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Abstract 

In robot teleoperation, a lack of depth information often results in collisions between the robots and obstacles in its 
path or surroundings. To address this issue, free viewpoint images can greatly benefit the operators in terms of colli-
sion avoidance as the operators are able to view the robot’s surrounding from the images at arbitrary points, giving 
them a better depth information. In this paper, a novel free viewpoint image generation system is proposed. One 
approach to generate free viewpoint images is to use multiple cameras and Light Detection and Ranging (LiDAR). 
Instead of using the expensive LiDAR, this study utilizes a cost-effective laser rangefinder (LRF) and a characteristic of 
man-made environments. In other words, we install multiple fisheye cameras and an LRF on a robot. Free viewpoint 
images are generated under the assumption that walls are perpendicular to the floor. Furthermore, an easy calibra-
tion for estimating the poses of the multiple fisheye cameras, the LRF, and the robot model is proposed. Experimental 
results show that the proposed method can generate free viewpoint images using cameras and an LRF. Finally, the 
proposed method is primarily implemented using OpenGL Shading Language to utilize a graphics processing unit 
computation to achieve a real-time processing of the multiple high-resolution images. Supplementary videos and our 
source code are available at our project page (https​://matsu​ren.githu​b.io/fvp).

Keywords:  Robot teleoperation, Free viewpoint images, Human interface, Real-time visualization

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

Background
Visualizing the surrounding environment of a robot is 
important for an efficient robot teleoperation. There-
fore, visualization methods have been comprehensively 
studied over a long period [1–7]. One of the difficulties 
in robot teleoperation is the lack of depth perception. 
During robot teleoperation, the operators view images 
captured by the cameras mounted on the robot, predict 
the situation of the robot, and decide the next move for 
the robot. However, the images do not provide much 
depth information, which sometimes leads to collisions 
between the robots and obstacles.

To address the issue of obstacle collision, Keyes et  al. 
investigated the relationship between camera positions 
and collisions of teleoperated robot [4]. They compared 
a forward-facing camera, which provides first-person 
view images, to an overhead camera, which provides 
third-person view images. From the comparison, they 
concluded that the third-person view images were more 
beneficial for obstacle avoidance as operators could see 
both the robot body itself and the obstacles.

Some studies have been conducted to provide third-
person view images without the overhead cameras to 
deal with some spatial constraints, e.g., environments 
with a low ceiling. Sato et  al. demonstrated a system 
that generates bird’s-eye view images from multiple 
first-person view images captured by the cameras on 
the robot [5]. They warped the first-person view images 
by homography transformation and combined them to 
generate bird’s-eye view images. They concluded that 
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the bird’s-eye view images helped operators to avoid col-
lisions as it is easy for them to understand the relation-
ship between the robot and the obstacles in the bird’s-eye 
view images. However, if obstacles were higher than the 
floor, they were not visualized correctly in the bird’s-eye 
view images, leading to collisions between the robots and 
obstacles. Thus, Awashima et al. superimposed 3D points 
of obstacles obtained using depth sensors onto the bird’s-
eye view image to visualize the locations of the obstacles 
correctly [6].

In robot teleoperation, enabling the operators to view 
images from arbitrary viewpoints is beneficial because 
these images give them a depth perception by motion 
parallax. Showing multiple images taken by differ-
ent positions of cameras might give the operators some 
depth perceptions as well, however, displaying a lot of 
sensor information to operators is not recommended 
because a lot of sensor information tends to confuse 
operators [1]. Sun et al. proposed a system that provides 
third-person view images from arbitrary viewpoints for 
the teleoperation of construction machines [7]. They 
approximated the surrounding environment as a semi-
spherical mesh model, and the images captured by the 
cameras on the construction machine were projected 
onto the mesh model to generate third-person view 
images. This approach works well in construction sites; 
however, it generates distorted third-person view images 
in some situations such as indoor where the surrounding 
environment is hardly approximated as a semi-spherical 
mesh model. As a result, the distorted third-person view 
images make it more difficult for operators to perceive 
the distance between the robot and the obstacles.

Ferland et al. proposed a method to generate third-per-
son view images using a camera and a laser rangefinder 
(LRF) for an indoor robot teleoperation [2]. However, the 
third-person view images were only available in front of 
the robot. Therefore, in order to investigate the surround-
ing environment, turning the robot in various directions 
is necessary. Moving the robots without sufficient infor-
mation of the surrounding environment might lead to 
collisions with obstacles. Hence, it is desirable to view the 
surrounding environment without moving the robot.

In this study, we propose a novel third-person view 
generation system for an indoor robot teleoperation. 
This system is called a free viewpoint image generation 
system as it provides third-person view images from arbi-
trary viewpoints, not only from the front of the robot 
as in [2], but also from the surrounding of the robot. As 
opposed to the previous method [7], the generated free 
viewpoint images are not distorted, hence, the opera-
tors can perceive the distance between the robot and the 
obstacles easily. Furthermore, the operators can view the 
guide maps and room number signs in the images, which 

helps them understand the indoor scene structures. An 
example of the indoor scene with guide maps is shown in 
Fig. 1. 

The three-dimensional (3D) model of the surround-
ing environment and its texture are required to generate 
the free viewpoint images. One method to measure the 
3D model is to use the 3D Light Detection and Ranging 
(LiDAR). Instead of using LiDARs, this study utilizes a 
two-dimensional (2D) LRF and a characteristic of man-
made environments because the minimum range of the 
LiDARs is bigger for indoor environments (e.g., 1 m for 
a Velodyne HDL-32E) compared to that of the LRFs (e.g., 
0.1 m for a Hokuyo UTM-30LX), and LRFs are much 
more cost-effective. We also use multiple high-resolution 
fisheye cameras to get the texture of the surrounding 
environment. Besides that, an easy calibration for esti-
mating the poses of the multiple fisheye cameras, an LRF, 
and the 3D models is proposed. The proposed method 
is mostly implemented with OpenGL Shading Language 
(GLSL) to utilize a graphics processing unit (GPU) com-
putation to achieve a real-time processing of multiple 
high-resolution images. Consequently, the operators 
can change the viewpoints smoothly, which helps them 
obtain a depth perception by motion parallax.

Overview of the proposed method
To generate free viewpoint images, 3D models of the 
surrounding environment and its texture are required. 
In this study, we assumed that the indoor environment 
consists of only three elements: one robot, one floor, and 
walls (Fig.  2). Figure  2 is an illustration of the assumed 
indoor environment. This assumption is widely valid for 
indoor environments, especially for corridors as shown 
in Fig. 1. Therefore, only 3D models, relative poses, and 

Fig. 1  Example of an indoor scene. The guide map is marked with 
a green circle on the upper right of the image. The guide map is 
beneficial for operators to decide directions for robots to reach their 
destination
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textures of the robot, the floor, and the walls are needed 
to generate the free viewpoint images when this assump-
tion is employed. 

The overview of our proposed method is illustrated in 
Fig. 3. First, the 3D models of the robot, the floor, and the 
walls are obtained. Among these three 3D models, only 
the robot model has a texture. Second, the relative poses 
of the robot, the floor, and the walls are estimated and 
combined so that they have the same world coordinate. 
Finally, the textures of the floor and the walls are given by 
the fisheye cameras with known pose on the robot, and 
free viewpoint images are generated from the 3D models 
of the surrounding environment with textures.

System configurations
In this study, an unmanned ground vehicle (UGV) is used 
as an indoor teleoperated robot. Multiple fisheye cam-
eras facing various directions are installed on the robot 
so that the surrounding environments are captured. 

Moreover, each camera has some overlapped coverage 
regions between adjacent cameras for the proposed cali-
bration, which is explained in "Estimate relative poses" 
section.

An LRF is installed on the top of the robot so that the 
scan lines are parallel to the floor to estimate the 3D 
model of the walls, which is explained in "Estimate 3D 
models" section.

Estimate 3D models
3D model of the floor
Only a single floor exists in the assumed indoor environ-
ment, and thus, the 3D model of the floor can be easily 
approximated as a plane.

3D model of the robot
The 3D model of the robot does not change during tel-
eoperation. Therefore, it is possible to prepare its 3D 
model in advance. For example, 3D CAD models pro-
vided by manufacturing companies are available in some 
cases.

In this study, open source structure-from-motion soft-
ware [8–11] is used to create a dense 3D model with the 
texture from multiple images. As such, the 3D model of a 
robot can be obtained easily even without the provision 
of the 3D models by the manufacturing companies.

3D models of the walls
In order to estimate the 3D models of the walls, this study 
utilizes a cost-effective LRF and the characteristic of 
man-made environments. The said characteristic is that 
the walls are perpendicular to the floor. This assump-
tion is similar to the Manhattan world assumption [12] 
and the Atlanta world assumption [13], which is com-
monly observed in indoor environments. By using this 

Floor

Wall

Robot

Fig. 2  Assumption of an indoor environment. It consists of three 
elements: robot, floor, and wall

Arbitrary viewpoint
Wall

Floor

Robot

(1) Estimate 3D models
(2) Estimate related poses

&
Combine them together

(3) Give textures from fisheye images
&

Generate free viewpoint images

Fig. 3  Overview of the proposed method. From left to right: (1) 3D models of the robot, the floor, and the walls are estimated. Only the robot 
model has a texture. (2) The relative poses of the robot, the floor, and the walls are estimated and combined. (3) Their textures are obtained from 
fisheye images, and free viewpoint images are generated
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characteristic, the 3D models of the walls are estimated 
(Fig. 4). Figure 4 illustrates the estimation of the 3D mod-
els of the walls from the measurement points by the LRF. 
The yellow rectangle, the blue circle, and the green cir-
cles represent the robot, the LRF, and the measurement 
points by the LRF, respectively. The red lines connecting 
the green circles represent the 3D models of the walls. To 
be more specific, one of the rectangle meshes of the walls 
is defined by the following set of the four vertices:

where (pix, piy)T ∈ R
2 is the location of the i-th measure-

ment point of the LRF, and hwall is the height of the walls 
which is a parameter given by the users based on the 
scene. The local coordinate of the LRF is defined, so that 
the scan lines are perpendicular to z-axis.

Estimate the relative poses
In this section, the relative poses of the 3D models of the 
robot, the floor, the walls, and the multiple fisheye cam-
eras on the robot are estimated.

First of all, we define the world coordinate so that the 
plane of the floor is in an xy-plane, and the origin of 
the world coordinate O = (0, 0, 0)T is set to a point on 
the floor. The z-axis is directed upward. In other words, 
(px, py, 0)

T and (px, py, h)T indicate a point on the floor 
and a point at the height h from the floor, respectively.

As the 3D model of the walls is defined by the LRF in 
Eq. (1), the relative pose of the LRF should be estimated 
instead of that of the walls.

Therefore, the parameters that need to be estimated are 
as follows:
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•	 Relative poses of the floor and the fisheye cameras
•	 Relative poses of the robot model
•	 Relative pose of the LRF

Relative poses of the floor and fisheye cameras
The intrinsic parameters of the fisheye cameras are 
needed to be estimated in advance [14, 15]. We use 
OCamCalib as it supports a wide field of view of the 
fisheye cameras (up to 195 degrees) and the closed-form 
expressions for the distortion and the undistortion.

The relative poses of the floor and the fisheye cameras 
are estimated in the similar manner as done in [5] except 
that instead of estimating the homography matrix of each 
image, we estimate the actual camera poses. In the pre-
vious method, square boards as calibration targets are 
placed on the floor, so that two adjacent cameras are able 
to capture the same target as shown in Fig. 5. For exam-
ple, assuming that the poses of four cameras are to be 
estimated, then four targets should be placed on the floor. 
Next, four corners of each target are selected manually in 
each image and the corresponding points between two 
images are used for estimating the parameters. 

In this study, instead of selecting the corners of the 
targets manually, AprilTag [16, 17] is employed as the 
calibration targets so that the corners of the targets are 
detected automatically. AprilTag uses a 2D bar code to 
distinguish the targets, which make it possible to find the 
corresponding points between two images automatically.

The relative poses are calculated by minimizing the 
reprojection error between the corresponding points on 
the images, which is formulated as follows:
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Fig. 4  Estimating the 3D models of the walls (Top-view). The yellow 
rectangle, the blue circle, and the green circles represent the robot, 
the LRF, and the measurement points by the LRF, respectively. The 
red lines connecting the green circles represent the 3D models of the 
wall

Robot

Calibration target

Fig. 5  Calibration targets placed on the floor (Top view). If four 
cameras are mounted on the robot, four square boards should be 
placed as the calibration targets on the floor so that at least two 
cameras can capture them
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where C is the set of all the cameras, Vck is the set of all the 
indices of the targets which can be seen from the camera 
ck , and uckij ∈ � is the point corresponding to qw

ij  captured 
by the camera ck in the image domain � . qw

ij ∈ R
3 is the 

j-th corner location of the i-th target in the world coordi-
nate, which is formulated as follows:

where L is a side length of the targets. αi , βi , and γi are the 
parameters to be optimized, which determine the pose of 
the i-th target as shown in Fig. 6. The parameterization of 
the calibration targets in xy-plane is illustrated in Fig. 6.
ωck : R3 → � is a function that projects a point qw

ij  in 
the world coordinate onto an image plane of a camera 
ck , which is formulated as follows:

where Rckw ∈ SO(3) and tckw ∈ R
3 are the rotation matrix 

and the translation vector, respectively, to determine the 
pose of the camera ck . πck : R3 → � is a fisheye projec-
tion function [14, 15].

The cost function in Eq. (2) is minimized by using the 
Levenberg Marquardt (LM) method provided by [18] 
to estimate the camera poses, Rckw and tckw . The Rod-
rigues’ rotation formula is employed to represent the 
rotation Rckw to avoid redundant parameterization. The 
initial values for the LM method are calculated by IPPE 
[19] which is suitable for estimating a camera pose 
using a plane-based calibration target.
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Relative poses of the robot model
The 3D model of the robot is created using open source 
structure-from-motion software [8–11] where the scale of 
the 3D model cannot be obtained. Therefore, in addition to 
the relative pose between the robot model and the world 
coordinate, the relative scale is also needed to be estimated.

The relative scale and pose of the robot model are esti-
mated by selecting some reference points qm

i  in the robot 
model coordinate and their corresponding qw

i  in the world 
coordinate. As the camera poses are already estimated, the 
camera locations are used as the reference points for the 
estimation. After selecting the points corresponding to the 
locations of the cameras in the model coordinate, the rela-
tive scale and pose, s, Rwm , and twm , are estimated by mini-
mizing the following cost function:

where qw
ck

 is the location of the camera ck in the world 
coordinate, which is calculated as follows:

and qm
ck

 is the location of the camera ck in the robot model 
coordinate. The cost function in Eq. (6) can be solved by 
the closed-form solution [20].

Relative pose of the LRF
The LRF is installed on the top of the robot, so that the 
scan lines are parallel to the floor, and the height of the LRF 
does not affect the 3D model of the walls. Therefore, only 
the translation txywl ∈ R

2 in the xy plane and the rotation 
αwl ∈ R around the z-axis should be estimated.

The procedure for estimating the relative pose of LRF is 
almost similar to the method of estimating the relative pose 
of the robot model, except that only 2D rigid body transfor-
mation is required for the LRF. Some measurement points 
of the LRF and the corresponding points in the world 
coordinate are chosen, and the relative pose of the LRF is 
estimated by [20]. In this study, the corners are selected as 
they are easily distinguished from the measurement points 
as can be seen in Fig. 4. The corresponding points in the 
world coordinate are selected in the bird’s-eye view image, 
which is generated by projecting the fisheye images onto 
the 3D model of the floor by using the method described in 
"Give textures from fisheye images" section.

Give textures from fisheye images
The fisheye camera images are projected onto the 3D 
model of the surrounding environment geometrically 
to give textures by using the intrinsic parameters of the 
cameras and the relative poses. At first, all the 3D models 
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Fig. 6  Parameterization of the calibration targets (xy-plane). The 
parameters βi and γi represent the location of the i-th target, and αi 
represents the rotation of the i-th target
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are combined using the relative poses so that these 3D 
models have the same world coordinate. A texture of a 
point of a 3D model, qw , given by a camera ck is formu-
lated as follows:

where Ick (u) is the color value of a pixel located at u ∈ � 
in an image of a camera ck.

Blending in boundary
In the projection of the multiple fisheye camera images, 
textures may be obtained from multiple fisheye cameras 
for the same 3D position. In this study, the pixel values 
obtained from the center of the fisheye camera images 
are preferentially used as the spatial resolutions of the 
fisheye cameras can be decreased and distortion might 
exist when the incident angles of the optical rays are 
large. However, if the textures are obtained from a single 
camera image, the boundary between an area whose tex-
ture is given by a camera and another area whose texture 
is given by another camera is obviously visible. There-
fore, a blending of the textures from two fisheye camera 
images is used near the boundary.

In the blending, two fisheye cameras, ck with the 
smallest incident angle θk and cl with the second small-
est incident angle θl , are selected (Fig. 7). The weight for 
the blending is determined based on the incident angle, 
which is formulated as follows:

where I tex(qw) is the final texture at point qw after the 
blending, and θth is a parameter that determines the 
blending range of textures for two fisheye cameras.
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,

(9)I tex(qw) = αI texck
(qw)+ (1− α)I texcl

(qw),
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(

1+ sin
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2θth

π

))

/2 (otherwise)
,

Real‑time visualization
Acquiring and processing the data in real-time are 
required for real-time visualization. Therefore, one thread 
per sensor is launched for real-time data acquisition.

Processing multiple high-resolution images in real-
time requires high computation resources. Therefore, the 
whole processes including the undistortion of the fish-
eye images, the projection, and the blending are imple-
mented by GLSL so that the GPU parallel processing is 
utilized. All the relative poses, the 3D models, and the 
intrinsic parameters of the fisheye cameras are loaded 
into the GPU at the beginning, and only the fisheye cam-
era images and the 3D model of the walls are updated 
during operations.

Experiments
Experiments were conducted in the basement floor of 
Engineering Building No. 14 in the University of Tokyo.

Settings
Four fisheye cameras and one LRF were mounted on 
a robot as shown in Fig.  8. Four fisheye cameras were 
used because the robot was approximated as a cuboid. 
Assumed that the field of view (FoV) of fisheye cameras 
is more than 180 degrees, attaching a fisheye camera on 
each face of the cuboid except the top and bottom faces 
is enough to capture the surrounding environments. We 
used Grasshopper3 GS3-U3-41C6C-C color cameras, 
Fujinon FE185C086HA-1 fisheye lenses with the FoV of 
185 degrees, and a Hokuyo UTM-30LX LRF. All the com-
putations were performed using a laptop (Vaio Z), with 
a 2-core CPU @3.3GHz (Intel Core i7-6567U), a 16GB 
RAM, and an integrated GPU (Intel Iris Graphics 550). 
A wireless HDMI adapter was plugged into the laptop 
for sending the generated free viewpoint images to the 
operator, and a wireless mouse was used to change the 

Fisheye cameras
Fig. 7  Illustration of the incident angle. Camera ck has the smallest 
incident angle θk and cl has the second smallest incident angle θl . qw 
is a point of a model in the world coordinate

Fig. 8  Experimental setting. Four fisheye cameras and one LRF are 
mounted on the robot
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viewpoint of the free viewpoint images. The height of the 
walls, hwall , was set to 3.0 m according to the scene, while 
the blending range of textures, θth , was set to 15 degrees. 

The image resolution was set at 1600× 1600 after crop-
ping the field of view regions. As the resolution of the 
images is high, the cropping was applied by the hardware 
setting of the camera to make the most out of the limited 
bandwidth of the USB 3.0 hub in the laptop.

Calibration
After installing the cameras and an LRF, the relative 
poses of the floor, the cameras, the robot model, and 
the LRF were estimated using the proposed method. 
We placed four AprilTags on the floor as shown in Fig. 9 
and took images using the cameras. All of the calibra-
tion procedures were automatic except for selecting the 
four points corresponding to the locations of the cam-
eras in the robot model, two or three corner points in the 
measurement points of the LRF, and their corresponding 
points in the bird’s-eye view image. Details are presented 
in our supplemental video at our project page.1 

Evaluation for free viewpoint images
To evaluate the generated free viewpoint images, we 
employed an actual camera (reference camera) to take 
images of the robot from outside, as shown in Fig. 10. We 
took ten images of the robot from various directions, and 
Fig.  10 depicts an example of the scenes where the ref-
erence camera was placed at the back right of the robot. 
Every time an image of the robot was taken using the ref-
erence camera, we estimated the pose of the reference 
camera. Then, given the pose and the intrinsic parameters 

of the reference camera, the proposed method generated 
a virtual image from the same viewpoint using only the 
mounted cameras and an LRF. 

We used the structural similarity (SSIM) [21] index and 
peak signal-to-noise ratio (PSNR) as evaluation metrics 
to compare the free viewpoint images generated by the 
proposed method to the images taken by the reference 
camera. SSIM handles appearance similarity in terms 
of human visual perception, whereas PSNR handles the 
pixel value difference directly. Therefore, it is worth using 
both SSIM index and PSNR as evaluation metrics. We 
masked out the robot-body region in the images before 
evaluations as we found out that the robot-body region 
has worse evaluation metrics, and the quality of the robot 
model is beyond the scope of this study.

Results
Free viewpoint images generation
The generated free viewpoint images from various view-
points are shown in Fig.  11. In this figure, the images 
generated by the previous method [7], images taken from 
outside of the robot, and images generated by the pro-
posed method are presented from the first row to the last 
row of the figure, respectively. The values written below 
the first and last rows in Fig. 11 are the SSIM index and 
the PSNR calculated using the images of the second row 
as reference images. 

As observed in the first row of Fig. 11, free viewpoint 
images generated by the previous method [7] are dis-
torted. This is because the previous method approxi-
mated the surrounding environment as a semi-spherical 
mesh model, but the actual environment did not ver-
ify the assumptions. On the other hand, the proposed 
method (the last row of Fig. 11) is capable of generating 

Fig. 9  Four AprilTags [16, 17] circled in red are placed on the floor for 
the calibration

Fig. 10  Example of scenes when images of the robot are taken from 
outside by using a reference camera (only for evaluation)

1  https​://matsu​ren.githu​b.io/fvp.

https://matsuren.github.io/fvp
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free viewpoint images as if they were captured from out-
side of the robot.

A quantitative evaluation of the appearance of the 
generated free viewpoint images was also performed 
(Table 1). Ten images were taken by the reference camera 
at various locations, and the mean values of the evalua-
tion metrics of the proposed method and the previous 
method [7] are listed in Table 1. This table indicates that 
the proposed method achieved higher values than the 
previous method.

Real‑time visualization
The frame rate of the fisheye camera was set to 25 Hz 
due to the limited bandwidth of the USB 3.0 hub in the 
laptop. Therefore, the whole procedure of data loading 
into GPU, processing, and visualizing should be per-
formed in less than 40 ms for real-time visualization. 
Table  2 shows the time consumed when the proposed 
method generates a free viewpoint image with a reso-
lution of 1920 × 1080 (full-screen mode). In Table  2, 

Fig. 11  Free viewpoint images from various viewpoints. From the first row to the last row: images generated by the previous method [7], images 
taken from outside of the robot, and images generated by the proposed method. The values written below the first and last rows are the SSIM 
index and the PSNR, which were calculated using images of the second row as reference images. The green rectangle in each image represents the 
robot-body region, which was masked out before evaluation

Table 1  Quantitative evaluation of  the  appearance 
of the generated free viewpoint images

N = 10

The mean value of SSIM and PSNR are used as evaluation metrics (higher is 
better)

Method SSIM PSNR (dB)

Previous [7] 0.722 13.7

Proposed 0.769 15.4

Table 2  Time consumed by  the  proposed method 
to  generate a  free viewpoint image with  a  resolution 
of 1920 × 1080 in a laptop (Vaio Z)

Phase Time

Load data into GPU 6.0 ms

Process and visualize 4.2 ms

Total 10.2 ms
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“Load data into GPU” indicates the phase for load-
ing four fisheye camera images ( 1600× 1600 ) and one 
scan data of the LRF, and “Process and visualize” indi-
cates the process done by GLSL. As can be observed 
in Table  2, the proposed method achieved real-time 
visualization even with an integrated GPU of a normal 
laptop.

Exploration of a corridor
Another experiment for exploring an environment using 
a teleoperated robot was conducted in a corridor. In this 
experiment, we controlled the robot remotely by view-
ing the generated free viewpoint images. Figure  12 a, b 
show the free viewpoint images generated by the previ-
ous method [7] and the proposed method, respectively. 
It should be noted that the same robot location and view-
point were used to generate both free viewpoint images 
in Fig. 12 a, b. As observed in Fig. 12 a, it is difficult to 
perceive the distance between the robot and the walls 
when using the generated free viewpoint images because 
of distortion, which may cause collisions. On the other 
hand, the proposed method generates less distorted free 
viewpoint images, which help operators perceive the dis-
tance between the robot and the walls easily. The explo-
ration of the corridor is provided in our supplemental 
video at our project page.2 

Conclusion and future works
In this paper, we proposed a novel free viewpoint image 
generation system for indoor robot teleoperation. Mul-
tiple fisheye cameras and an LRF were installed on a 
robot, and free viewpoint images were generated under 

the assumption that the indoor environment consisted of 
three elements: one robot, one floor, and walls that are 
perpendicular to the floor. Furthermore, an easy calibra-
tion for estimating the poses of the multiple fisheye cam-
eras, the LRF, and the robot model was proposed.

The experimental results showed that the proposed 
method is capable of generating free viewpoint images 
as if they were captured from outside of the robot, and 
the system visualizes the surrounding environment of the 
robot in real-time owing to the implementation by GLSL 
even with an integrated GPU of a normal laptop.

We focused specifically on building a system that gen-
erates free viewpoint images in this study, however, eval-
uating the effectiveness of our proposed method in terms 
of usability would be also interesting to know. Therefore, 
we leave the usability evaluation for future works.

Our proposed method only works under the assump-
tion that the indoor environment consisted of three 
elements: one robot, one floor, and walls that are per-
pendicular to the floor. There are two different things 
occur when other objects exist in the environment as can 
be observed in Fig. 13 a, b. In one case their heights are 
shorter than the LRF scan lines, the objects are projected 
onto the floor. In another case their heights are taller 
than the LRF scan lines, the objects are estimated as 
walls. Thus, the proposed method generates wrong free 
viewpoint images. Therefore, as future works, we intend 
to employ a semantic segmentation to the images to dis-
tinguish between the objects under assumption (robots, 
floors, and walls) and other objects. We intend to use a 
depth reconstruction by multi-view stereo to estimate 
the 3D models for other objects. 

Fig. 12  Free viewpoint image generation in a corridor. a Generated by the previous method [7]. b Generated by the proposed method. The 
previous method generated distorted free viewpoint images, which makes it more difficult for operators to perceive the distance between the 
robot and the walls. On the other hand, the distance between the robot and the walls is obvious in images generated by the proposed method

2  https​://matsu​ren.githu​b.io/fvp.

https://matsuren.github.io/fvp
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Fig. 13  Example of scenes where the assumption of this study is not 
valid. A chair and a human exist other than a robot, a floor, and walls 
in this environment. The height of the LRF scan lines is taller than 
that of the chair but shorter than that of the human. a Taken from an 
outside camera. b Generated free viewpoint image by the proposed 
method. The chair is projected onto the floor, and the human is 
estimated as walls
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