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Rubber artificial skin layer with flexible 
structure for shape estimation 
of micro‑undulation surfaces
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Abstract 

In this paper, we propose a wearable tactile sensor for measuring the shape of micro-undulations on a hard surface. 
The proposed sensor has two layers. The inner one is a thin rubber layer into which a strain gauge is embedded that is 
formed around a user’s finger. The outer layer is a flexible structure that consists of numerous pins on a flexible sheet. 
The shape of micro-undulations on an object surface can be measured when a user wearing the sensor traces the 
surface. The results of an experiment, in which we compare the cases with and without the flexible structure of the 
sensor, show that our proposed sensor is sufficiently accurate to measure the shape of micro-undulations due to its 
flexible structure, which contributes significantly to improving its signal-to-noise ratio.
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Introduction
In manufacturing workplaces, skilled and experienced 
craft workers touch and inspect the surfaces of products 
or parts to find irregularities. Such surface inspections 
are important for maintaining product quality. For exam-
ple, if an irregular undulation exists on the surface of a 
car body, the appearance of the entire car is degraded and 
its quality as a product is reduced. In the case of a car, 
detecting surface undulations is simplified by the ability 
to observe the distortions of light rays irradiated onto 
the painted body. However, since such light ray inspec-
tions must be performed on the downstream of the prod-
uct line after painting, significant expenses are incurred 
before a car arrives for the inspection. Therefore, it 
would be much better to detect irregular undulations and 
exclude poor quality parts on the upstream of a product 
line.

Such upstream product line surface inspections require 
the following: 

1.	 They must be capable of being performed quickly on 
product lines where processed parts are flowing con-
tinuously one after another.

2.	 They must be capable of covering wide areas of up to 
several hundred millimeters.

3.	 They must be capable of determining surface shapes 
that are visually indistinct due to dirt and/or metallic 
reflections.

These requirements were clarified in worker interviews 
discussed in [1–3], in which it was also stated that work-
ers need about 10 years of training to detect micro-undu-
lations in the abovementioned conditions. The detection 
undulation is not defined, but the height is several tens of 
micrometers. Assuming that the undulation is a sinusoi-
dal wave, undulations that smoothly change with a period 
of 10 mm or more will be detected. While micrometers 
can be used for detecting surface undulation of size up 
to several tens of micrometers, and are thus suitable for 
precisely inspecting a narrow range, they are unsuitable 
for inspections over wide areas. Furthermore, although 
laser sensors or methods based on image processing can 
be considered, it is difficult for those methods to sense 
surfaces when they are obscured by dirt or metallic 
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reflections. Therefore, as part of efforts to create an 
undulation surface detection method that can be used 
even on dirty surfaces immediately after processing, we 
propose the new tactile sensor shown in Fig. 1 for surface 
strain detection use. Because it is wearable, the proposed 
device can be used as a tool in current work processes 
and can be easily incorporated into existing production 
lines without the necessity of introducing new equip-
ment. Since this sensor can also be used to add a tactile 
sensing ability to a robot finger, we plan to incorporate it 
into an automatic surface undulation detection system in 
the future. As a preliminary step, this paper investigates 
whether irregularities on a surface can be detected by 
attaching the sensor to a user’s finger and then using it to 
perform active touch-based detection.

Related work
While a micrometer is generally used to detect micro-
undulations, that device is normally only useful for 
inspecting a specific portion of a surface in which an 
undulation has been found or is suspected, and is unsuit-
able for extensive searches. In general surface inspec-
tions, a highly skilled worker traces the surface to detect 
undulations. One alternative method, which involves 
the use of a tactile device designed by Sano et al. called 
TouchLens, has been proposed [1, 4, 5]. TouchLens is a 
tactile device that enhances undulation surface percep-
tions using a lever mechanism. Although anyone can 
easily find micro-undulation using this device, the tactile 
information obtained cannot be handled as numerical 
information, and there is a problem that it is difficult to 
evaluate objectively.

Focusing on the point of sensing, Kikuuwe et al. devel-
oped a hand-bell type cantilever haptic sensor [6]. Since 
the inspector holds that device by hand when using it to 

trace surfaces, undulation locations can be immediately 
and intuitively determined. However, due to its large size, 
this device is difficult to use on large curved surfaces or 
surfaces with narrow measurement ranges.

On the other hand, humans can move their fingers 
and hands dexterously, press them flexibly on various 
shapes, and easily trace them over their surfaces. Fur-
thermore, surface information can be obtained through 
tactile sensations. With these points in mind, it is reason-
able to consider wearable finger-mounted tactile sensors. 
Tanaka et  al. developed a tactile sensor of this type for 
undulation surfaces detection [2] and showed how they 
could conduct inspections by active touch and achieve 
real-time measurements using wavelet transform. How-
ever, quantitative evaluations such as those required for 
undulation size discrimination have not been conducted 
in detail. Another device, GelSight [7, 8], was developed 
as a measuring device for detecting surface unevenness 
with high accuracy. However, although GelSight is able 
to reconstruct the shapes of surfaces and soft materials 
onto which it has been pressed via image processing, this 
device is unsuitable for undulation detection over a wide 
area because it has to be pressed over all of the measure-
ment ranges.

In order to measure wide areas, methods that work by 
tracing surfaces such as those discussed by Kikuuwe et al. 
[6] and Tanaka et al. [2] are more suitable. We developed 
an artificial skin layer in which two thin rubber coat-
ings were formed around the wearer’s finger and a strain 
gauge was embedded between the rubber layers [3]. The 
tactile sensor outputs a signal corresponding to detected 
deformations when the wearer’s finger is traced along 
the surface to be measured. Although this device allows 
surface curvature information traced from the output 
signal to be reconstructed, it is difficult to use when 

ba
Fig. 1  Schematic diagram showing a the structure and b a photo of the proposed sensor. Deformation due to an undulation on the object’s 
surface is amplified by the pins of the flexible structure, after which information of the object’s surface is transmitted through the flexible structure 
to the sensor element
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reconstructing the 10 micro-level undulations that we are 
aiming to measure.

Research involving sensors embedded in flexible mate-
rials such as the abovementioned  developed device 
has been conducted for a long time now. In the field of 
robotic manipulation studies, a number of tactile sensors 
have been developed for dexterous robots [9]. For exam-
ple, Yamada et al. [10] developed a distributed tactile sen-
sor with ridges that could be used to realize grip force 
control via tactile sensing, while Hosoda et al. [11] devel-
oped a robot finger in which polyvinylidene difluoride 
(PVDF) film was randomly embedded in a flexible mate-
rial. This resulted in a robot finger with improved manip-
ulation capabilities. However, distributed tactile sensors 
require numerous sensor elements and complicated wir-
ing. A potential solution to this issue is the center of pres-
sure (CoP) sensor developed by Shimojo and Ishikawa 
et al. [12, 13], which dramatically reduced the number of 
wires required.

When a flexible object is used, it can be designed to 
deform according to the shape of the contacted surface, 
which means that tactile information can be more easily 
extracted from the deformation. With that point in mind, 
inexpensive vision-based sensors with simple configu-
rations have been developed to measure flexible object 
deformations. For example, Nagata et al. [14] developed a 
tactile sensor that can detect the shape of an object onto 
which it has been pressed by capturing the displacement 
of a pin aligned with a flexible object using a camera. In 
another example, Kamiyama et al. [15] attached a marker 
to the surface of a flexible object and used a camera to 
capture the marker deformation. The developed device, 
GelForce, is a tactile sensor that can measure the magni-
tude and direction of force. Similarly, Chorley et al. [16] 
and Lepora and Ward-Cherrier [17] developed TacTip 
as a more accurate tactile sensor, while Yamaguchi et al. 
[18] developed FingerVision as a small and inexpensive 
tactile sensor for robotic manipulation. The abovemen-
tioned GelSight is also a vision-based tactile sensor [7, 
8]. Although vision-based tactile sensors can achieve 
high accuracy with simple configurations, problems 
occur when vision-based systems become larger than 
the flexible tactile sensor in which the sensor element is 
embedded.

Recent evolutionary developments in semiconduc-
tor and fabrication technology have made it possible to 
produce artificial skins as even thinner tactile sensors 
that are much like human skin. In the electronics field, 
very light, thin, and stretchable electronic circuits that 
can be applied to skin surfaces in the form of tattoos 
and artificial skin have been developed to create tactile 
sensors [19–21]. Unfortunately, the fabrication of these 

types of artificial skin requires advanced technology. 
In another development, artificial skin capable of rapid 
prototyping has been produced. For example, Tenzer 
et al. [22, 23] developed a microelectromechanical sys-
tem (MEMS) embedded tactile sensor that makes it 
easy to perform rapid typing and showed that it could 
be applied to artificial skin, while Charalambides and 
Bergbreiter [24] proposed a method of embedding 
electronic circuits in soft materials via a simple manu-
facturing method and developed an artificial skin that 
can detect slip. While artificial skin developments 
have often been pursued for use robot tactile sensors, 
numerous wearable sensors have also been developed 
for extracting human hand motions and tactile sensory 
information [25]. For example, Park et  al. and Ham-
mond et  al. [26, 27] developed an artificial skin using 
liquid metal and extracted hand movement and pres-
sure distribution information, while Li et al. [28] devel-
oped an artificial skin that could be used for gesture 
recognition.

Although many of the tactile sensors and artificial 
skin studies described so far are aimed at force sens-
ing, there have been few studies aimed at the detection 
of micro-undulations for applications such as surface 
strain testing. We have proposed a rubber artificial 
skin layer in which two thin rubber coatings are formed 
around the wearer’s finger and a strain gauge is embed-
ded between the rubber layers [3]. The tactile sensor 
outputs a signal corresponding to detected deforma-
tions when the user’s finger was traced along the sur-
face to be measured. We have shown its applicability 
to surface inspection with a simple configuration of 
one sensor element and thin layers. The sensor has the 
advantage of not interfering with other tasks since it is 
a thin wearable sensor. Although this device allowed 
surface curvature information traced from the output 
signal to be reconstructed, it is difficult to use when 
reconstructing the 10 micro-level undulations that we 
are aiming to measure.

Accordingly, we used the results of [3] as baseline 
and aimed at the realization of even smaller undulation 
detections. The main contributions of this study are 
considered to be as follows:

•	 We show that the shape of a micro-undulation 
with an amplitude of 10 µ m can be measured by 
our proposed wearable tactile sensor. This perfor-
mance level is considered to be sufficient for sur-
face inspections.

•	 We show that, by using a flexible structure, it is 
possible to improve the shape estimation capabili-
ties of active touch surface sensing to much higher 
than has been seen in previous studies.
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Device
Concept
The basic design of the proposed sensor is the same as the 
rubber artificial skin with embedded strain gauges [3]. 
The rubber artificial skin is a wearable tactile sensor in 
which a thin rubber form with an embedded strain gauge 
is placed around a user’s finger. Previous studies have 
shown experimentally that the output signal is linear for 
curvatures between − 60 and 100 1/m. This means that, 
by performing calibration in advance using some known 
curvatures, it is possible to estimate a curvature from the 
output signal. In order to sense smaller undulations, we 
improved this tactile sensor. As part of efforts to make 
them more sensitive, research has been conducted aimed 
at creating tactile sensors with contact surfaces that have 
structures inspired by human skin [29–31]. These stud-
ies have the effect of expanding the deformations of small 
stimuli, such as micro-undulations, from the viewpoint 
of the outside world, and we realized that it would be 
possible to add this effect to a flexible tactile sensor with 
a simple structure [32]. In the results of [32], we showed 
that it was possible to create an rubber artificial skin with 
embedded strain gauges that could amplify output sig-
nals by adding a structure that expands minute deforma-
tions in the shape of the tracing surface. Since TouchLens 
is used as the sensor component, the structure is the 
same. We use the results of [32] to measure the shape of 
micro-undulations. As described previously, a flexible 
structure is interposed between the rubber artificial skin 
equipped with embedded strain gauges and the surface to 
be measured. The flexible structure consists of numerous 
pins emplaced on a flexible sheet. When a user traces an 
undulating surface with a finger while wearing our pro-
posed sensor the output signals caused by the surface 
undulations are amplified.

Prototype
In this section, we describe the prototype design of our 
proposed sensor. The rubber layer of the proposed sen-
sor is formed around a user’s finger by direct dipping. 
More specifically, the user’s finger was dipped directly in 
liquid rubber without using a mold, thus creating an arti-
ficial skin layer fitted to the user’s finger. However, since 
the liquid rubber we use contains latex, we need to con-
sider its potential as a latex allergy trigger. The dipping 
process was repeated three times with the strain gauges 
emplaced after the first dip and before the third dip. The 
liquid rubber used to make the skin layer of the proto-
type was general purpose natural rubber latex contain-
ing sulfur. The sensor element embedded in the second 
thin rubber layer was a strain gauge for large deformation 
(KFEM-2-120-C1L1M2R, Kyowa Electronic Instruments 

Co., Ltd., Japan). The dimensions of the flexible structure 
bottom plate are 20 mm × 20 mm, and the thickness is 0.2 
mm. The pins were cylindrical with a diameter of 2 mm 
and extended 4 mm from the bottom plate. The distance 
between the pins was 3 mm, and each bottom plate con-
tained 36 pins. This flexible structure was fabricated with 
three-dimensional (3D) printers, and the material is car-
bon fiber reinforced ABS filament ( CarbonXTM ABS+CF, 
3DXTECH, USA). To operate the device, the user places 
a sensor-equipped finger on the flexible structure so that 
the strain gauge is always positioned horizontally above 
the pins. Figure  2 is a schematic diagram showing the 
position of the finger on the flexible structure.

Shape estimation of micro‑undulation
We compared our proposed tactile sensor, which has a 
flexible structure interposed between rubber layers and 
the surface to be contacted, with the conventional sen-
sor proposed in [3]. To accomplish this, we first prepared 
touch samples with sinusoidal surfaces. Users wearing 
both tactile sensors then traced those surfaces with their 
sensor-equipped fingers, after which the surface curva-
ture changes of the samples were estimated from the out-
put form of the tactile sensor signals.

Method
The proposed tactile sensor was calibrated to esti-
mate the curvature from the output signal. Similar to 
the previous study, the relationship between the sig-
nal from the tactile sensor and the curvature of the 
touched surface was measured by pressing the tactile 
sensor against a cylindrical surface with a constant cur-
vature. Although the output varies depending on the 

Horizontal direction

Tracing direction

Strain gauge

Fig. 2  Finger position on the flexible structure
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pressing force exerted, the sensor eventually becomes 
saturated as the pressing force is increased. The rela-
tionship between the output signal and the curvature 
of the surface being touched was measured using the 
value that registers when the output change due to the 
pressing force becomes saturated. Here, convex shapes 
are treated as positive curvatures and the concave 
shapes are treated as negative curvatures. In the previ-
ous study, it was shown that the relationship between 
the sensor signal and curvature is linear between − 20 
and 100  1/m. Since this study aims at measuring cur-
vatures from −  10 to 10  1/m, there is no particular 
problem using this method. Furthermore, it is shown 
that when the flexible structure is interposed between 
the sensor and the surface to be contacted, the output 
signal is multiplied about four [32]. In the touch sam-
ples prepared for this study, the depth from the base 
plane changes sinusoidally in the longitudinal direc-
tion. All touch samples were machined from square 
30mm× 30mm× 200mm polyacetal resin poles. A 
20 mm flat base position area is set at both ends of 
the undulation surface, which means the length of the 
undulation surface is 160 mm. The two-dimensional 
(2D) shape of the touch sample undulation surface can 
be expressed by the following equation:

where A and T are the amplitude and the spatial period 
of the sine surface, respectively. The coordinate system is 
set up as shown in Fig. 3. The curvature κ(x) of the sinu-
soidal surface in the x direction is expressed as follows:

where the positive and negative are reversed from the 
curvature of the mathematical notation because the 
convex type is positive and the concave type is negative. 

(1)z(x) =A cos

(

2π

T
x

)

,

(2)κ(x) =
−A

(

2π
T

)2
cos

(

2π
T
x

)

{

1+ A2
(

2π
T

)2
sin2

(

2π
T
x

)

}
3
2

Since, in our case, (A2( 2π
T
)2) ≪ 1 , we can approximate κ

(x) as

where Ã and T̃  are defined by

In this paper, we treat Ã as the curvature amplitude, 
and T̃  as the spatial period. We prepared touch samples 
which doubled Ã or T̃  and quadrupled Ã or T̃  based on 
a touch sample that has an amplitude of 10 µ m and a 
spatial period of 10 mm. In order to change Ã and T̃  , the 
amplitude was changed. However, in order to fix Ã and 
change T̃  , it was necessary to change not only the spatial 
period but also the amplitude. Thus, when only T̃  is dou-
bled or quadrupled, not only must the spatial period be 
doubled or quadrupled, but also the amplitude needs to 
be multiplied by four or 16.

A user traced the surface of these touch samples with a 
finger wearing the tactile sensor and estimated curvature 
of the surface from the output sensor signal. Figures  4 
and 5 show photographs and schematic diagrams of the 
experimental setup. Friction condition differences arise 
because the materials of the tactile samples that come 
into contact with the conventional and proposed sen-
sors are different. To eliminate such friction condition 
differences, a piece of tissue paper is inserted between 
the sensor and the tactile sample. The side view motion 
of the finger was captured by a high-speed camera oper-
ated at 120 frames/s. Next, the position of the finger in 
the x direction was measured from the captured video 
using motion tracking software. In order to synchro-
nize the sensor signal recording at 0 s with the position 
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x

)
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T
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Fig. 3  Undulation surface coordinates. The flat surface and the 
undulation peak are at the same level

Fig. 4  Photograph of a finger wearing our proposed sensor during 
tracing. The marker attached to the tactile sensor is used for camera 
position measurements
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measurement time, the moment at which the light-emit-
ting diode (LED) illuminated at the start of the sensor 
signal recording was taken as the position measurement 
start. Since each undulation sample begins and ends 
with a 20 mm flat section, it is possible to use the posi-
tion measurement results to extract signals from when 
the sensor position is traveling from 20 to 180 mm. The 
user, which is first author, traces one section in about 4 s 
according to the metronome. For 100  s, the user traces 
the tactile sample with the finger wearing the sensor. The 
tracing was performed so that the pressing force was 
within the range of about 10 N to 15 N.

A low frequency component trend that was added to 
the sensor signal was removed. The low frequency com-
ponent trends in the extracted signal were eliminated 
by subtracting a 4th-order polynomial curve fitted to 
the signal. The signal value was converted to a curvature 
value using the result of a calibration that had been done 
in advance. Since the position measurement sampling 
time (which is 1/120  s) is longer than the sensor signal 
sampling time (which is 1  ms) the number of measure-
ment points in the position measurement is smaller than 
the number of measurement points in the sensor signal. 
Therefore, linear approximation was used to calculate the 
missing points so that the number of signal and position 
measurement points could be equalized.

Results
Figure 6 is a graph showing the actual curvature, which is 
represented by a solid line, of the sinusoidal curved sur-
face with an amplitude of 10µ m and a spatial period of 
10 mm. The curvature, which is represented by the solid 
line, is estimated from the sensor signal. In this figure, 
the phases are shifted so that the two cross-correlations 
become maximum in order to compare the actual cur-
vature change with respect to the position and curvature 
change estimated from the sensor signal. The horizontal 
axis represents the position in the x direction, while the 

vertical axis represents the curvature. Figure  6a shows 
the estimation result using the conventional sensor, 
while Fig. 6b shows the estimation result using the pro-
posed sensor. In Fig.  6a, we can see the periodic signal, 

Fig. 5  Sensor system. The sensor signal is uploaded into a personal computer (PC) via a strain gauge amplifier and an analog/digital (AD) converter
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but the wave is disturbed. In contrast, we can see that the 
estimated curvature is similar to the actual curvature in 
Fig. 6b.

Figure  7 is a graph showing the results of the Fourier 
analysis of the curvature estimation from the sensor sig-
nal. The horizontal axis represents the spatial frequency, 
while the vertical axis represents the amplitude in cur-
vature variation. The dotted line shows the actual spatial 
frequency (0.1 1/mm). Figure  7a shows the estimation 

result using the conventional sensor, while Fig. 7b shows 
the estimation result using the proposed sensor. In these 
figures, we can see that both results show peaks in the 
vicinity of the actual spatial frequency, but the amplitude 
of the estimated curvature produced by the proposed 
sensor is closer to the actual value than the estimated 
curvature of the amplitude produce by the conventional 
sensor. In Fig.  7b, since a wave with a frequency lower 
than the actual spatial frequency is added to the conven-
tional sensor signal, we can see that the wave is disturbed.

Next, we calculate the normalized mean squared error 
(NMSE) to compare later curvature amplitudes Ã with 
the modified measurement results. Assuming that the 
curvature of the surface to be measured is κ and the cur-
vature estimated from the sensor signal is κ̂ , the NMSE is 
as follows:

After calculating the average NMSE of the 10 measure-
ments of each sensor, we found that the NMSE was 0.61 
for the conventional type and 0.29 for the proposed type. 
Therefore, from the proposed sensor results, we can see 
that the estimated value was closer to the actual curva-
ture value.

Next, we evaluate the noise produced using the signal 
to noise ratio (SNR), which is defined as follows:

The SNR was − 0.43 for the conventional type and 7.22 
for the proposed type. Therefore, it can be said that the 
proposed sensor can reduce noise effects.

Next, we show the results obtained when we fixed the 
period T̃  of the surface to be measured and changed 
the curvature amplitude Ã . Table  1 shows the estima-
tion results and their error rates. Although there is no 
change in the estimation ability of T̃  , we can see that the 
proposed sensor improves the ability to estimate Ã . How-
ever, as Ã increases, we can see that the error increases 
as well.
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Fig. 7  Fourier analysis result of sensor signal. Each graph shows 
the result of a conventional sensor, and b our proposed sensor. The 
dotted line represents the curvature amplitude of the traced surface

Table 1  Results of curvature amplitude Ã and spatial period T̃  estimated by the haptic sensor when only the curvature 
amplitude is changed, and the respective error rates

Ã (1/m) T̃  (mm) Conventional sensor Proposed sensor

Estimated Ã Error (%) Estimated T̃ Error (%) Estimated Ã Error (%) Estimated T̃ Error (%)

3.95 10 1.85 53.2 9.84 1.7 4.26 8.02 9.26 1.8

7.90 10 3.84 51.3 9.78 2.3 8.34 5.69 9.78 2.2

15.8 10 7.01 55.6 9.62 3.9 11.7 26.0 9.64 3.7
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Figure  8 is an NMSE graph calculated for each cur-
vature amplitude Ã . The horizontal axis represents the 
curvature amplitude Ã and the vertical axis represents 
the NMSE. Error bars show the standard deviation for 
10 samples. In this figure, we can see that the estimated 
value using the proposed sensor is more accurate even if 
the curvature amplitude becomes larger. Furthermore, it 

shows that the NMSE decreases as the curvature ampli-
tude increases.

Figure 9 is a graph of the SNR calculated for each cur-
vature amplitude Ã . The horizontal axis represents the 
curvature amplitude Ã , and the vertical axis represents 
the SNR. Similarly, error bars indicate the standard devia-
tion for 10 samples. In Fig. 9, it can be seen that the noise 
influence is reduced by the estimated value using the pro-
posed sensor even if the curvature amplitude becomes 
large, and that the noise influence does not change as the 
curvature amplitude changes.

Table  2 shows the estimation results and error rates 
when the measurements are made by fixing T̃  and chang-
ing only Ã . Even in this result, it can be seen that there 
is no change in the estimation ability of T̃  , but we can 
see that the proposed sensor improves the ability to esti-
mate Ã . We can also see that, even with small curvature 
change, errors can be measured accurately.

Figure  10 is a graph of the NMSE calculated for each 
spatial period T̃  . The horizontal axis represents the spa-
tial cycle T̃  , and the vertical axis represents the NMSE. 
Error bars show the standard deviation for 10 samples. 
In Fig. 10, we can see that the proposed sensor gives bet-
ter estimates even if the spatial period changes. However, 
this result also shows that the accuracy deteriorates when 
the spatial period is 20 mm. These results indicate that 
there is a spatial period where the NMSE peaks between 
10 and 40 mm. 

Figure 11 is a graph of the SNR calculated for each spa-
tial period T̃  . The horizontal axis represents the spatial 
period T̃  and the vertical axis represents the SNR. Simi-
larly, error bars indicate the standard deviation for 10 
samples. In this figure, we can see that the noise effect 
is smaller for the estimation results produced using the 
proposed sensor for any spatial period. Furthermore, this 
result suggests that the noise influence does not change 
even if the spatial period becomes excessive in the con-
ventional sensor. However, the noise influence decreases 
as the spatial period becomes excessive in the proposed 
sensor.

Taken together, the above experimental results show 
that the curvature estimation with the proposed sensor is 
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Fig. 8  Graph showing the relationship between the curvature 
amplitude Ã and the NMSE
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Fig. 9  Graph showing the relationship between the curvature 
amplitude Ã and the SNR

Table 2  Results of curvature amplitude Ã and spatial period T̃  estimated using the haptic sensor when only the spatial 
period is changed, and the respective error rates

Ã (1/m) T̃  (mm) Conventional sensor Proposed sensor

Estimated Ã Error (%) Estimated T̃ Error (%) Estimated Ã Error (%) Estimated T̃ Error (%)

3.95 10 1.85 53.2 9.84 1.7 4.26 8.02 9.26 1.8

3.95 20 1.70 57.0 18.2 9.7 4.57 15.8 18.2 9.7

3.95 40 1.45 63.3 37.6 6.5 3.80 3.67 37.6 6.5
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less affected by noise than conventional sensors and can 
be estimated more accurately.

Figures 12 and 13 show the position and pressing force 
for each time in each experiment. No extreme differences 
in speed and pressing force were noted. Other experi-
ments were performed under the same conditions shown 
here.

Discussion
Advantages and limitations
One of the main effects of the proposed sensor is its abil-
ity to reduce the influence of noise and to estimate the 
shape of the surface traced more accurately than the 
conventional sensor. The fact that this result could be 
achieved via a tactile sensor with a simple flexible struc-
ture and a simple configuration of one strain gauge is a 
significant advancement.

Of course, there are some limitations as well. From 
Table  1, we can see that, for the proposed sensor, the 
error rate of the estimated curvature amplitude Ã when 
the curvature amplitude Ã of the standard undulation 
surface is quadrupled becomes very large compared to 
the conventional sensor. However, NMSE evaluations 
show that the shape of the sliding surface is estimated 
better than the other results. Figure  14 shows the esti-
mated value from the proposed sensor signal and the 
curvature of the tracing surface when the curvature 
amplitude Ã of the reference surface is quadrupled. In 
Fig. 14, it can be seen that the valley shape in the undu-
lating surface is missing. This omission is the cause of 
the error in the estimated value. It can also be seen that 
the structure of the proposed sensor does not follow the 
shape. Therefore, it is not possible to estimate an undu-
lating surface within a short spatial period. However, this 
limitation does not create a problem because the surface 
strain inspection that we are assuming is the detection 
of a wave with a spatial period of several tens to several 
hundreds of millimeters.
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Fig. 10  Graph showing the relationship between spatial period T̃  
and the NMSE
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Fig. 11  Graph showing relationship between the period T̃  and the 
SNR
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Fig. 12  In the experiments conducted using our proposed sensor, 
the graphs show a the position and b pressing force for each time
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Practical issues for surface undulation detection
In this study, we found that we could estimate the shape 
of the undulation surface with sufficient accuracy. How-
ever, some practical problems in actual surface strain 

inspections were identified. One of those practical prob-
lems is that extensive inspections are necessary. Since the 
proposed sensor in this research is a device attached to a 
user’s fingertip, it is unsuitable for use when searching for 
multiple undulations over a wide area because the pro-
cess would take longer than the other methods presently 
used. In actual surface strain inspections, examinations 
are performed using the palm of the inspector’s hand, 
which makes it possible to access a wide area quickly with 
a single stroke of his or her arm. Accordingly, we con-
sider it likely that extending our proposed sensor system 
to cover the palm of the user’s hand will make the system 
more applicable to a wider measurement range, and this 
extension is planned for the future. Additionally, since 
undulation surface inspections are performed on pro-
duction lines, immediate judgments are required. Hence, 
real-time implementation of surface shape estimations is 
essential if practical use of our system is to be considered. 
Since Masaki et  al. [33] developed an artificial rubber 
skin with embedded strain gauge system for detecting 
undulations in real-time that utilizes machine learning 
with neural networks, we consider it likely that incorpo-
rating machine learning into our proposed system could 
facilitate the creation of a more acceptable method for 
real-time implementation. From Fig. 6, the phase differ-
ence between the estimated and actual curvatures can 
be observed. This phenomenon suggests that the pro-
posed sensor has dynamic characteristics. Although this 
phenomenon was also observed in [3], the cause of this 
phenomenon could not be clearly explained and will be a 
topic for our future research.

Conclusion
In this study, we proposed a wearable haptic sensor that 
can be used to detect surface undulations as small as 
10µ m. Users wearing this finger-mounted sensor can 
measure surface shapes simply by tracing their finger 
across the surface of the object being inspected. The sen-
sor consists of a rubber layer molded around the user’s 
finger that is equipped with an embedded strain gauge 
and a flexible structure that is interposed between the 
strain gauge and the surface to be inspected. When the 
proposed sensor is attached to a user’s finger and then 
pressed against the surface to be measured, the curva-
ture change of the traced surface can be estimated from 
the sensor signal. At this time, in order to eliminate the 
influence of the pressing force, the user should continue 
pressing until the saturation level is reached. Although 
it is considered likely that other people will also be able 
to perform measurements using this method, as part of 
our future studies, it will be necessary to perform experi-
ments to determine whether this is the case. With respect 
to surface curvature, we showed that it is possible to 
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Fig. 13  In the experiment involving the conventional sensor, the 
graphs show a the position and b pressing force for each time
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estimate the NMSE with an accuracy level of 0.5 or less, 
even if the amplitude or the spatial period is changed. 
Furthermore, the SNR is 5 or more, which indicates that 
it is not susceptible to noise.

Our future work will include the following:

•	 Verification by experiments with multiple people 
using the proposed sensor,

•	 Extending the sensor to cover the palm of the user’s 
hand in order to make it easier to inspect wide sur-
faces,

•	 Advanced modeling of this sensing system, includ-
ing the proposed sensor and the flexibility of human 
skin, and

•	 Construction of a sensing system that is capable of 
operating in real-time.
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