic for the muscular arrangements 
Fig. 3a and b [12].

Stable condition for two‑link and six‑muscle system
As described in the preceding section, the sufficient 
condition for which the muscular internal tensile forces 
are locally stable at the desired posture θd is that the 
potential P(θ) is minimized. By approximating the 
potential P(θ) by using a second-order Taylor expan-
sion for the relationship between the joint angle θ and 
the muscular length q , Kino et al. determined the stable 
condition of the coefficients [14].

This study aims to identify the geometric condition 
of the muscular arrangement by expanding the Kino’s 
stable condition. Succeeding part elucidates the Kino’s 
stable condition because of important principle in this 
study.

The paper considers the stability of internal tensile 
forces in the vicinity of the desired posture θd . When 
the potential P(θ) has a local minimum at the desired 
posture θd , the following two conditions are obtained:

Equation (11) is always satisfied based on the definition 
of the internal tensile force vector vd , which is a vector 
that belongs to the null-space of W (θd) . Therefore, the 
local minimum condition of the potential P(θ) at the 
desired posture θd only depends on the positive definite-
ness of the hessian matrix H(θd) ∈ R

2×2 described in Eq. 
(12). The necessary and sufficient condition that the Hes-
sian matrix H(θd) has a positive definiteness is equivalent 
to the follows:

The conditional Eqs. (13) and (14) are analyzed based on 
the coefficients of the approximated muscular length q∗i  , 
calculated using the second-order Taylor expansion of 
the relationship between the joint angle θ and the muscu-
lar length qi near θ∗ . The approximated muscular length 
q∗i  in the vicinity of θ = θ

∗ is defined as follows:

In the analysis, the range of θ∗ = (θ∗1 , θ
∗
2 )

T is defined as 
0 < θ∗1 < 180 [deg], 0 < θ∗2 < 180 [deg] and satisfies 
“Vector Closure” similarly to the range of the joint angle 
θ . Q1i(θ

∗) and Q2i(θ
∗) are the coefficient matrices defined 

as follows:

Substituting the approximated muscular length q∗i  
( i = 1, . . . , 6 ), the conditional Eqs. (13) and (14) are 
approximately rewritten as follows:

(11)
∂P(θ)

∂θ

∣

∣

∣

θ=θd

=−W (θ)vd |θ=θd
= 0,

(12)
∂2P(θ)

∂θ2

∣

∣

∣

θ=θd

=H(θd) > 0.

(13)trace(H(θd)) >0,

(14)|H(θd)| >0.

(15)
q∗i (θ) = qi(θ

∗)+Q1i(θ
∗)(θ − θ

∗)

+ 1

2
(θ − θ

∗)TQ2i(θ
∗)(θ − θ

∗).

(16)Q1i(θ
∗) =(ǫ1i, ǫ2i),

(17)

Q2i(θ
∗) =

�

ai bi
bi ci

�

=





∂2qi(θ)

∂θ21

∂2qi(θ)
∂θ1∂θ2

∂2qi(θ)
∂θ1∂θ2

∂2qi(θ)

∂θ22





�

�

�

�

�

�

θ=θ
∗

.

Fig. 3  Muscular arrangement (vertical and horizontal symmetry, 
L1 = 310, L2 = 270, h = 50, bx = 120, by = 10, d = 30 or 0[mm])

Fig. 4  Shapes of the potential (desired angle θd = (90, 90)T[deg], 
ke = (1, . . . , 1)T)
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where, n13 = a1c3 , n14 = a1c4 , n15 = a1c5 , n16 = a1c6 , 
n23 = a2c3 , n24 = a2c4 , n25 = a2c5 , n26 = a2c6 , 
n35 = a5c3 , n36 = a6c3 , n45 = a5c4 , n46 = a6c4 , 
n55 = a5c5 − b25 , n56 = a5c6 + a6c5 − 2b5b6 , 
n66 = aa6c6 − b26 . vdi is always satisfied as 
vdi > 0 (i = 1 . . . 6) from Eq. (7). Therefore, when all the 
numbers in the vector u and the matrix N  in Eqs. (18) 
and (19) are positive, the conditional Eqs. (13) and (14) 
are sufficiently satisfied. As a result, the potential P(θ) is 
locally invariably minimized at the desired posture θd.

According to the preceding results, the internal tensile 
forces vd are stable at the desired posture θd because it 
sufficiently satisfies Eqs. (13) and (14) based on the sec-
ond-order approximation, when each coefficient aj , ck , 
b5 , b6 ( j = 1, 2, 5, 6 , k = 3, 4, 5, 6 ) defined as the approxi-
mated muscular length q∗i  is satisfied as follows:

Stable conditions of the internal tensile forces when 
using Taylor expansion coefficient in the neighbor-
hood of the desired posture θd.

The number a5c6 + a6c5 − 2b5b6 of the 5th row and 
6th column in the matrix N  is positive when the condi-
tions (20)–(23) are satisfied (see Appendix A). The most 
important finding in this analysis is that the conditions 
(20)–(23) never contain any information on a desired 
posture θd ; that is available for any desired posture near 
θ
∗ when the conditions are satisfied.

(18)trace(H∗) =uvd ,

(19)

�

�H∗
�

� = vd
TNvd ,

u = (a1, a2, c3, c4, a5 + c5, a6 + c6),

N =















0 0 n13 n14 n15 n16
0 0 n23 n24 n25 n26
0 0 0 0 n35 n36
0 0 0 0 n45 n46
0 0 0 0 n55 n56
0 0 0 0 0 n66















,

(20)aj > 0 (j = 1, 2, 5, 6),

(21)ck > 0 (k = 3, 4, 5, 6),

(22)a5c5 > b25,

(23)a6c6 > b26.

Analysis of geometric muscular arrangement 
conditions
The stable conditions of internal tensile forces high-
lighted in the preceding section (20)–(23) described in 
the reference [14] are merely the conditions of the coeffi-
cients for the Taylor-extended muscular length using the 
joint angle θ . However, these conditions do not directly 
indicate how to arrange the muscles to generate stable 
internal tensile forces. This section expands the condi-
tions (20)–(23), and establishes the geometric muscu-
lar arrangement conditions for the two-link, six-muscle 
system.

Geometric condition for simple‑joint muscles
Initially, the simple-joint muscles represented as 1st-4th 
muscles in Fig. 1 are analyzed. The arranged parameters 
of the simple-joint muscles î ( ̂i = 1, 2, 3, 4 ) are defined 
in Fig. 5. Table 2 shows the symbols of the simple-joint 
muscular arrangement. l

î
 and r

î
 are the vectors from 

Fig. 5  Symbols used for the simple-joint muscular arrangement

Table 2  Symbol list of  the  simple-joint muscular 
arrangement

Symbol Meaning

î = 1, 2, 3, 4 The number of the simple-joint muscle

l
î
 , r

î
The vectors from the rotational center of the driven joint 

to the muscular fixed points

l̂
i
 , r
î

The lengths of the vector l
î
 and r

î

φ
î
 , ψ

î
The angles between the base/link and the vectors l

î
 or r

î

θ̂
î

The angles between l
î
 and r

î



Page 7 of 16Ochi et al. Robomech J            (2020) 7:17 	

the rotational center of the driven joint by the i-th mus-
cle, to the muscular fixed points on the base/link and 
the vector lengths are l

î
 and r

î
 respectively. The angles 

φ
î
 , ψ

î
 are defined between the base/link and the vectors 

l
î
 or r

î
 respectively. The angles θ̂

î
 are defined between 

the vector l
î
 and the vector r

î
 . l

î
 , r

î
 , φ

î
 , ψ

î
 are constant 

even if the joint angles θ1 and θ2 are changed. Moreo-
ver, θ̂

î
 is defined by φ

î
 , ψ

î
 and the joint angle θ , thus, θ̂

î
 

changes during angular motion. The muscle length q
î
 is 

expressed using the cosine formula as follows:

 
For the stable conditions (20)–(23), the conditions of 

the simple-joint muscle relate to only a
î
> 0 and c

î
> 0 

as described in Eqs. (20) and (21). Here, the geometric 
muscular arrangement condition is analyzed by focus-
ing on the 1st simple-joint muscle. a1 is defined as 
a1 = ∂2q1(θ)

∂θ21

∣

∣

∣

θ=θ
∗
 from Eq. (17), and rewritten as the fol-

lows from Eq. (24):

where θ̂∗1  and q∗1 are the constant values of θ̂1 and q1 
under θ = θ

∗ , which is the reference point for the Taylor 
expansion. From the definitions of that q∗1 , l1 and r1 are 
positive real numbers, (r1 cos θ̂∗1 − l1)(l1 cos θ̂

∗
1 − r1) is 

negative when the Eq. (25) is satisfied a1 > 0 ; therefore, 
r1 cos θ̂

∗
1 − l1 and l1 cos θ̂∗1 − r1 have the different sign. As 

a result, the condition (20) is rewritten either the follow-
ing conditions:

For Condition (A), it is necessary that l1 > r1 to satisfy 
l1 cos θ̂

∗
1 > r1 ; therefore r1 cos θ̂∗1 < l1  is always satisfied 

by  considering r1 > 0 and max{cos θ̂∗1 } = 1 . Similarly, 
for the condition (B), it is necessary that r1 > l1 to sat-
isfy r1 cos θ̂∗1 > l1 ; therefore l1 cos θ̂∗1 < r1  is satisfied. As 
a result, Conditions (A) and (B) are rewritten as Condi-
tions (A’) and (B’) as follows:

(24)q
î
=

√

l2
î
+ r2

î
− 2l

î
r
î
cos θ̂

î
(î = 1, 2, 3, 4).

(25)

a1 =
∂2q1

∂θ21

∣

∣

∣

∣

∣

θ=θ
∗

= − r1l1(r1 cos θ̂
∗
1 − l1)(l1 cos θ̂

∗
1 − r1)

q∗31
,

Condition (A) = l1 cos θ̂
∗
1 > r1 and r1 cos θ̂

∗
1 < l1,

Condition (B) = l1 cos θ̂
∗
1 > r1 and r1 cos θ̂

∗
1 < l1.

(26)Condition
(

A′): l1 cos θ̂
∗
1 > r1,

(27)Condition
(

B′): r1 cos θ̂
∗
1 > l1,

The design method for the muscular arrangement of 
the 1st simple-joint muscle is then considered from the 
preceding conditions (A’) and (B’). Figure  6a displays 
the muscular arrangement that satisfies Condition (A’). 
To satisfy this condition the length l1 must be shorter 
than the length r1 cos θ̂∗1  that projects r1 onto the vec-
tor l1 . Considering the triangle consisting of the vec-
tor l1 , r1 and the 1st muscle, the geometric condition 
is reworded such that the angle β1 ( 0 < β1 < 180[deg]) 
consisting of the vector l1 and the 1st muscle, must be 
an obtuse angle.

Similarly, Fig. 6b represents the muscular arrangement 
that satisfies Condition (B’). The geometric condition 
indicates that the angle γ1 consisting of the vector r1 and 
the 1st muscle must be an obtuse angle. As a result, the 
geometric muscular arrangement condition for the 1st 
muscle is expressed as follows:

The conditions for the other simple-joint muscles a2 > 0 , 
c3 > 0 , c4 > 0 are similarly analyzed and are obtained as 
with the 1st muscle.

Consequently, the simple-joint muscular arrangement 
required to generate stable internal tensile forces at a 
desired posture must be satisfied with either of the fol-
lowing conditions:

I    The geometric conditions of the simple-joint 
muscular arrangement

The geometric muscular arrangement conditions 
required to satisfy a1 > 0 , a2 > 0 , c3 > 0 , c4 > 0 
in Eqs. (20) and (21) are that the angles, β

î
 and γ

î
 , 

defined by the arrangement of the simple-joint mus-
cles î-th (î = 1, 2, 3, 4) must  be satisfied either of the 
following conditions:

(28)90 < β1 < 180 or 90 < γ1 < 180 [deg].

(29)90 < β
î
< 180 or 90 < γ

î
< 180 [deg].

a b

Fig. 6  Geometric muscular arrangement condition of the 1st 
simple-joint muscle
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Geometric condition for biarticular muscles
This subsection contains an analysis of the geometric 
condition for biarticular muscles ĩ-th (ĩ = 5, 6) in Fig. 1. 
The parameters of the arrangement for the biarticular 
muscles are defined in polar coordinates as shown in 
Fig. 7. Table 3 shows the symbols of the biarticular mus-
cular arrangement. l ĩ and r ĩ are the vectors from the rota-
tional center of each joint to the muscular fixed points on 
the base/link, and the vector lengths are lĩ and rĩ respec-
tively. The angle φĩ is defined between the base and the 
vector l ĩ , and the angle ψĩ is defined between the 2nd link 
and the vector r ĩ.
θ
φ ĩ represents an angle between l ĩ and the 1st link, and 

θ
ψ ĩ is the angle between r ĩ and the 1st link. θ

φ ĩ and θ
ψ ĩ 

change during angular motion. Moreover, the angles, 
φĩ and ψĩ are constant even if the joint angles, θ1 and θ2 
change. By using these defined parameters, the muscular 
length qĩ is expressed as follows:

where R = l2
ĩ
+ r2

ĩ
+ L21 , C

φ ĩ = cos θ
φ ĩ , C

ψ ĩ = cos θ
ψ ĩ , 

C
φψ ĩ = cos(θ

φ ĩ + θ
ψ ĩ).

Substituting Eq. (30) into Eq. (17) yields the geomet-
ric condition for the biarticular muscles. As an exam-
ple, the condition for the 5th muscle is obtained: from 
Eqs. (20), (21), and (22), the conditions a5 > 0 , c5 > 0 , 
a5c5 > b25 are obtainable for the muscle length q5 as 
follows:

where,

C∗
φ5 , C

∗
ψ5 , C

∗
φψ5 and q∗5 determine the values Cφ5 , Cψ5 , 

Cφψ5 , q5 at the reference point θ∗ for the Taylor expan-
sion; thus, X, Y, and Z are constant because θ∗ has a 
constant value. By substituting Eqs. (31)–(33) into Eqs. 
(20)–(22) (see Appendix B), the following condition 
that simultaneously satisfies the inequations X5 > 0 , 
Y5 > 0 is obtained for the 5th biarticular muscle: 

Next, the analysis considers the design method for 
the 5th biarticular muscle by expanding the preced-
ing conditions (37) and (38). For the condition (37), 
the first term L1C∗

φ5 implies that the length of the pro-
jection of the vector L1 on the vector l5 as shown in 
Fig.  8a. Next, the second term −r5C

∗
φψ5 is considered. 

Using the angle π − θφ5 − θψ5 as shown in Fig.  8b, 
−C∗

φψ5 = − cos(θφ5 + θψ5) equals cos(π − θφ5 − θψ5) . 

(30)
qĩ =|l ĩ − (r ĩ + L1)|

=
√

R− 2lĩL1Cφ ĩ − 2rĩL1Cψ ĩ + 2lĩrĩCφψ ĩ,

(31)a5 =
∂2q5

∂θ21

∣

∣

∣

∣

∣

θ=θ
∗
= −l5X5(r5Y5 + L1Z5)

q∗35
,

(32)b5 =
∂2q5

∂θ1∂θ2

∣

∣

∣

∣

θ=θ
∗
= −l5r5X5Y5

q∗35
,

(33)c5 =
∂2q5

∂θ22

∣

∣

∣

∣

∣

θ=θ
∗
= −r5Y5(l5X5 + L1Z5)

q∗35
,

(34)X5 = L1C
∗
φ5 − r5C

∗
φψ5 − l5,

(35)Y5 = L1C
∗
ψ5 − l5C

∗
φψ5 − r5,

(36)Z5 = l5C
∗
φ5 + r5C

∗
ψ5 − L1.

Condition (C):

L1C
∗
φ5 − r5C

∗
φψ5 − l5 > 0, (37)
and

L1C
∗
ψ5 − l5C

∗
φψ5 − r5 > 0. (38)

Fig. 7  Symbols used for the biarticular muscular arrangement

Table 3  Symbol list of  the  biarticular muscular 
arrangement

Symbol Meaning

ĩ = 5, 6 The number of the biarticular muscle

l ĩ , r ĩ The vectors from the rotational center of each 
joint to the muscular fixed points

l̃i , rĩ The lengths of the vector l ĩ and r ĩ
φĩ The angle between the base and the vector l ĩ
ψĩ The angle between the base and the vector r ĩ
θφ ĩ The angle between l ĩ and the 1st link

θψ ĩ The angle between r ĩ and the 1st link
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Therefore, the second term −r5C
∗
φψ5 is the length of the 

projection of the vector r5 onto the vector l5.
As a result, the condition (37) is satisfied when the mus-

cular length l5 is shorter than the length L1C∗
φ5 − r5C

∗
φψ5 , 

which the projection of the vector L1 + r5 onto the vec-
tor l5 . Namely, the geometric muscular arrangement 
condition is rewritten as β5 , which is an angle consist-
ing of the vector l5 and the 5th muscle, must be obtuse 
( 90 < β5 < 180 [deg]) as shown in Fig. 9a.

Similarly, the condition (38) is satisfied when the length 
r5 is shorter than the length L1C∗

ψ5 − l5C
∗
φψ5 , which is 

the projection of the vector L1 + l5 onto the vector r5 . 
Consequently, γ5 which is an angle consisting of the vec-
tor r5 and the 5th muscle, must be obtuse ( 90 < γ5 < 180 
[deg]) when the condition (38) is satisfied, as shown in 
Fig. 9b.

For the 6th biarticular muscle, the same result is 
derived. The detailed analysis of the 6th muscle is omit-
ted due to the limitation of space.

Finally, the design for the muscular arrangement of 
the biarticular muscles to generate stable internal tensile 
forces at the desired posture is summarized as follows:

II. The geometric conditions of the biarticular mus-
cular arrangement

The geometric muscular arrangement conditions 
required to satisfy a5 > 0 , a6 > 0 , c5 > 0 , c5 > 0 , 
a5c5 > b25 , a6c6 > b26 in Eqs. (20), (21), (22) and (23) are 
that the angles βĩ , γĩ defined by the arrangement of the 
biarticular muscles ĩ-th (ĩ = 5, 6) are satisfied for both of 
the following conditions:

(39)90 < βĩ < 180 and 90 < γĩ < 180[deg].

a b

Fig. 8  Geometric relationship for the condition (37) of the 5th 
biarticular muscle

a b
Fig. 9  Geometric conditions of the 5th biarticular muscle

Table 4  Parameters of muscular arrangements

A B

r1...6 [mm] 60, 60, 60, 60, 60, 60

l1...6 [mm] 120, 120, 120, 120, 60, 60

ϕ1...6 [deg] 30, 30, 30, 30, 30, 30 0, 0, 0, 0, 0, 0

ψ1...6 [deg] 5, 5, 5, 5, 30, 30 5, 5, 5, 5, 0, 0

C D

r1...6 [mm] 60, 60, 60, 60, 60, 60

l1...6 [mm] 120, 120, 120, 120, 60, 60

ϕ1...6 [deg] 30, 30, 30, 30, 0, 0 0, 0, 0, 0, 30, 30

ψ1...6 [deg] 5, 5, 5, 5, 0, 0 5, 5, 5, 5, 30, 30

Table 5  Geometric conditional angles βi and  γi for  each 
muscular arrangement

Simple-joint muscles Biarticular muscles

A

   Conditions [deg] β1...4 > 90 or γ1...4 > 90 β5,6 > 90 and γ5,6 > 90

   β1...6 [deg] 95.1, 95.1, 95.1, 95.1 120.0, 120.0

   γ1...6 [deg] 29.9, 29.9, 29.9, 29.9 120.0, 120.0

B

   Conditions [deg] β1...4 > 90 or γ1...4 > 90 β5,6 > 90 and γ5,6 > 90

   β1...6 [deg] 67.5, 67.5, 67.5, 67.5 90.0, 90.0

   γ1...6 [deg] 27.5, 27.5, 27.5, 27.5 90.0, 90.0

C

   Conditions [deg] β1...4 > 90 or γ1...4 > 90 β5,6 > 90 and γ5,6 > 90

   β1...6 [deg] 95.1, 95.1, 95.1, 95.1 90.0, 90.0

   γ1...6 [deg] 29.9, 29.9, 29.9, 29.9 90.0, 90.0

D

   Conditions [deg] β1...4 > 90 or γ1...4 > 90 β5,6 > 90 and γ5,6 > 90

   β1...6 [deg] 67.5, 67.5, 67.5, 67.5 120.0, 120.0

   γ1...6 [deg] 27.5, 27.5, 27.5, 27.5 120.0, 120.0



Page 10 of 16Ochi et al. Robomech J            (2020) 7:17 

Stability verification of geometric muscular 
arrangement conditions
This section verifies the conformity between the geo-
metric conditions of the muscular arrangement and the 
stability of the internal tensile forces by demonstrating 
generated shapes of the potential for certain muscular 
arrangements.

The stability of the internal tensile forces is verified for 
the link lengths (L1, L2) = (310, 270) [mm]. The reference 
angle of the Tayler-expansion is fixed θ∗ = (90, 90)T[deg]. 
The parameters of the muscular arrangement are defined 
as in Figs. 5 and 7. This section demonstrates verification 

for the cases of the muscular arrangements A, B, C and D 
as represented in Table 4. Interference between the mus-
cles and the links is ignored for the analysis.

Firstly, the conditional angles βi and γi for the reference 
angle θ∗ = (90, 90)T[deg] in the muscular arrangements 
A – D are represented in Table 5. The muscular arrange-
ment A satisfies the stable conditions β1...4 > 90 [deg] or 
γ1...4 > 90 [deg], β5,6 > 90 [deg] and γ5,6 > 90 [deg] for all 
muscles. However, the muscular arrangement B does not 
satisfy all the conditions. The muscular arrangement C 
only satisfies the conditions for the simple-joint muscles 
1–4, however, it does not satisfy the conditions for the 

ba

dc
Fig. 10  Minimality discrimination of the shapes of the potential at each desired posture (green circular markers indicates a local minimized 
potential at the posture. Red triangular markers indicates a non-minimized potential at the posture. Black circular markers indicates a local 
minimized potential, however, negative tensile forces are generated on the muscles. Black triangular markers indicates a non-minimized potential, 
and, negative tensile forces are generated on the muscles. × indicates that “ Vector Closure ” is not satisfied)
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biarticular muscles 5 and 6. Contrary to arrangement C, 
the muscular arrangement D satisfies the conditions for 
the biarticular muscles 5 and 6, however, it does not sat-
isfy the conditions for the simple-joint muscles 1–4.

Next, for each of the cases of the muscular arrange-
ments A–D, the stability of internal tensile forces at the 
desired posture is numerically examined to verify the 
effectiveness of the analyzed conditions. Using Eqs. (11) 
and (12), Fig. 10 describes the minimization of the poten-
tial at the desired posture for every five degrees rang-
ing 0 < θ1 < 180[deg], 0 < θ2 < 180[deg]. The arbitrary 
vector ke on Eq. (6) is determined as ke = (1, . . . , 1)T . In 
Fig. 10, the green circular markers indicate that the shape 
of the potential for the desired posture is a local mini-
mum at the posture. The red triangular markers indicate 
that the shape of the potential for the desired posture is 
not a local minimum at the posture. The black circular 
markers indicate that the potential is a local minimum, 
however, it does not satisfy the assumption outlined in 

the second section because negative tensile forces (push-
ing forces) are generated. The black triangular markers 
indicate that the potential is not a local minimum, and 
it does not satisfy the assumption because negative ten-
sile forces are generated. For the cases in which negative 
tensile forces are generated at black circular markers and 
black triangular markers, the input force may be posi-
tive by selecting a suitable arbitrary vector ke ; however, 
this section does not examine vector selection. The cross 
makers × indicate that the muscular arrangement at the 
posture does not satisfy “ Vector Closure [15] ”, namely, 
does not have an antagonist muscular arrangement at the 
posture.

Figure  10a shows that the  muscular arrangement 
A generates stable potentials in the range of approxi-
mately 30 < θ1 < 150 , 30 < θ2 < 150 [deg]. The muscu-
lar arrangement B generates unstable potentials in the 
vicinity of the posture θd = (90, 90) [deg] as shown in 
Fig. 10b, because it does not satisfy all the conditions. 

a b

c d
Fig. 11  Potentials of the muscular arrangement A
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The muscular arrangements C and D generate stable 
potentials in the vicinity of the posture θd = (90, 90) 
[deg] as shown in Fig.  10c and d. The ranges that sat-
isfy Vector Closure for the muscular arrangements C 
and D are more extensive than that those of  the mus-
cular arrangement A because of the absence of an offset 
with either the simple-joint or the biarticular muscles 
which expands the range. The muscular arrangement 
A generates stable potentials when it satisfies Vector 
Closure. For the other cases of the  muscular arrange-
ments i.e. C and D, unstable potentials are generated 
at some postures although Vector Closure is satisfied. 
The ranges that generate stable potentials for the mus-
cular arrangements C and D are more extensive than 
that of the muscular arrangement A, even though these 
muscular arrangements do not satisfy some geometric 
conditions. This is because the muscular arrangements 
satisfy the condition (12) for generating a local mini-
mum potential at those postures by strongly satisfying 
the conditions (29) or (39) in some muscles.

Additionally, the shapes of the potential for the mus-
cular arrangements A–D at θd = (60,  60),   (60,  90),   
(60, 120),  (90, 90) [deg] are demonstrated as Figs. 11, 12, 
13, 14. In these figures, the red circular marker identi-
fies the desired posture θd . The shapes of the potential at 
θd = (60, 60), (60, 90), (60, 120) [deg] and the shapes at 
θd = (120, 120), (90, 60), (120, 60) [deg] are symmetric, 
because the muscular arrangements are vertically and 
horizontally symmetric and the potential is static.

The potentials of the muscular arrangement A have sta-
ble shapes for all cases as shown in Fig. 11. The potentials 
of the muscular arrangement B have unstable shapes for 
all cases as shown in Fig. 12. The potentials of muscular 
arrangements C and D have stable shapes for all cases 
as shown in Figs.  13 and 14, however, the gradients are 
gentler than that of the muscular arrangement A. This is 
because that the muscular arrangement C does not sat-
isfy the conditions of the biarticular muscles, the muscu-
lar arrangement D does not satisfy the conditions of the 

a b

c d
Fig. 12  Potentials of the muscular arrangement B
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simple-joint muscles; therefore those muscles decrease 
the stability. 

Even though the reference angle of the Tayler-expan-
sion is θ∗ = (90, 90) [deg], the stable potential generates 
an extensive postural range that is not confined to the 
vicinity of θ∗ . Some cases generate a stable potential at 
the desired posture even when the geometric conditions 
are not satisfied. This is because the conditions are suf-
ficient for generating a stable potential.

Consequently, the aforementioned results indicate that 
the stable internal tensile forces are generated when the 
musculoskeletal structure satisfies the geometric condi-
tions presented in this study.

Conclusion
This study has analyzed the geometric muscular arrange-
ment condition based on the generation of stable inter-
nal tensile forces for a musculoskeletal manipulator 
with two-link and six-muscle. The geometric muscu-
lar arrangement conditions have been derived from the 
mathematical conditions in which the potential is mini-
mum at the desired posture. According to the results, the 
stability of the internal tensile forces is conditioned on 
the angles between the line from the driven joint to the 
muscular fixed point and the line on the muscle.

The condition is very simple and sufficient to form a 
stable potential that is generated by the internal ten-
sile forces of the muscles. By designing the muscular 

a b

c d
Fig. 13  Potentials of the muscular arrangement C
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arrangement to satisfy the conditions, the stability of 
the internal tensile forces is ensured, and consequently, 
a control method utilizing the characteristics of the 
internal tensile force is stably implemented. The 
acquired result is valuable because the internal tensile 
force of the unstable muscular arrangement certainly 
influences the system’s stability, even for the musculo-
skeletal system controlled  by using a typical feedback 
method.

The future direction for this work is to expand the 
analysis to structures with more joints and muscles. 
Additionally, future works will involve the analysis of 
the condition whereby the vector ke that affects the sta-
bility of the internal tensile forces is considered.
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c d
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Appendix A: Proof of stable condition in “Stability 
of the internal tensile forces” section
Section  3 describes the sufficient stable condition i.e., all 
the values in the vector u and the matrix N  shown on Eqs. 
(18) and (19) are positive. Additionally, it describes that 
the positivity of the value in the 5th row and 6th column 
in the matrix N  does not need to be considered when the 
other value is positive. This appendix demonstrates that 
a5c6 + a5c5 − 2b5b6 > 0 does not have to be considered 
when Eqs. (20)–(23) are satisfied.

Where Eqs. (22) and (23) multiply both sides of each 
equation and the following equation is obtained:

When Eqs. (20) and (21) are satisfied, a5 > 0 , a6 > 0 , 
c5 > 0 , c6 > 0 , thus Eq. (40) is obtained:

Let (
√
a5c5 +

√
a6c6)

2 > 0 satisfy Eqs. (20) and (21). 
Therefore, the equation is rewritten as follows:

From Eqs. (41) and (42),

The equation describes satisfying 
a5c6 + a5c5 − 2b5b6 > 0 when Eqs. (20)–(23) are 
satisfied.

Therefore, the positivity of the value in the 5th row 
and 6th column in the matrix N  does not need to be 
considered when Eqs. (20)–(23) are satisfied. As a 
result, only Eqs. (20)–(23) represent the sufficient sta-
ble condition.

Appendix B: Analysis of Geometric conditions 
for the biarticular muscular arrangement
This appendix focuses on the analysis of the geomet-
ric condition for the 5th biarticular muscular arrange-
ment. The stable conditions for this biarticular muscle 
are a5 > 0 , c5 > 0 , a5c5 > b25 from Eqs. (20)–(22). Eq. 
(22) is rewritten as the following when Eqs. (31)–(33) 
is substituted:

In addition, Eq. (30) is rewritten as the following when 
Eqs. (34)–(36) is substituted:

(40)a5a6c5c6 > b25b
2
6.

(41)
√
a5a6c5c6 >

∣

∣b5b6
∣

∣.

(42)a5c5 + a6c6 >2
√
a5a6c5c6.

(43)a5c5 + a6c6 > 2
√
a5a6c5c6 > 2

∣

∣b5b6
∣

∣,

(44)a5c5 + a6c6 − 2|b5b6| > 0.

(45)
l5r5L1X5Y5Z5(l5X5 + r5Y5 + L1Z5)

q∗65
> 0.

Therefore, Eq. (45) is rewritten as the following by replac-
ing Eq. (46):

Let q∗5 , l5, r5, L1 > 0 , hence the next equation should be 
satisfied to fulfill Eq. (47):

Next, the geometric relationship for the parameter Z5 
defined in Eq. (36) is considered. l5C∗

φ5 , r5C
∗
ψ5 in Z5 are 

the projected lengths of the vector l5 and r5 on the link 
vector L1 similar to Fig. 15. When Z5 > 0 , for the based 
position θ∗ in the Taylor-expansion, the structure inter-
acts with each link/base similar to Fig. 16a or differ sub-
stantially from the human structure similar to Fig.  16b. 

(46)l5X5 + r5Y5 + L1Z5 = −q∗25 .

(47)− l5r5L1X5Y5Z5

q∗45
> 0.

(48)X5Y5Z5 < 0.

Fig. 15  Geometric relationship of the parameter Z5

Fig. 16  The structures for the case of Z5 > 0
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Therefore in the analysis, only Z5 < 0 is assumed. When 
Z5 < 0 , X5 and Y5 have the same sign from Eq. (48).

First, the case of X5 < 0 and Y5 < 0 is considered. Eq. 
(31) is substituted for Eq. (20) and the following condi-
tion is obtained from −l5X5 > 0:

Similarly, Eq. (33) is substituted for Eq. (21) and the fol-
lowing condition is obtained from −r5Y5 > 0:

Let r5Y5 < 0 , l5X5 < 0 , −L1Z5 > 0 from X5 < 0 , Y5 < 0 , 
Z5 < 0 . Thus, the conditions (49) and (50) are contra-
dicted with the supposition X5 < 0 and Y5 < 0 . There-
fore, the case of X5 < 0 and Y5 < 0 is not satisfied.

Next, the case of X5 > 0 and Y5 > 0 is considered. Eqs. 
(31) and (33) are substituted for Eqs. (20) and (21) and 
the following conditions are obtained:

Considering Eq. (46), we obtain the following conditions 
by adding −l5X5 − r5Y5 to both sides in Eqs. (51) and 
(52):

In these equations, −(l5X5 + r5Y5 + L1Z5) is q∗25  from Eq. 
(46). Therefore, the conditions are rewritten as follows:

Let −l5X5 < 0 and −r5Y5 < 0 from X5 > 0 , Y5 > 0 and 
q∗25 > 0 . Consequently, these conditions are always satis-
fied when X5 > 0 , Y5 > 0.

As a result, the stable conditions (20)–(23) are rewrit-
ten as Eqs. (37) and (38). The geometric condition for the 
6th biarticular muscular arrangement can be analyzed in 
a similar manner.

(49)r5Y5 > −L1Z5.

(50)l5X5 > −L1Z5.

(51)r5Y5 <− L1Z5,

(52)l5X5 <− L1Z5.

(53)−l5X5 <− (l5X5 + r5Y5 + L1Z5),

(54)−r5Y5 <− (l5X5 + r5Y5 + L1Z5).

(55)
−l5X5 < q∗25
−r5Y5 < q∗25
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