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Abstract 

This study introduces injury risk curves for the lumbar spine for use in the risk assessment of low back pain (LBP) 
caused by manual lifting of heavy loads. LBP has been a longstanding problem among industrial workers, giving rise 
to the development of assistive devices. However, quantitative evaluation methods to verify the safety of such devices 
have not yet been established. The notable biomechanical criterion of 3.4 kN of lumbar compressive force, defined by 
the National Institute for Occupational Safety and Health, applies only to young, healthy workers with a fixed risk level. 
This study on injury risk curves clarified the risk level of injury to the lumbar spine due to lumbar compressive force for 
individuals within a wide age range. The findings can be applied for the design and evaluation of assistive devices as 
well as the design of ergonomic guidelines for manual work.
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Introduction
Low back pain (LBP) is one of the major occupation-
related diseases. It is considered that the manual lifting of 
heavy loads can increase the risk of LBP in various occu-
pational fields. Caregiving is one of the most frequent 
fields where work-related LBP occurs [1]. Caregivers 
often transfer elderly persons from one place to another, 
which is classified as a manual lifting task. As one of the 
solutions, certain physical assistive devices have been 
developed to prevent these workers from developing LBP 
[2, 3]. However, the standardization of methods for the 
quantitative assessment of the safety and effectiveness of 
these devices against LBP has just been established [4]. 
Current research aims to contribute to the establish-
ment of quantitative evaluation methods for verifying the 
safety of such devices.

To prevent LBP among industrial workers, the National 
Institute for Occupational Safety and Health (NIOSH) 
has provided guidelines for manual lifting tasks. These 

guidelines currently include the NIOSH lifting equation 
(NLE), which provides estimates of the recommended 
weight limit (RWL) in hands [5, 6]. The 1991 revised ver-
sion of the NLE (RNLE) has brought widespread impact 
that it is adopted as an ergonomic standard for use by 
various local, state, and international entities [7]. In the 
guideline, a limit of 3.4 kN compressive force on the lum-
bar spine was introduced as a biomechanical criterion to 
assess the risk of LBP. This criterion was first proposed in 
the 1981 original NLE and was maintained in the RNLE 
[5, 6]. Until now, it is widely used as a major criterion for 
the assessment of manual lifting tasks [8–15].

The NIOSH biomechanical criterion is based on stud-
ies on the compressive strength (CS) of lumbar spine 
specimens from human cadavers [5, 6]. It is claimed 
that CS, which has presented the strongest relationship 
with chronic LBP in controlled scientific studies, is a 
valid index for the prevention of disc degeneration [16]. 
When a disc degenerates, it causes inflammation, which 
irritates the pain receptors in the outer areas of the disc 
[17]. Disc degeneration has been also associated with the 
occurrence of herniated discs [18]. Moreover, endplate 
fracture is considered to initiate disc degeneration [19] 
(Fig. 1). The endplate breaks when the spine experiences 
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a sufficient load, as the endplate is the weakest part in 
the spine, and it is the first structure to fail under a heavy 
load [18]. Therefore, the value of CS determines the com-
pressive force limit on the lumbar spine.

As no exact value for CS can be found in the NIOSH 
literatures, the risk level for the biomechanical criterion 
of 3.4 kN seems to be valid for approximately 20–30% of 
the general population [6]. According to the Work Prac-
tices Guide for Manual Lifting [5], this criterion applies 
to young, healthy workers. Meanwhile, using linear 
regression analysis, Genaidy et al. [20] showed that older 
individuals have significantly lower CS. Furthermore, 
Jäger and Luttmann [21] reported that the 3.4 kN crite-
rion cannot be applied for a wide range of individuals, 
and suggested that the criterion be limited to individuals 
up to 40 years of age. Arjmand et al. [12] have also rec-
ommended to revisit the criterion for these reasons.

The present study aimed to quantitatively assess the 
risk level of compressive force on the lumbar spine to 
verify safety in using assistive devices and in perform-
ing manual handling tasks without using the devices. 
Although Genaidy et  al. [20] performed risk analysis 
using CS values from several studies, their proposed 
equations were linear. However, the risks are known to 
be expressed as nonlinear risk curves, characterized by 
nonlinearity for lower or higher risk levels and which 
can be overestimated or underestimated with the linear 
form [22, 23]. Thus, the use of assistive devices may help 
control the amount of compressive force on the lumbar 
spine during manual lifting tasks. For the evaluation of 
such devices, the accuracy of estimation in the lower risk 
is important. Therefore, the analysis of a low risk level, 
which cannot be expressed in a linear form, should be 
performed. This study introduces nonlinear injury risk 
curves derived from nonparametric statistical analyses, 
which are applicable to individuals within a wide age 
range.

Factors affecting CS
Consideration of individual differences in parameter 
characteristics in the risk analysis reduces variance of 
data and can improve the precision of estimating the 
risks. In this section, we choose one parameter based on 
linear regression analysis.

Mechanical aspects of CS
Some studies suggest that bone mineral density (BMD), 
bone mineral content (BMC), and endplate area are 
mechanical factors affecting the CS value. Biggemann 
and Hilweg [24] reported a strong correlation of r = 0.84 
between CS and the product of BMD and endplate area. 
In another study by Hansson et  al. [25], the correlation 
between CS and BMC was r = 0.86 . The units of meas-
urement for BMD and BMC are g/cm2 and g, respec-
tively, and their respective values can be interpreted in 
the same manner. Using BMD multiplied by endplate 
area and BMC as parameters for risk estimation may be 
more appropriate in terms of accuracy; however, these 
methods are difficult to employ. The major drawback is 
that these methods require X-ray measurements, which 
involve radiation risk.

Parameters considering ease of implementation
The correlation between CS and other parameters that 
are relatively easy to measure is required for precision 
purposes. Genaidy et al. [20] performed multiple regres-
sion analysis and proposed a linear equation for esti-
mating the CS value using age, gender, lumbar motion 
segment (levels of lumbar segment), and body weight as 
parameters. They also reported the following equation, 
which includes the risk term “population percentile” (PP).

CS: compressive strength [N]; AGE: age group (20–29 
years = 1, 30–39 years = 2, 40–49 years = 3, 50 years and 
above = 4); GENDER: gender (male = 1, female = 2); PP: 
population percentile (1, 5, 10, 25, 50, 74, 90, 95 and 99).

Analysis of Eq. 1 does not match our purpose because 
it is fitted to a linear equation. Our focus is on low risk 
level. Regarding risk analysis, nonlinear risk curves are 
used in the field of motor-vehicle crash testing [22, 23].

Increasing the number of parameters restrains the 
amount of data we can use from the existing literature, 
which can affect the accuracy of risk estimation. This 
study focused on clarifying which parameter mostly 
affects CS; the parameter that is related to BMD, BMC, 
or endplate area may be more reasonable. As candidates 

(1)
CS = 7222.41− (1047.1× AGE)

− (1279.18×GENDER)+ (56.73× PP)

Fig. 1  End-plate fracture initiates disc degeneration (adapted from 
the work of Bogduk [17])
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of this parameter, age, gender, lumbar motion segment 
(levels of lumbar segment), and body weight were con-
sidered, which were used for the linear equation for the 
estimation of the CS value that Genaidy et  al.  [20] pro-
posed. Hansson et al. [25] reported that no relationship 
was found between BMC and levels of lumbar segment 
through a regression analysis. By reanalyzing the data 
that Genaidy et  al. [20] used (Hutton and Adams [26]; 
Hansson et al. [25]; Hansson and Roos [27]; and Adams 
and Hutton [28]), we computed again the coefficient of 
determination R2 and the results against CS were 0.32548 
for age, 0.17225 for gender, and 0.12136 for body weight. 
The relationship between the BMD or the BMC and age 
were reported by Ebbesen et al. [29], where R2 was 0.43 
for the BMD, 0.29 for the BMC, respectively. Consider-
ing the above, the age was chosen as the parameter in this 
work.

Studies on the relationship between CS and age
By focusing on age as the parameter, we found sources 
of dataset other than the previously mentioned work 
used by Genaidy et al. [20] in deriving Eq. 1. Their data-
set was also used in the R2 analysis in this study. The 
relationship between CS and age is illustrated in Fig.  2, 
based on experimental data obtained by Eie [30], Hans-
son et  al. [25], Hansson and Roos [27], Hutton and 
Adams [26], Adams and Hutton [28], Brinckmann et al. 
[24, 31], and Ebbesen et al. [29]. The data collected and 
presented in the figure were used to conduct the risk 
analysis described in the following section, where the 

age values were restricted within 20–79 years due to 
limited resources on data and references. Moreover, the 
resources included data from different sections of lumbar 
segments extracted from the same cadavers, to collect 
sufficient amount of data for analysis.

It should be noted that experimental conditions for 
measuring CS were not entirely similar among the above 
referenced works. One of the differences pertained to the 
compression of either a single lumbar vertebra or a lum-
bar motion segment. The lumbar spine consists of five 
vertebrae (L1, L2, L3, L4, and L5). A lumbar motion seg-
ment comprises two lumbar vertebrae and the interver-
tebral soft tissue, which means that it consists of two 
lumbar vertebral units [28]. Meanwhile, a vertebra is the 
single bone component/unit [25]. Hutton and Adams 
[26], Adams and Hutton [28] and Brinckmann et al. [24, 
31] performed analyses for lumbar motion segments, 
whereas Hansson et al. [25], Hansson and Roos [27], and 
Ebbesen et al. [29] focused on a group of single lumbar 
vertebrae. Eie [30] included both lumbar motion seg-
ments and single lumbar vertebrae in his experiments. 
There are certain differences among the experiments on 
lumbar motion segments in terms of compressive con-
ditions. Hutton and Adams [26] and Adams and Hut-
ton [28] applied loads that bent the joints to the limit of 
normal flexion, whereas in other studies either the joints 
did not bend or the researchers did not mention any-
thing about bending of joints in their works. Other dif-
ferences include the level of compression, and whether a 
preloading was applied before any increase in compres-
sive force was applied to the limit of fracture. Hansson 
et  al. [25], Hansson and Roos [27], and Ebbesen et  al. 
[29] performed loading in 5 mm/min , whereas Hutton 
and Adams [26] performed in 3000 N/s . Brinckmann 
et  al. [24] applied a preload of 1 kN for 15 min. After 
the preload was removed, a main loading of 1 kN/s was 
applied. Conditions of preserving the specimens were 
also different. The preserved specimens used by Eie 
[30] and Brinckmann et  al. [24], and some of the pre-
served specimens used by Hutton and Adams [26] were 
fresh (never frozen before the tests), whereas others pre-
served the specimens by initially freezing them (stored 
in approximately − 20 ◦C ) and then thawing them before 
the tests.

These differences may affect the experimental results. 
However, it is difficult for us at this stage to consider what 
to exclude in the data because the condition of applying 
the compressive force is different enough from that of the 
other remaining part of the data, and we should continue 
collecting a larger amount of data under the same condi-
tions for analysis. Even with considering these differences 
in conditions, it can be observed in Fig. 2 that the CS val-
ues tend to decline as the age values increase.

Fig. 2  Compressive strength (CS) of lumbar spine versus age. Data 
were taken from the works of Eie [30], Hansson et al. [25], Hansson 
and Roos [27], Hutton and Adams [26], Adams and Hutton [28], 
Brinckmann et al. [24, 31] and Ebbesen et al. [29]. Data obtained from 
Ebbesen et al. were read from the scatter plots. The age range was 
restricted to 20–79, considering the amount of data and the number 
of references. (N = 320)
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Risk estimation
In this section, we will derive the risk curves using data 
shown in Fig. 2.

Risk curve for the general population
The kernel density estimation [32] can be used to esti-
mate the smooth probability distribution function f̂h(x):

Here, x denotes the point of CS at which the density f̂h(x) 
is estimated, Xi denotes the observed CS of sample i, n is 
the number of samples, h is the bandwidth, and K(x) is 
the kernel function. In the present study, the normal dis-
tribution was used for the kernel:

Moreover, for the boundary condition that CS should 
be a positive value, the transformation x → t(x) was 
employed [33], where t(x) = ln(x) in this study:

Then, the cumulative distribution function, namely the 
risk curve, is expressed as follows:

Equation  6 was used for calculating the bandwidth h 
given in the work of Bowman and Azzalini [33]:

where σ̃ is the median of sample Xi . As the risk curve 
derived from the kernel method (Eq. 5) requires the input 
of all the 320 datasets presented in Fig. 2, it is inefficient 
to use it in this form from the viewpoint of usability. 
Therefore, we considered fitting it to a function (Eq.  8) 
that requires inputting only three coefficients:

The way how to choose the coefficients in the equa-
tion for fitting the risk curve is described in Appendix 
A. For the fitting operation, the fminunc function in the 
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optimization toolbox of MATLAB (MathWorks) was 
used with the cost function of the least-squares error.

Figure 3 shows the resultant risk curve, whereas Table 1 
lists the resultant coefficients fitted to the curves of Eq. 8.

Risk curves for three generations
To estimate the risk for different generations, the data 
presented in Fig.  2 were grouped into several genera-
tions. By judging through the number of samples for each 
group, three generation groups (20-year width) were cho-
sen in this paper: 20–39, 40–59, and 60–79 years. The 
number of samples was 85, 129 and 106, respectively. For 
each age group, the risk curves were estimated using the 
same method described in "Risk curve for the general 
population" section.

Figure 4 illustrates the risk curves for each age group. 
Table 2 lists the resultant coefficients fitted to the curves 
in Eq. 8. The forces estimated via the risk curves associ-
ated with a 10% risk of injury for the age groups 20–39, 
40–69 and 70–89 years were 3.72, 2.98, and 2.03 kN, 
respectively (Fig. 5).

Risk curves for specific ages
In certain cases, the risk curve for a specific age can be 
more useful than the risk curve for the generations. As 
an example, the developers of physical assistive devices 
would be able to set the assist power/rate to change 

Fig. 3  Risk curves for the age group 20–79 years. CS, compressive 
strength

Table 1  Resultant coefficients of  the  risk curve 
for the general population fitted to Eq. 8

a0 a1 a2

11.24 1.568 − 0.4199
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depending on the age of the user to save on battery power. 
However, the estimated risk curves of the three genera-
tions have distinctive differences; the ages that are at the 
range limit of two successive ranges may experience large 

differences in assistive power. Using the risk curve for a 
specific age may prevent these situations from occurring. 
Therefore, we derived a risk curve with two variables, 
namely the two-dimensional risk curve. The variables are 
CS (kN) and age (years) in this paper.

The two-dimensional kernel density estimation can be 
applied to estimate the probability density distribution 
without grouping the ages:

Here, x denotes CS (kN), and y denotes age (years). The 
log-scaled CS yielded a satisfactory estimation for this 
case. The two-dimensional kernel density estimation with 
transformed (x → t(x)) can be written as follows:

where t(x) = ln(x) in this study. For the estimation of risk 
for a specific age, the result of the integration of the den-
sity along the x-axis should be equal to 1. Therefore, we 
normalized the equation as follows:

Hence, the estimated two-dimensional risk curve, is 
expressed as

Equation  13 was used for the calculation of the band-
widths hx and, hy , given in the work of Bowman and 
Azzalini [33]:

For the calculation of σ , Eq. 7 was used for both the x-axis 
and y-axis directions.

Since the risk curve in Eq. 12 requires the input of data 
shown in Fig. 2, in this form, it is inconvenient from the 
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Fig. 4  Risk curves for three generations, fitted to Eq. 8. CS, 
compressive strength

Table 2  Resultant coefficients of  the  risk curve for  three 
generations, fitted to Eq. 8

Age group (years) a0 a1 a2

20–39 16.77 2.544 − 0.4166

40–59 15.00 1.953 − 0.4831

60–79 6.388 2.338 − 0.8312

Fig. 5  10% risk level of the risk curves for three generations. CS, 
compressive strength
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viewpoint of usability. Therefore, we consider fitting it to 
the following function:

Fig. 6 shows the estimated risk curve for specific ages via 
the kernel density estimation,while Fig. 7 shows the risk 
curve for specific ages fitted to Eq.  14. Table  3 lists the 
coefficients fitted to the risk curve (Eq. 14).

(14)r(x, y) = 1

1+ exp
{

(A0+A1y+A2y2)+(A3+A4y+A5y2)x2+(A6+A7y+A8y2)x3

x2

} .

Analysis of risk curves
Three types of risk curves were introduced, namely for 
the general population, for three generations, and for 
specific ages. Regarding the risk curves for three genera-
tions in Fig.  4, certain differences could be observed in 
the 20–39-year age group curve, between the fitted curve 
and the raw curve. This may have resulted from a short-
age in data. In the lower risk level of our interest, it can 
be certain that there is no critical problem of safety with 
the fitted risk curve that resulted in a higher risk than 
with the raw ones. Additionally, from Fig. 5, the NIOSH 
criterion of 3.4 kN can be placed between the 20–39-year 
curve and 40–59-year curve, which agrees with the sug-
gestion by Jäger and Luttmann [21].

Regarding the specific-age risk curve, there were cer-
tain regions where lower age presented higher risks than 
higher age for the same CS value, which does not agree 
with the generic characteristics of higher age, namely, 
being at a higher risk. As the region was placed in quite 
a high risk level, close to 1, safety should not pose a prob-
lem. In Fig. 8, the contour graph of the low risk level is 
presented. The raw contour was based on raw risk curves 
for each age, which were derived based on data with 
an age tolerance of ± 5 years (11-year width). It can be 
assumed that the discontinuity presented in the raw 
contour was caused by the lack of data. Comparing fit-
ted curves with raw curves, the fitted risk curve had the 
tendency to estimate a lower risk in elderly individuals 
and a higher risk in young individuals. The lower risk 
estimation indicates having a problem from a validation 
viewpoint.

These characteristics can be regarded as the result of 
the cost functions providing least-squares errors for all 
of the risk levels. Hence, we introduced a weighted risk 
curve on the low risk level (Fig. 9, Table 4) for a specific 
age. The fitting method is described in detail in Appen-
dix B. A contour graph for this risk curve is shown in 
Fig. 10. By comparing Figs. 8 and 10, the low-risk-level 

Fig. 6  Risk curve for specific ages estimated via the kernel density 
estimation. CS, compressive strength

Fig. 7  Risk curve for specific ages, using Eq. 14, with R2 = 0.9955 . CS, 
compressive strength

Table 3  Resultant coefficients of the risk curve for specific ages, fitted to Eq. 14

A0 A1 A2 A3 A4 A5 A6 A7 A8

6.580 0.5793 − 0.007871 7.486 − 0.2254 0.002175 − 0.9376 0.02866 − 0.0003792

weighted graph reproduced the characteristics of the 
raw contour more satisfactorily than the non-weighted 
one in the lower risk level for elderly individuals. 
Therefore, we can conclude that for the risk curve for 
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a specific age, the low-risk-level weighted risk curve 
should be employed for the safety of the elderly. How-
ever, it should be noted that even the low-risk-level 
weighted risk curve estimated a 5–10% lower risk level 
for the case of elderly individuals than the raw graph. 
Additionally, it should be also noted that the 5% risk 
level for younger individuals estimated lower risk than 
that in the raw-data graph.

Discussion
The injury risk curves introduced in this study could be 
used for designing and evaluating manual work, by inte-
grating the results of studies that estimated the com-
pressive force on the lumbar spine [34–36]. When the 

compressive forces on the lumbar spine were estimated, 
the probability of LBP risk could be easily computed by 
substituting the values into the x (CS) of Eq. 8 or 14.

The evaluation of manual work based on lumbar 
compressive forces can be seen in the works of Merry-
weather et al. [34], Arjmand et al. [12, 35], Gallagher and 
Heberger [14], and Ray et  al. [13]. Most of these works 
refer to NIOSH lumbar compressive force of 3.4 kN as a 
criterion; however, our injury risk curves demonstrated a 
higher risk for this value for individuals with higher ages. 
Using the 3.4 kN of compressive force and the low-risk-
level weighted injury risk curve for a specific age, such as 
for a 20-year-old person, the probability of injury risk was 
estimated to be 2.1%, in contrast to 56% for a 79-year-old 
person. This indicates the need for re-revising the widely 
used RNLE (the equation for calculating RWL) [6] and 
including age as one of the equation components.

The CS value according to age may be affected by cer-
tain other factors. One of the considered factors was 
race. The CS values of Japanese people (Asians) can be 
obtained from the work of Sonoda [37]. The Mann-Whit-
ney U test [38] was performed by Westerners (Fig.  2) 
versus Asians (Table 5) for each of the three generations 
(20–39, 40–59, and 60–79 years). No significant differ-
ence was found from the test ( p = 0.8464 , p = 0.4385 , 
and p = 0.1981 , respectively, which were all greater 
than 0.1). These results imply the effect of racial differ-
ences, but not more significant than that of age. It should 
be also noted that these statistical tests were not entirely 
unbiased, due to limited data (e.g., insufficient data from 
Asian individuals, data from Sonoda [37] might be mean 
values). Further studies should be performed to draw a 
realistic conclusion.

Fig. 8  Contour graph of the risk curves for specific ages. CS, 
compressive strength

Fig. 9  Low-risk-level weighted risk curve for specific ages, 
R
2
= 0.9955 . CS, compressive strength

Fig. 10  Contour graph of the low-risk-level weighted risk curves for 
specific ages. CS, compressive strength
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Increasing the number of parameters related to CS 
could enhance the usefulness of the risk curves. In this 
study, we focused on one parameter, namely age, which 
significantly influenced the CS values, due to limited data. 
The gender factor may be the first candidate for a supple-
mental parameter to improve the risk curves. Jäger and 
Luttmann [21] suggested that age- and gender-related 
analyses should be conducted. Furthermore, Ebbesen 
et al. [29] reported that in the correlation between CS and 
age, males generally presented with higher CS values than 
females. Thus, age- and gender-related risk curves should 
be introduced in future studies, and a higher number of 
CS measurement studies should be analyzed.

Some researchers used the lumbar spine shear force 
as a biomechanical criterion in addition to the compres-
sive force [9, 12]. A limit of 1.0 kN was suggested in some 
earlier studies [39–41]. In this study, we focused on com-
pressive force since RNLE is currently used as the stand-
ard, which is based on compressive force [7]. However, 
we believe shear force should also be considered as a risk 
factor. Therefore, injury risk curves for shear force should 
also be introduced in future studies.

Regarding the development of physical assistant robotic 
devices, the lumbar compressive force with the assis-
tance of the devices can be estimated using methods such 
as inverse dynamics [8]. The net amount of risk reduced 
by the devices can be computed by referring to the risk 
curve. This curve may help developers in designing the 
devices. More clearly, the curve may enable them to set 
a specific target for reducing the risk level and the age of 
individuals. Additionally, the risk curves could be used 
directly in the safety standards of physical assistant robots 

such as ISO or JIS. For example, the Lumbar Compression 
Reduction (LCR) in the current version of the associated 
JIS standard for physical assistant robots with lumbar 
supports [4] can be updated to describe a reduction of the 
probability of risk taking into account the data of the risk 
curves we obtained. In parallel, desirable risk levels for 
physical assistant robots should be elaborately determined 
to pertain the safety of users. Since the detailed usage of 
the risk curves must depend on how they are evaluated 
in their use scenarios, the risk level should also be deter-
mined under each of their use scenarios in consideration 
of the age groups that vary. We may be able to exemplify 
such an effective use of the risk curves as follows: Some 
use scenario can accept a 10% for all age groups, while 
some other scenario which may conclude that underes-
timation of the risk curve for elderly cannot be accepted 
due to the possible use of such devices by elderly, and 
therefore select 10% for the youth and 5% for the elderly.

Conclusions
In this study, the risk estimation of LBP for manual lift-
ing tasks was performed based on the CS of the lum-
bar spine. Analyses for low risk levels were possible by 
introducing nonlinear injury risk curves. For individual 
differences, an age factor was primarily considered, and 
risk curves for three generations as well as two-dimen-
sional injury risk curves for specific ages were produced. 
Regarding the risk curves, a quantitative assessment of 
the use of physical assistive devices and an evaluation 
of manual handling tasks are rendered possible when 
the compressive force on the lumbar spine is estimated. 
A race factor was also discussed by comparing between 
Westerners and Asians (Japanese) in three age groups. 
However, results indicated that the effect of race was not 
more significant than that of age, although limited data 
make this finding inconclusive.
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Table 5  Compressive strength (kg) for  Japanese people 
[37]

Data may be the average and not the measured values (not mentioned explicitly 
in the literature)
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Therefore, the functions r and f can be rewritten as fol-
lows, using x and y:

(19)

a0 ≈ A0 + A1y+ A2y
2
,

a1 ≈ A3 + A4y+ A5y
2
,

a2 ≈ A6 + A7y+ A8y
2
.

(20)r(x, y) = 1

1+ exp{f (x, y)} ,

Appendix A: The form of function for the risk curve
The function for the risk curve requires the following 
conditions: lim x→+0r(x) = +0 and lim x→∞r(x) = 1 . 
Logistic functions are known to have similar profiles of 
satisfying these conditions. In addition to the above con-
ditions, we can design a function as in below, by consid-
ering the following conditions: lim x→−0r(x) = +0 , and 
lim x→−∞r(x) = +0 . The additional conditions were 
used to decrease the degree of freedom but were not nec-
essary since x ≥ 0 in this study.

Appendix B: The fitting conditions 
for the low‑risk‑level weighted risk curve 
for specific ages
The constrained nonlinear optimization technique was 
used for the fitting. The coefficients of the risk curve 
A = [A0, . . . ,A8]T were determined by solving the fol-
lowing optimization problem:

(21)f (x, y) = (A0 + A1y+ A2y
2)+ (A3 + A4y+ A5y

2)x2 + (A6 + A7y+ A8y
2)x3

x2
.

Here, m = 1 and n = 1 were chosen in the study:

For the two-dimensional risk curve, the transition of 
coefficients a0 , a1 , and a2 along y-axis was estimated by 
fitting them with r̂(x, y∗) . Here, y∗ denotes the discretized 
value of y ∈ [20, 79] . The estimated coefficients a0(y) , 
a1(y) , and a2(y) were fitted to the lowest polynomial 
function that can express the transitions, which were 
quadratic equations in this paper. A least-squares method 
was used for the fitting:

(15)r(x) = 1

1+ exp{f (x)} .

(16)f (x) =
∑m

i=0 aix
2i +

∑n
j=1 am+jx

2m+2j−1

x2m

(17)

{

ak ≥ 0 (k = 0, . . .m)

ak ≤ 0 (k = m+ 1, . . . ,m+ n).

(18)f (x) = a0 + a1x
2 + a2x

3

x2
.

(22)A
∗ = arg min

A

�

i,j







�

r̂h
�

A, xi, yj
�

− r
�

A, xi, yj
��2 + δ







1−
�

r̂h
�

A, xi, yj
�

r
�

A, xi, yj
�

�2






2






subject to

where

The first term of the cost function, Eq. 22, represents the 
least-squares error, and the second term represents the 
weighting in the low risk level. The inequality constraints, 
Eq.  23, represent the constraints for the risk curve, 
Eq. 17. The final inequality constraints, Eq. 24, represent 
the generic tendency of the lower ages, namely that they 
present a lower risk than the higher ages for the same 
CS value; xi and yj represent the ith and jth numbers of 
the discretized x and y, respectively. Eq.  25 describes δ , 

(23)a0(A, yj) ≥ 0, a1(A, yj) ≤ 0, a2(A, yj) ≤ 0,

(24)
∂r(A, x, y)

∂y

∣

∣

∣

∣

x=xi ,y=yj

≥ 0

(25)

δ =
{

1 (0.02 < r̂h
(

A, xi, yj
)

< 0.3)

0 (r̂h
(

A, xi, yj
)

≤ 0.02, r̂h
(

A, xi, yj
)

≥ 0.3).
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which determines the weighting conditions for lower risk 
fitting. Moreover, r̂h represents the two-dimensional risk 
curve estimated by the kernel density estimation, Eq. 12; 
r represents the function of a two-dimensional risk curve, 
Eq. 14. The fmincon function in the optimization toolbox 
of MATLAB (MathWorks) was used obtaining for the 
solution of the optimization problem.
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