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Abstract 

Providing an accurate count of total leukocytes and specific subsets (such as T-cells and B-cells) within small amounts 
of whole blood is a rather challenging ordeal due to the lack of techniques that enable the separation of leukocytes 
from a limited amount of whole blood. In a previous study we designed a microfluidic chip utilizing a micropillar array 
to isolate T-cells and B-cells from the sub-microliter of whole blood. Due to the variability of cells in size, morphol-
ogy and color intensity, a Histogram of Oriented Gradients (HOG) based Support Vector Machine (SVM) classifier was 
proposed with an average accuracy of 94%, specificity of 99% and sensitivity of 90%. The HOG can separate the cells 
from the background with a high accuracy rate however, some noise is similar in shape and size to the actual cells 
and this results in misclassification. To alleviate this situation, in this study a convolutional neural network is trained 
and used to distinguish T-cells and B-cells with an accuracy rate of 98%, a specificity of 99% and a sensitivity of 97%. 
We also propose an HOG feature based SVM classifier to preselect the detection windows to accelerate the detection 
to process images in less than 10 min. The proposed on-chip cell detecting and counting method will be useful for 
numerous applications in diagnosis and for monitoring diseases.
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Introduction
Over the years with the development of new techniques 
and emerging technologies, cell analysis has evolved with 
regards to speed, sensitivity, spatial resolution, cost, etc. 
Every form of cell analysis represents a compromise. 
Three dimensional (3D) optical scanning microscopy can 
achieve great spatial resolution, but scanning takes time 
[1]. A standard optical microscopy has a variety of modes 
(transmitted light, scattered light, fluorescence, phase 
contrast, etc.), each of which provides distinct and com-
plementary information about the cell [2] and is suitable 
to obtain a two-dimensional (2D) image of the cell. A flow 
cytometry measures fluorescence intensity and scattering 

from cells suspended in flow. Only a limited number of 
signals for each cell is available depending on the optical 
system, and spatial resolution is lost entirely but it is pos-
sible to measure thousands of cells in a second [3].

The form of cell analysis and the method to process 
the data depends on the application and its time require-
ments. In case of real time detection and sorting of cells 
as in flow cytometry, only a fraction of a millisecond per 
cell is allowed. On the other hand, for confocal micros-
copy, 3D scans can be analyzed in detail offline. Due 
to the sheer amount of data from 3D scans or images, 
storing and processing raw cell data is not always pos-
sible and various features were extracted to simplify cell 
analysis [4]. Extracting simple features such as the size 
or circularity of a cell is significant in many cases, and 
the 2D image of the cell obtained via fluorescence opti-
cal microscopy will ease the processing and sharing of 
data. If the feature extracted from the 2D image is to be 
used for the detection and classification of cells, caution 
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is required to prevent the loss of important information 
that might be included in an image. Hence, the extrac-
tion of features that contain most of the related infor-
mation was researched and used for applications that 
require the detection and classification of cells [5]. With 
the improvement of automation in image analysis and the 
ease of access to available algorithms, creating large data-
sets of cells and cell features became possible [6].

There is a tremendous need for an automated, portable 
point-of-care blood cell counter that could yield results 
in a matter of minutes from a drop of blood without any 
trained professionals to operate the instrument. Micro-
fluidic based devices are a proven technology for cellular 
handling and are easily integrated with the fluorescence 
microscopy to obtain 2D images of cells. Cell counting 
methods using microfluidic devices are promising substi-
tutes for conventional flow cytometry systems since they 
allow for faster analysis, reduced sample volume, and are 
portable, inexpensive and disposable. For the isolation 
and detection of T-cells and B-cells from whole blood, we 
designed a microfluidic chip and implemented a machine 
learning algorithm with an appropriate feature descriptor 
[7, 8]. Due to the variability of cells in size, morphology 
and color intensity, a Histogram of Oriented Gradients 
(HOG) descriptor, which is a popular choice for object 
detection among the computer vision community due 
to its robustness, is used [9]. The HOG encompasses the 
shape of the cells while operating in localized regions 
and remaining invariant to geometric and photomet-
ric transformations. In other words, the HOG can work 
even when there are fluctuations in the illumination and 
shapes of the cells to some extent due to its isolation sys-
tem design. The HOG can distinguish the cells from the 
background with a high accuracy rate. However, some 
noise is similar in shape and size to the actual cells, hence 
there is a possibility of misclassification. In our previous 
work, we chose to have a lower rate of misclassification 
and forwent a higher detection rate. It might be possible 
to incorporate features other than shape to increase the 
accuracy but deciding on what features to use and how 
to combine them remains an issue. A key approach is to 
employ machine learning methods to automate feature 
extraction, and directly use raw data for classification 
[10, 11]. Convolutional neural networks (CNNs), train 
directly on the labeled raw data, and learn the features 
to be extracted from the images automatically. CNNs are 
widely used for applications that require object recogni-
tion and computer vision such as self-driving cars and 
face-recognition [12, 13]. CNNs are also used in appli-
cations pertaining to cells [14–16]. Despite the attrac-
tive qualities of CNNs, they were not widely used for 
cell detection and classification until recent years, since 
they require powerful GPUs and large datasets to train. 

Current GPUs optimized for training CNNs and large 
datasets containing millions of labeled images such as 
ImageNet only became available in recent years [17].

In this study we propose to use a CNN to detect T-cells 
and B-cells from 2D fluorescence microscopy images. A 
pretrained convolutional neural network (CNN) is fine 
tuned to detect T-cells and B-cells from the background. 
A preselection method for detection windows using the 
HOG feature based SVM classifier is introduced to accel-
erate the detection process. In the testing phase, images 
are scanned with a sliding window and each detection 
window in the image is classified by the trained CNN. 
The comparison of the performance between the trained 
CNN and our previous work which utilized the HOG fea-
ture based SVM classifier is demonstrated. Furthermore, 
the impact of the preselection method in performance is 
also discussed.

Sample preparation and experiment
Human blood samples were collected from healthy 
donors at the National Hospital Organization Nagoya 
Medical Center, and all participants provided written 
informed consent to participate in the study. This study 
was approved by the institutional review board of the 
National Hospital Organization Nagoya Medical Center. 
For the detection of T-cells and B-cells, the blood sam-
ple was mixed with a two-color direct immunofluores-
cence reagent (BD Simultest™ CD3-FITC(Ex 494 nm, Em 
520 nm)/CD19-PE(Ex 496 nm, Em 578 nm), BD Biosci-
ence, San Jose, CA) and incubated at room temperature 
for 15 min.

Figure 1 demonstrates the overview of the experiment 
setup. We used a pillar-based microfluidic chip that is 
designed to isolate leukocytes from peripheral blood with 
high efficiency and without clogging [7]. This microflu-
idic chip uses gradual size-based filtration with gap sizes 
ranging from 3–6 μm and 8–15 μm. The larger micro-pil-
lar gaps are intended to capture bigger cells such as lym-
phocytes, which are mostly spherical in shape and vary 
from 7  μm to 30  μm in diameter. We introduced 1  μL 
peripheral blood into the chip and collected the fluid 
from the chip into a tube. After the entire blood sample 
flowed through the chip, a 30 μL sheath liquid (PBS with 
5  mM EDTA) was introduced to remove non-trapped 
cells. Following the sample introduction, fluorescence of 
T-cells and B-cells were excited (488 nm) and the filtra-
tion zone on the chip was scanned automatically. The 
images were captured by a CMOS-camera (ASI178 MC, 
Zhen Wang Optical Company, China, 3096 × 2080, pixel 
size 2.4  µm) installed on the eyepiece body tube of the 
microscope. The whole chip was scanned frame by frame, 
and after an image was acquired the chip was moved 
using motorized stages. The total area of the filtration 
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zone can be covered by 420 images and the scanning time 
is 14 min.

The dataset
There is no standard dataset for fluorescent cell images, 
so we created a custom dataset in our previous work [8]. 
Previously a total of 6200 cells and 35,000 background 
images were gathered semi-automatically. We augmented 

this dataset by using the horizontal reflections of the cell 
images, then a random subset of background images 
were chosen for the sake of a better-balanced dataset.

Figure 2 illustrates the steps of creating the final data-
set and the training of CNNs. The emission spectrum 
crosstalk between the dyes prevents us from manually 
annotating the datasets to be used as training data. To 
alleviate the influence of fluorescence emission spectrum 

Fig. 1  Overview of the experiment setup. Blood is pumped into the device via inlet port. Due to the difference in size and deformability, leukocytes 
will be trapped in different zones
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crosstalk, we performed the same experiment by staining 
the cells with a single dye. Cell images from these experi-
ments were automatically extracted by the proposed 
CNN and added to the final dataset. These cells were used 
to calibrate the color distribution and a separate CNN—
which will be further elaborated on in the following 
chapters—was trained to distinguish T-cells from B-cells. 
Then using the trained CNN, previously un-annotated 
cells are annotated. The dataset for training the CNN is 
finalized with three labels; T cell, B-cell and background 
as Fig. 3 demonstrates. The dataset for testing is kept as it 
is, for the sake of performance comparison.

Training of convolutional neural network
Training a CNN from scratch requires a tremendous 
amount of data. Although it is possible to re-train a 
pre-trained CNN using a small dataset which is called 

transfer learning [18]. It is not always possible to have 
enough data for a certain application but using data 
which is in another domain can greatly improve the per-
formance of learning. Transfer training makes use of the 
already existing CNNs and fine tunes them to the new 
datasets with a short training time. Many pre-trained 
CNNs exist like AlexNet [19], VGG [20] and GoogleNet 
[21]. In this study we use AlexNet since it is lightweight.

Transfer learning can be accomplished by removing 
the last layer of the AlexNet and using the rest of the 
parameters. We replaced the last layer of AlexNet with a 
fully connected layer according to the number of labels 
we have. Then using the new labelled data, we re-trained 
the pre-trained CNN. Matlab’s pretrained AlexNet was 
chosen as a starting point and a stochastic gradient 
descent with momentum algorithm (with hyperparam-
eters: momentum 0.9, initial learn rate 0.001, max epochs 

Fig. 2  Flow chart of training AlexCAN. Firstly, a CNN < Cell/Background > is re-trained using the original dataset with the labels of cell and 
background. Then, training images dyed with a single dye are exhaustively searched, and the trained CNN < Cell/Background > is used to create a 
new dataset with labels T-cell and B-cell. After that, another CNN < T-cell/B-cell > is trained from the newly created dataset, which can distinguish 
T-cells from B-cells. Then, cells in the original dataset are annotated by using the newly trained CNN < T-cell/B-cell >. We obtain the extended dataset 
by merging the newly created dataset and annotated original dataset. Lastly, AlexCAN is re-trained from the extended dataset as our final classifier, 
that can separate cells from background and can also annotate them as T-cell and B-cell
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100, mini batch size 128) was used for re-training. In this 
study, our dataset consists of a few thousand training 
images and we only have three labels: T-cell, B-cell and 
background. Thus, our transfer learned CNN (from here 
on called AlexCAN: AlexNet based Cell Analyzer Net-
work) has 3 neurons in its last layer.

Our initial dataset from previous work did not have 
annotations for T-cells and B-cells so it was only labeled 
as cells and background. We re-trained a CNN which can 
detect cells from the background as Fig. 2 shows. Train-
ing images were scanned exhaustively by employing the 
sliding window method to detect cells. We used 3 dif-
ferent scales for the detection window as 64 × 64 pix-
els, 80 × 80 pixels and 100 × 100 pixels. Since AlexNet 
requires an input size of 227 × 227 pixels, image patches 
must be resized before they can be classified. Following 
the classification of the whole image, multiple detection 
windows for single cells are combined and weak detec-
tions are eliminated.

Calibrating color distribution
In our previous work, after the detection of the cells, a 
color feature-based detector was used to identify cells 
as T-cells or B-cells respectively. The emission spectrum 
crosstalk between the dyes prevented us from annotat-
ing the cells manually, hence we dyed cells with a single 
dye, and introduced them to the same isolation system. 
As they were stained with only one fluorescent dye, the 
detected cells’ type could be determined.

Images from the single dye experiments are used to 
create a color dataset as Fig. 2 illustrates. Using the slid-
ing windows method and trained CNN for detection, we 
created a dataset of 2300 cells annotated as T-cells and 
B-cells from 6 experiments and 2500 images. By using 
this new dataset, another CNN is re-trained which can 
separate cells into T-cells and B-cells. A fivefold cross 
validation is used to assess the performance. Although 
this process is straightforward and can be achieved with 

a simple color feature, we achieved a 99% accuracy rate 
compared to a 96% accuracy rate from our previous work 
which used a simpler color feature detector [8].

Due to the high purity of the detections from the 
trained CNN and overall accuracy of the automatic anno-
tation, we could add this new dataset to the initial data-
set. We also annotated the cells in the initial dataset as 
T-cells and B-cells using the newly re-trained CNN. This 
finalized our dataset with three labels as Fig. 2 illustrates. 
Using the final dataset AlexCAN is re-trained to detect 
the cells from the background and this time also anno-
tate them as T-cells and B-cells. Cross validation proved 
that using the final dataset for AlexCAN can achieve 
the same 99% accuracy rate for classifying T-cells from 
B-cells using the color dataset. Moreover, its accuracy in 
distinguishing cells from the background is also equal to 
that of the previously re-trained CNN which could detect 
cells from the background without the type of the cell. 
Therefore, AlexCAN simplifies the two layer detection 
approach in our last work, which first detected cells from 
the background and then annotated them as T-cells and 
B-cells [8].

Speeding‑up by preselecting windows using HOG 
and SVM
AlexCAN has improved performance in terms of iden-
tifying T-cells and B-cells and distinguishing them from 
noise and background. But processing all the images 
from a single experiment is still timewise infeasible even 
with the utilization of GPU processing (CPU i7-8700K 
3.7 GHz, Nvidia GTX 1080Ti, 64 GB RAM) and efficient 
implementation (MATLAB—pretrained AlexNet). This is 
due to the number of detection windows that needs to be 
classified (in the order of 105 for a single image). Moreo-
ver every detection window has to be resized to the input 
size of the AlexCAN. However, even if a smaller CNN 
with an input size of our detection window is trained, it 
will still not be fast enough to be used in our application. 

Fig. 3  Dataset after automated labeling of cells. a B-cells, b T-cells and c background images
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Hence, we have to reduce the number of detection win-
dows to meet the time requirement of our application.

Due to the design of the chip, cells are sparse on the 
images. Thus it is possible to reduce the number of detec-
tion windows by preselecting them by employing a sim-
pler and faster method. In our previous work, we used a 
HOG features based SVM classifier to detect cells from 
noise and background. By using HOG features, it is pos-
sible to differentiate not only cells but also noise from the 
background. Hence, we prepared a dataset by coupling 
cells and noise images together as a positive dataset and 
used background images as a negative dataset. Figure  4 
illustrates samples from this new dataset. Using this data-
set, the HOG features based SVM classifier is trained.

We propose a two-layer classification scheme. At the 
first layer the HOG features based SVM classifier is used 
to detect cells and noise from background. The detec-
tion windows classified as positive by the HOG features 
based SVM constitute the preselected windows in our 
algorithm, and the remaining detection windows will be 
ignored. In other words, detections from the first clas-
sifier are used as input for the second classifier which is 
AlexCAN. We define the success rate of the HOG fea-
tures based SVM classifier using the number of cells that 
are missed. When a cell is not within any preselected 
window, we count it as a miss. Figure  5 demonstrates 
the miss rate of cells by the first classifier versus the per-
centage of the preselected windows i.e. the ratio of pre-
selected windows to all the detection windows. The miss 
rate decreases as the percentage of preselected windows 
increases. The processing time of AlexCAN increases lin-
early with the increasing of the percentage of the prese-
lected windows, hence the miss rate has a lower bound 
depending on our time requirement.

Figure  6 illustrates this process flow, with an example 
image. Input images are first preprocessed by the HOG 
features based SVM classifier. Using the sliding windows 
approach, the images are scanned using three differ-
ent scales as 64 × 64 pixels, 80 × 80 pixels and 100 × 100 
pixels. Figure  6b shows the preselected windows which 
are the output of the first classification layer. The prese-
lected windows are resized to the input size of AlexCAN 
and then each preselected window is classified as T-cell, 
B-cell and background. The detections from T-cells and 
B-cells are grouped separately, and weak windows are 
eliminated.

Results
We used the same test set from our previous work, in 
order to compare performance. 500 positive cell images 
were cropped, centered and scaled from the annotated 

Fig. 4  Dataset that is tailored to be used for the preselection of detection windows. a T-cells, B-cells and noise are all grouped into positive dataset, 
and b the remaining background images are left as negative dataset

Fig. 5  Miss rate of the HOG features based SVM when preselecting 
windows for AlexCAN
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test images.  50 complex examples containing noise and 
450 randomly selected background examples were used 
as negative test set. To quantify the performance of the 
detectors we plotted the receiver operating characteris-
tics (ROC’s), i.e. true positive rate (  TruePos

TruePos+FalseNeg ) versus 
false positive rate (  FalsePos

FalsePos+TrueNeg ). Also using this test 
set we calculated accuracy, specificity and sensitivity val-
ues as:

In addition to this set of 1000 image patches, negative 
images from the test data were exhaustively searched 
and around 4,500,000 negative images were added to 
the plot Detection Error Tradeoff (DET) curve on a 

Accuracy =

(

TruePos + TrueNeg

Total Population

)

Specificity =

(

TrueNeg

TrueNeg + FalsePos

)

Sensitivity =

(

TruePos

TruePos + FalseNeg

)

log–log scale i.e. miss rate (  FalseNeg
TruePos+FalseNeg

 ) versus false 
positive per window (  FalsePos

Total Population
 ). The DET curves 

present the same information as the ROC’s but small 
differences in probabilities are easier to distinguish. We 
presented the performance of three different cases. In 
the first case AlexCAN was used to classify the image 
by employing the sliding window method. In the sec-
ond case detection windows were preselected using the 
HOG features based SVM classifier to be used with 
AlexCAN. The last case was our previous work to pro-
vide a performance comparison between our previous 
work and AlexCAN and AlexCAN using preselected 
windows.

Figure  7 presents the ROC’s and DET curves for the 
three different cases. The different points in the ROC’s 
and DET curves correspond to different rates of accu-
racy, specificity and sensitivity. We achieved an accuracy 
of 98%, sensitivity of 97% and specificity of 99% in both 
cases using AlexCAN and AlexCAN using preselected 
windows, compared to the accuracy of 94%, sensitivity of 
90% and specifity of 99% of our previous work [8].

Fig. 6  a Original image. b Green rectangles show preselected windows by the HOG features based SVM classifier, c classification results by 
AlexCAN; green rectangles show detection windows that are classified as T-cells and orange rectangles show detection windows that are classified 
as B-cells and d final result after grouping the detection windows
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In one experiment, a total of 420 images were scanned 
for the filtration zone on the microfluidic chip. Pre-
selecting windows via the HOG feature based SVM 
classifier takes about 20 secs for 420 images. Classify-
ing preselected windows with AlexCAN takes less than 
10  min with our experiment PC. We used OpenCV 
libraries for the HOG features to perform GPU process-
ing and Matlab for AlexCAN.

Discussion
The imaging technique and the methods to be used for 
the analysis is decided by the type of application. In the 
case of counting cells using standard microscopy, several 
methods exist for counting the cells in an image [22, 23]. 
If the cells are well separated and have uniform inten-
sity, simple thresholding and watershed algorithms are 
popular. If the cells are not well separated, algorithms 
which account for cell shape and size are preferred [24]. 
In our application, fluorescence intensity is heterogenous 
throughout the microfluidic chip, and cells vary in shape 
due to deformation by micropillars. The intensity, shape 
and size features could not be utilized directly to detect 
cells in our pillar-based microfluidic chip system. In this 
study we adopted a supervised machine learning based 

approach, in which a model is automatically learned 
through examples of cells and background.

In our previous work, the HOG features were utilized 
to distinguish cells from background and noise. How-
ever, the HOG features only use shape information, and 
other features such as color and texture are omitted. In 
our application, the estimation of the ratio of T-cells 
and B-cells have utmost priority, so we chose to have a 
specificity rate as high as 99% and hence sacrificing the 
accuracy and sensitivity rate which were 94% and 90% 
respectively. This is a result of the HOG features’ inability 
to distinguish between noise and cells effectively.

We trained a pre-trained CNN employing transfer 
learning in order to address the low sensitivity. Owing to 
optimized feature kernels that are trained using an image 
dataset in the order of millions, the pre-trained AlexNet 
enables a great improvement in performance compared 
to the HOG features based SVM classifier. Transfer 
learning makes it possible to apply a pre-trained network 
to a new domain such as T-cell and B-cell detection with 
a dataset only in the order of thousands. With AlexCAN 
we achieved an accuracy of 98%, sensitivity of 97% and 
specificity of 99%. Even though recent advances in GPU 
architecture rendered it possible to train CNNs as large 
as ours, using the sliding window method and classify-
ing all the windows in every image from an experiment is 
time consuming.

Increasing the speed for our application is crucial. 
However using a better GPU or training a smaller and 
faster CNN is unfortunately not the answer. We need 
an increase in speed in the order of hundreds, and we 
proposed a method to preselect detection windows. By 
reducing the number of windows to be classified, the 
total time for detection was reduced to 10  min. This 
method might miss some cells, but looking at our results, 
the total time required for detection is down to feasible 
levels. As Fig. 6d shows, AlexCAN using preselected win-
dows can detect all the cells despite their varying mor-
phology and size.

Conclusion
A deep convolutional neural network classifier is trained 
to detect and classify T-cells and B-cells isolated by a 
microfluidic chip. The experiments performed on vari-
ous image datasets, have produced satisfactory detec-
tion results that prove the effectiveness of our proposed 
approach. We achieved a high accuracy of 98%, specific-
ity of 99% and sensitivity of 97%. For T-cells and B-cells 
detection we achieved a 99% cross-validation accuracy 
rate. AlexCAN’s performance is found to be better com-
pared to our previous work which utilized a HOG fea-
tures based SVM classifier (accuracy of 94%, specificity 
of 99% and sensitivity of 90%). However, CNNs require 

Fig. 7  a ROC’s and b DET curves for three different cases
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more time compared to the simple HOG features based 
SVM classifier, and it is infeasible for practical use. 
Hence, we proposed a machine learning method to pre-
select windows to be classified by AlexCAN, and thus 
speeding up the process. The proposed method and sys-
tem could also be applied to all other specific leukocytes 
using different stain agents.
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