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Development of a steerable in‑pipe 
locomotive device with six braided tubes
Hirozumi Takeshima1*   and Toshio Takayama2

Abstract 

Numerous studies have developed in-pipe locomotive devices to inspect pipes. However, it is difficult to achieve 
selective locomotion in a branched piping system. In this study, a novel steerable in-pipe locomotive device is 
proposed based on “a six-braided-tubes locomotive device,” which is an in-pipe locomotive device that is actuated 
by only six pneumatic inflatable tubes. It is one of the simplest in-pipe locomotive devices that is capable of forward 
and backward motion and can rotate in clockwise and counterclockwise directions along a pipe, can select the 
desired pathway in the branched pipe. In this paper, we discuss the background of pipe inspection, classify previously 
developed in-pipe locomotive devices, and clarify the aim of this study. Additionally, we also describe and extend the 
locomotive principles of six-braided-tubes locomotive devices. Moreover, we propose a novel attachment, termed 
steering hook, to enable steering in various types of branched systems. Finally, we experimentally confirm that the 
novel proposed principle allows the device to correct path selection in an in-pipe branched piping system.
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Objective
Piping does not only include industrial gas and liquid 
pipes, but also blood vessels and organs, as they also need 
to achieve efficient transfer or flow of fluids. It is impor-
tant to inspect and maintain these systems to ensure 
good performance.

There are many nondestructive inspection technolo-
gies [1]. Some of them have been applied for the external 
inspection of pipes. X-ray [2] employs radiography for 
interior pipe visualization, whereas ultrasound [3] and 
eddy current techniques [4] measure the thickness of a 
pipe. These technologies are not only applied in indus-
trial fields, but also in the field of medicine, as X-ray, 
ultrasound, and magnetic resonance imaging (MRI) are 
utilized to perform health screenings.

However, there are many piping systems that cannot 
be inspected from the outside, as they are located within 
a wall or underground, obstructed by various obstacles. 
Moreover, the above-mentioned external inspection 

techniques may yield undesirable effects on the piping, or 
can be rendered ineffective because of the physical char-
acteristics of the pipes. For example, radiation exposure 
is a consequence of X-ray inspection, and non-conduc-
tive materials cannot be inspected with an eddy current. 
Since endoscopes enable the maintenance and inspection 
of pipes without disassembly, and allow visual inspec-
tion of piping regardless of its location and material, they 
have become widely utilized in studies on pipe inspection 
technology. Although there are certain types of pipes in 
which it is difficult to insert an endoscope, such as long, 
narrow, or bent pipes, there are many studies on in-pipe 
locomotive devices that facilitate endoscope operation in 
such difficult pipes.

Most in-pipe locomotive devices can be classified as 
one of the following: a wheeled or crawler device, an 
inchworm device, or a walking device equipped with legs 
or leads.

Wheeled and crawler devices have a long history of 
use [5, 6] and have the advantage of reaching speeds that 
are higher than those employing other propulsion tech-
niques. However, these types of devices not only require 
a mechanism to ensure continuous rotation, but also a 
mechanism that generates a propulsion force of friction 
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by pushing wheels or crawlers to an inner wall of a pip-
ing [7–10], thereby increasing design complexity. Thus, 
for simplification, several researchers have adopted the 
use of a mechanical spring to push wheels or crawlers to 
an inner wall and generate friction [11–13]. Additionally, 
Kataoka et al. [14] developed a device that utilizes highly 
elastic crawlers, and Zin et  al. [15] developed a device 
that uses magnetic force to adhere to the inner wall of 
pipes.

Alternatively, the structure of inchworm devices is 
much simpler than that of wheeled devices or crawlers 
[16, 17]. To further reduce the design complexity, sev-
eral researchers have adopted the use of fluid power to 
drive the devices [18–24]. Other propulsion methods for 
in-pipe locomotive devices include wave-like propulsion 
[25] and multi-gait walking [26–28].

Some piping systems have a branched part. Therefore, 
in-pipe locomotive devices must be able to travel for-
ward and backward, and turn to proceed into a branched 
pipe. Because of this requirement, many researchers have 
focused on the realization of a steerable in-pipe device. 
For example, locomotive devices purposed for travelling 
through 200-mm-diameter pipes have been equipped 
with separate motors for locomotion, rotation, and steer-
ing [10, 13, 17]. To simplify the design and reduce the 
number of motors, Nishimura et al. [11] proposed a dif-
ferential mechanism that allows locomotion, rotation, 
and steering to be realized with only two motors. Debe-
nest et  al. [12] designed a spring mechanism to elimi-
nate the need of a separate motor to control steering. 
Additionally, a steering mechanism has been included 
in certain inchworm devices to enable path selection in 
branched piping systems. This type of steering compo-
nent has three or four degrees of freedom (DoFs), and is 
typically attached at the tip of the device [23, 24].

Most of the above-mentioned devices are equipped 
separately with a basic travel mechanism and a steering 
mechanism to enable path selection in branched pip-
ing systems. However, the added steering mechanism 
increases device complexity, and prevents the device 
from being small and affordable. Thus, in this paper, we 
propose the use of a bundled-tube device for the develop-
ment of a simple and affordable steerable in-pipe robotic 
device. A bundled-tube device is a novel in-pipe robot 
with inflatable tubes, which we have described in a previ-
ous study [29]; unlike other similarly purposed devices, 
our bundled-tube device utilizes snake-like motion to 
travel. This snake-like motion, which is based on bending 
motion, has previously been utilized by rigid multi-DoF 
snake robots [30]. Although our device only comprises 
inflatable braided tubes and has a simple structure, it 
can use snake-like motion to travel through pipes. More 
specifically, forward movement through a pipe is driven 

by periodic inflation and deflation of each of the tubes, 
whereas backward movement is achieved by applying an 
opposing pressurization pattern to the device. Addition-
ally, the entire body of this bundled-tube device is quite 
soft and generates a propulsion force; hence, it can travel 
along curved sections and sections with dynamically 
changing diameter and shapes. The soft body allows the 
device to conform to the shape of a pipe by exploiting the 
reaction force from the pipe; furthermore, a propulsion 
force, which is generated by the inserted entire body, can 
easily overcome the force of friction, which is generated 
by travelling through curved sections and increased by an 
increment of the insertion length. Moreover, the simple 
structure of the bundled-tube device allows the cable that 
follows the pipe inspection module, such as an electric 
wire and an optical fiber, to become a locomotive device 
when attached to bundled tubes around the cable. There-
fore, more stable and robust locomotion can be achieved 
by surrounding all of the cables with a bundled-tube 
locomotive device. Previously, we have developed several 
types of such bundled-tube devices, including a helical-
type device [31], a three-braided tube device [32], and six 
braided-tube device [33].

A six braided-tube device (Fig. 1) comprises three tubes 
that form right-handed helices (Fig. 1b) and three tubes 
that form left-handed helices (Fig.  1c). Tubes of both 
groups are braided around a nonstretchable thread. As 
previously described, the forward movement is driven by 
the periodic inflation and deflation of each of the tubes. 
In the previous work [31], we describe a mechanical prin-
ciple of a braided tube device, and discovered that an 
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Fig. 1  Six braided-tube in-pipe locomotive device. Group R 
tubes form the right-handed helices, and Group L tubes form the 
left-handed helices. a is an appearance of a device. b, c are Group L 
and R tubes, respectively. d, e Deformations with an inflation with a 
left- and right-handed tubes. A left- and right-handed tubes deforms 
a device into right- and left-handed helices, respectively
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inflation of a helical tube placed around a nonstretchable 
thread bends a device into a same direction helix. Spe-
cifically, the six-tube device can deform into a left- and 
right-handed helix with a left- and right-handed helical 
tube (Fig. 1d, e). A combination of both directions of the 
tubes enables the six tubes to independently control the 
locomotion and rotation of the device.

This study aims to employ this novel six braided-tube 
locomotion strategy for propulsion, rotation, and steer-
ing in piping systems. The ability of the proposed device 
to control its position and orientation will enable it to 
perform path selection in branched piping systems with-
out the need of a complicated attachment or additional 
actuators, thereby making it one of the simplest in-pipe 
locomotive devices able to achieve path selection. In this 
chapter, we introduced and described previous studies 
and the aim of this study. In Chapter 2, we will introduce 
the fundamental principles of six-braided tube locomo-
tion. Based on the fundamental principles, we propose 
a novel locomotive method and an accompanying strat-
egy for path selection. We also propose a simple and 
tiny attachment referred to as a steering hook, which 
is required for the device to select the correct path in 
branched piping systems. Chapter 3 describes the charac-
teristics of prototypes and the experimental equipment. 
Then, the experimental results, which are presented in 
Chapter 4, confirm the ability of a six-braided tube device 
to perform path selection. Finally, the conclusions of this 
study are outlined in Chapter 5.

A strategy for in‑pipe steerable locomotion
Fundamental principles of six braided‑tube device
As was mentioned in Chapter 1, a six braided-tube loco-
motive device, which is proposed in the previous work 
[33], comprises three tubes that are twisted to form left-
handed helices, and three tubes twisted to form right-
handed helices; L1, L2, and L3 in Fig.  1b denote the 
left-handed tubes, and R1, R2, and R3 in Fig. 1c denote 
the right-handed tubes. These tubes are arranged sym-
metrically and periodically.

In this section, we discuss the respective pressurizing 
patterns for single-direction helices, three left-handed 
tubes (Fig.  2a), and three right-handed tubes (Fig.  2b). 
Figure  2c, which focuses on the tip of the device, illus-
trates how periodic pressurization and depressurization 
of the three left-handed tubes generates motion. The 
pressurized tube inflates, is shifted to the outside of the 
device, and comes into contact with the inner wall of a 
pipe. When the tube is depressurized as the neighbor-
ing tube is pressurized, the device generates a rotation, 
rolls along the inner wall, and moves forward. When 
the rolling is propelled by the left-handed tubes, the 
device always forms a left-handed helix, which generates 

a right-handed trajectory, as is shown in Fig.  2d; the 
opposite situation is illustrated in Fig. 2e. As previously 
mentioned, the device can move backwards owing to a 
reverse pressurizing pattern; this movement occurs inde-
pendent of the helical direction of tube inflation. Table 1 
details the respective relationships between tube direc-
tion, locomotion, and rotation with respect to the tip of 
the device.

Since the direction of rotation is dependent on the 
direction of helices that the tubes form, we confirmed 
that pressurizing patterns, which utilize both helices, 
enable independent control of locomotion and rotation 
(Fig. 3a, b, respectively).

Figure  3 also illustrates the deformation that occurs 
when we change the direction of tube inflation. For 
example, we consider the deformation in the following 
procedure. Initially, L3, which is one of the left-handed 
tubes, inflates (Fig. 3c); the inflated L3 tube then comes 
into contact with the inner wall of a pipe and changes 
the shape of the device into a left-handed helix that runs 
parallel to L3. Then, R3, which is one of the right-handed 
tubes, inflates (Fig.  3d). When left- and right-handed 
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(“Bwd” and “Fwd” denote backward and forward, respectively)

c
Rotation of a device around the center of a device (   )
Revolution of a device around the center of a pipe (   )

Revolution moves
a contact point.

Inflates

Deflates

Revolution generates 
rotation.

Inflated tube
touches a pipe.

Inflates

Fig. 2  Motion of six braided-tube device in the case of driving only 
one group. Periodical pressurizations generate a revolution of a 
device around a center of a pipe and a rotation of a device around 
a center of a device. a and b Pressurization patterns for Group L 
and R tube propulsion, respectively. c is a motion of the device tip 
with Group L pressurization. d and e Motions driven by Group L 
and R tubes. The devices form left- and right-handed helices, which 
generates a right- and left-handed trajectories, respectively
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tubes are simultaneously inflated, the two inflated tubes 
move in same directions along the same cut plane A–A, 
while they move in opposite directions and cancel 
out each deformation along the cut plane B–B. As we 
described before, the device bends with an inflation force 
of a tube. When both the right- and left-handed tubes 
inflate, we can consider the inflations of the tubes as the 
combined inflation of a tube. Because of the plane sym-
metry of the helical tubes, which have different directions 
and the same pitch and radius, the inflation of the tubes 

cancel each other and deform in a direction perpendicu-
lar to the plane of symmetry. We can treat this situation 
as if we are inflating a virtual tube, whose shape is similar 
to a planar wave.

Since the inflated tubes have a symmetrical arrange-
ment, the tubes deform the device such that it resem-
bles a planar wave (Fig. 3d). Finally, L3 deflates (Fig. 3e), 
changing the shape of the device into a right-handed 
helix (Fig.  3e), which is a planar symmetrical shape of 
the initial form (Fig.  3c). Thus, when the direction of 
inflated tubes is changed, the device does not move for-
ward or backward, and the helical direction of the device 
is changed.

Strategy to select a branch
Based on the propulsion principles described above, we 
propose a new pressurizing pattern (Fig. 4a) that imple-
ments two left-handed and two right-handed tubes. Fig-
ure 4a illustrates the deformation pattern that generates 
motion. This pattern can be separated into four parts: 
Part 1 (1 → 2→3), Part 2 (3 → 4→5), Part 3 (5 → 6→7), 
and Part 4 (7 → 8→1). In Part 1, the state changes from 
only left-handed tube inflation to only right-handed tube 
inflation, and the direction of its helix is changed without 
generating locomotion. In Part 2, the right-handed tubes 
regulate the propulsion and rotation of the device. In Part 
3, which is similar to Part 1, the direction of the helix is 
changed without generating locomotion. In Part 4, the 
left-handed tubes regulate propulsion and rotation. By 
repeating this pattern, we can propel the device forward 
and backward by using a reversed pattern.

As Fig. 4b shows, the range of motion of the tip of the 
device is limited; this is because the tip of the device is 
pushed toward the upper part of a pipe as it travels. 
Therefore, this new pressurizing pattern propels the 
device while maintaining the position and orientation 
of its tip (Fig. 4c). With regard to propulsion speed, this 
pressurizing pattern comprises eight steps of deforma-
tions (1 → …→8 → 1), four of which generate travel 
(7 → 8→1 and 3 → 4→5), i.e., 50% of the deformations in 
a cycle generate travel. Alternatively, the cycle of a typi-
cal pressurizing pattern, which is shown in Fig. 3a, com-
prises twelve steps of deformations (1 → …12 → 1), eight 
of which generate travel (2 → …→6 and 8 → …→12), i.e., 
75% of the deformations in a cycle generate travel. There-
fore, the percentage of one cycle of the proposed pattern 
that is devoted to propulsion equates to 67% of that of a 
typical pattern.

In this study, branching systems are classified as 
either “Type A” (Fig. 5a), which consists of a right-hand 
turn and left-hand turn, or “Type B” (Fig.  5b), which 
consists of a straight path and a single turn. As shown 
in Fig. 6, although a six braided-tube device that follows 

Table 1  Relationships between helical direction, locomotion, 
and rotation

CW and CCW: clockwise and counterclockwise, respectively

Forward Backward

Group L tubes CCW​ CW

Group R tubes CW CCW​

a b
(“R” and “L” of Rotation denote right- and left-handed rotation, 

respectively. N denote the device does not travel and rotate.)
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Fig. 3  Motion of six braided-tube device utilizes both groups of 
tubes. a and b Pressurizing patterns which generate only propulsion 
and rotation, respectively. With a pattern, the device travels in same 
direction and rotate in both directions, the propulsion exists while 
the rotations are canceled out. On the other hand, the rotation exists 
while the propulsion are canceled out with b pattern. c, d, and e The 
deformations when a tube of Group L (L3), one tube in each group 
(L3&R3), and a tube of Group R (R3) inflate, respectively. The device 
deforms into a left-handed helix, a planar wave, and a right-handed 
helix in c–e, respectively
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the proposed pattern can select a path in Type A, it is 
unable to select a path in Type B. Thus, to ensure that 
a six braided-tube device can perform path selection in 

both types of branching systems, steering attachments 
must be added. Although we could implement a previ-
ously developed steering mechanism with a few DoFs 
[23, 24], these mechanisms require an additional power 
supply and inevitably increase device complexity. Thus, 
we determined that the combination of a six-tube 
device and various pressurizing patterns would yield 
enough DoFs to enable path selection.

We propose an attachment referred to as a steering 
hook to allow a six-braided tube device to steer in a 
branched piping system, which is fabricated with rigid 
plastic and attached at the tip of the device. Figures 7, 
8 and 9 show steering maneuvers made by the pro-
posed steering hook. Rotation constrains the orienta-
tion of the hook, allowing the device to utilize the novel 
pressurizing pattern shown in Fig. 4a to maneuver the 
hook into a branched section. Thus, a combination of 
the hook and the various pressurizing patterns ena-
bles locomotion (Fig. 3a) and rotation (Fig. 3b), and the 
hook insertion (Fig. 4a) pattern enables the selection of 
the correct path in branched piping systems.

Figure  7 illustrates how the device maneuvers into 
a selected path in Type A. In Fig.  7a, the device is 
approaching a branch, making sure to keep the hook 
facing the path toward which the device will proceed. 

21 43 65 76 87
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c
Fig. 4  Four-tube-driven locomotion with a steering hook. a–c The 
pressurization pattern for four-tube travel, the deformation of the 
device driven by four tubes, and the locomotion trajectory driven 
by four tubes. In c, the device switches a travel trajectory between a 
right-handed helix (a red and solid arrow) and a left-handed helix (a 
blue and dotted arrow)

? ?

a b
Fig. 5  Two branching system types. Type A (a) and Type B (b). Type 
A includes a 180° fork, and Type B includes a straight path and a 
branched path

a b
Fig. 6  Locomotion trajectory based on the locomotion pattern 
illustrated in Fig. 5. In Type A (a), the device is deformed by pressing 
itself against the inner wall of the desired branched pathway. In 
Type B (b), the device cannot hook into the inner wall of a branched 
pathway

a b c

Steering hook

Fig. 7  Strategy for right-hand turns at Type A branch. a Device 
approaches the end of the pipe, keeping the tip of the device turned 
to the right. b Tip of the device comes into contact with the end of 
the pipe, causing it to bend rightward. c Tip enters the right branched 
pathway, with the device following. This strategy also enables 
left-hand turns with 180° rotation
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Then, the hook makes contact with the inner wall and 
bends the device to proceed into the pathway (Fig. 7b). 
Finally, the device successfully passes the branch-off 
point and enters the pathway (Fig.  7c). Note that, if 
the device rotates 180 degrees before it approaches 
the branched path, the device can proceed toward an 
opposing path.

Figures  8 and 9 show how path selection and device 
maneuvering occurs in Type B. In Fig.  8, the device 
attempts to enter a branched path. Initially, the device 
approaches the branched pathway, keeping the hook 
facing the potential pathway (Fig.  8a). As the pressur-
izing pattern, which is shown in Fig. 4, causes the device 
to push the hook against the inner wall, the device can 
maneuver the hook into the branched pathway when 
it is within reach (Fig.  8b). The device can then be led 
into the branched pathway through the hook (Fig.  8c). 
On the other hand, Fig.  9 illustrates how the device 
travels along a straight path. As can be seen, the tip of 
the steering hook is angled away from the branched 
pathway such that the back of the steering hook repels 
off of the entrance corners of the branched pathway, 
thereby preventing the hook from entering and allowing 
the device to continue on a straight path. As discussed 
in this chapter, the combination of a six-braided tube 
device with a steering hook and the proposed pressur-
izing patterns realizes path selection in both types of 
branches.

Prototypes and experimental equipment
Two prototypes of six braided‑tube device
This chapter describes experimental implementation 
of two prototypes to evaluate the proposed propulsion 
and steering principles described in Chapter 2. We con-
structed two prototypes, which are shown in Fig. 10a, b; 
Prototype 1 has no steering hook and Prototype 2 has a 
steering hook. Silicone tubes made of KE-1416 (Shin-
Etsu Chemical Co., Ltd.) with inner and outer diam-
eters of 1.5  mm and 2.5  mm, respectively, were used 
to fabricate both prototypes. Following the fabrication 
method used in a previous study [33], we braided and 
glued the tubes around a nonstretchable thread so that 
the initial helical pitch ph0 is 45 mm and the tubes are 
placed as shown in Fig.  16d. Although the originally 
desired helical pitch was 45  mm, the actual helical 
pitches of Prototypes vary from 40 mm to 45 mm.

Prototype 1 includes a hemisphere cap made of acry-
lonitrile butadiene styrene (ABS) plastic. Additionally, 
there is a line indicator on the tip of the cap to indicate 
the device angle.

Alternatively, the steering hook, which Prototype 2 
equips, must be sufficiently large to bypass a branched 
pathway and sufficiently small so as to not hinder pro-
pulsion in a straight pipe. The previous study shows 
that an upper limit of the inner diameter of a pipe 
through which the helical device can navigate is greater 
than Dd0 + ph0/2π , where Dd0 and ph0 denote the ini-
tial outer diameter of the device and the initial helical 
pith, respectively. Therefore, we can predict that the 
upper limit of the prototypes is 16  mm. Based on the 
above discussion, we use a pipe with an inner diameter 
of 14  mm. Therefore, we designed the steering hook 
as illustrated in Fig.  10c, for compatibility with a pipe 
with a 14-mm inner diameter. As shown in Fig. 10d, the 
axial hole in the steering hook can keep the core thread 
at the center of a device. We can implement a camera 
module in the device with the axial hole in a future 
work.

Experimental equipment
Figure  11 outlines the experimental system, which 
includes a personal computer (PC), an interface board, a 
pneumatic pressure regulator, pneumatic solenoid valves, 
and a prototype. The solenoid valves that connect to the 
prototype via silicone connection tubes, which do not 
inflate with a pneumatic pressure, can control the state 
(i.e., pressurized or depressurized) of each tube of the 
prototype. The pneumatic regulator regulates pressure 
which is used to pressurize/depressurize the tubes. The 
PC sends a pressurizing pattern to an interface board that 
controls the valves by command.

a b c

Steering hook

Fig. 8  Strategy for maneuvering the steering hook into a branched 
pathway at Type B branch. a Device approaches a branch, keeping 
the steering hook facing the branch. b Steering hook catches a 
corner of the branch, allowing it to enter the branched pathway. c 
Device follows the steering hook into the branch

a b c
Fig. 9  Strategy for bypassing Type B branch. a Device approaches a 
branch, keeping the hook facing away from the branch. b Because 
the hook faces a wall that is opposite to the branch, the hook does 
not catch the branch. c Device does not turn
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Figure  12 shows the piping system, which comprises 
three pieces of a polymethyl methacrylate (PMMA) plas-
tic pipe that was used to evaluate the performance of 
the prototypes. The arrows in Fig. 12 denote the A-type 
branch (Fig. 5a), B-type branch (Fig. 5b), and fork inter-
section (C-path in Fig.  12). Therefore, we can test the 
prototype in various branch types with the PMMA piping 

systems. Note that the prototypes were not equipped 
with a camera; thus, device movement was controlled 
based on an external view of the pipe.

Experiments
Straight‑pipe locomotion experiment
A straight-pipe locomotion experiment was conducted to 
test the novel pressurizing pattern (Fig. 4b), and the util-
ity of the steering hook of Prototype 2. Thus, to evaluate 
the pressurizing pattern and steering hook, both proto-
types were driven through a straight segment of the pip-
ing system by using the pressurizing pattern shown in 
Fig. 3a, and that shown in Fig. 4b. Table 2 lists the propul-
sion speed per cycle of pressurization.

As was mentioned in “Strategy to select a branch” sec-
tion, and as can be ascertained from Table 2, the speed 
achievable with four tubes (Fig.  4b) is nearly one half 
of that which can be achieved with six tubes (Fig.  3a). 
Table 2 also shows that the speed difference between pro-
totypes with and without a hook is 20%.

From Fig. 13, which illustrates a cycle of motion of the 
device tip, it can be seen that the device is able to move 
forward while maintaining the position and orientation 
of the tip within a certain range. This confirms that the 
proposed method enables forward propulsion via a push-
off mechanism by which the steering hook pushes off of 
the inner wall to propel forward.

To confirm the effect of a hook on traction force, we 
measure the climbing speed of both prototypes against 
some gravity forces. As shown in Fig.  14a, an exter-
nal load is applied to a prototype through M8 nut. The 
weights of Prototypes A and B and the nut are 6 g, 6 g, 
and 4.5 g, respectively. Figure 14b shows the relationships 
between the measured speeds and applied loads. Both 
results of Prototypes A and B are the average of speeds 
obtained by performing two measurements on the two 
prototypes, and the error bars represent the maximum 
and minimum speeds. Because both the speeds and loads 
are respectively divided by the speed and load when a 
device lifts up only its body, both axes have no dimen-
sions. As the measured result shows that the hook does 
not affect the relationship between loads and speeds, we 
confirmed that a hook does not affect the traction force 
of a device and both devices can lift objects that are heav-
ier than themselves.

Steering experiments
We tested the steering capability of Prototype 2 in the test 
piping system shown in Fig.  12. Figure  15a shows how 
Prototype 2 can be steered through the A-type branched 
pipe; it can be seen that, when the prototype approaches 
the branch, the steering hook was turned toward the 
branch, thereby allowing the device to enter the pathway.
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a External view.

b Details of tube placement at the tip of the device.

d Structure of a sterring hook.

c Design of a steering hook.

Steering hook.

Alignment notches, inserted into tubes, align tubes.

Central thread or a camera module.

Axial hole leads
core thread to
a device tip.

6 braided tubes.

Fig. 10  Prototypes

Fig. 11  Control system
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Secondly, the ability of Prototype 2 to bypass a branch 
and continue straightforward movement was also evalu-
ated in the B-type branch. In this experiment, as is shown 
in Fig. 15b, the steering hook was turned away from the 

branched pathway as it passed, allowing the device to 
continue traveling forward.

Finally, the ability of Prototype 2 to proceed through 
two B-type branches was evaluated. Although the orien-
tations of the two branches are different, the prototype is 
able to appropriately rotate the hook to allow it to enter 
each branched pathway.

These experimental results demonstrate that using a 
steering hook allows an operator to successfully steer the 
six braided-tube locomotive device through various types 
of branched pipes.

To confirm the success rate and time required for 
selecting a path, we measure the time required to move 
from the “Start” line to the “Finish” line. The experi-
mental setups are shown in Fig. 16a–c. The setups that 
are shown in Fig. 16a, b evaluate the effect of a branch 
type because both setups comprise different types of 
branches but have the same direction. The setups that 
are shown in Fig.  16b, c evaluate the effect of grav-
ity because both the setups comprise the same type 
of branch and gravity strongly prevents and helps in 
achieving hooking. In the experiments, we found that 
a prototype with a hook often achieves a stable state, 
which is shown in Fig.  16d. In this state, as the trac-
tion force of a device and the reaction force acting on 
the hook from an inner wall are balanced, the proto-
type stacks for a while. Therefore, in order to hook 
to a branch, the prototype initially moves in a hook-
insertion pattern and reaches a stable state. Then, the 

Fig. 12  Experimental PMMA piping system

Table 2  Locomotion speed in a straight pipe

Prototype 1
(without a hook)

Prototype 2
(with a hook)

6 tubes 3.4 mm/cycle 2.9 mm/cycle

4 tubes 1.6 mm/cycle 1.3 mm/cycle

Fig. 13  Progression of Prototype 1 tip motion. The tip remains in the bottom-half of the pipe
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type of locomotion switches to helical rotation so that 
the prototype can escape from the stable state. Fig-
ure  16e shows the result of ten trials with each setup. 

Prototype 2 succeeded in entering a branch without 
any mistake nine, seven, and ten times in the setups 
shown in Fig.  16a–c, respectively. The averages and 
standard deviations of the time required are 11.0 s and 
1.8 s, 11.9 s and 1.1 s, and 16.0 s and 2.5 s for the set-
ups shown in Fig.  16a–c, respectively. These results 
show that gravity prevents the hook from hooking to 
a branch. However, a device can succeed in selecting a 
branch even though gravity disturbs a device, and the 
direction of gravity does not affect a required time.

To confirm that a steering hook can hook to a branch 
in pipes that have varying inner diameters, we consider 
the diameter range within which a hook can achieve 
hooking. A preliminary experiment shows that proto-
type 2 can move in pipes with inner diameters varying 
from 14 to 18 mm, the lower limit of which is limited 
by the shape of the hook and the upper limit is greater 
than that predicted in “Two prototypes of six braided-
tube device” section. Therefore, we tested the device in 
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Fig. 15  Steering through the experimental piping system. A video of 
the experiment is available in Additional file 1. a Steering motion in 
an A-type branch (Path A in Fig. 12). b Straight locomotion in a B-type 
branch (Path B in Fig. 12). c Steering motion in skew branches (Path 
C in Fig. 12)
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a pipe with an inner diameter of 20  mm, which is too 
large for the prototype to move because of a lack of 
traction. The experimental setup and results are shown 
in Fig.  17. We can confirm that the hook can achieve 
hooking in a large pipe in which a traction force of a 
prototype lacks. Therefore, the range of the inner diam-
eter of a pipe through which a prototype can navigate 
is not limited by the range of the inner diameter within 
which a hook can achieve hooking but by the range of 
the traction force necessary to achieve locomotion.

Conclusion
As was described in Chapter  4, the proposed pressur-
izing pattern and prototypes enable successful path 
selection in branched piping systems. Moreover, the 
proposed pressurizing pattern, which was presented in 
“Strategy to select a branch” section, enables precisely 
regulated movement of the six braided-tube device, 
as shown in Fig.  13. Thus, the proposed pressurizing 
pattern implemented in the device with the proposed 
design of the steering hook enables successful path 
selection in branched piping systems.

As previously mentioned, the prototypes developed 
in this study were not equipped with a camera. In prac-
tical use, it is important to control the device from the 
viewpoint of a camera that is attached to the device. 
Therefore, in the future, we will attempt to attach a 
camera to the tip of the six braided-tube locomotive 
device to confirm controllability. Because we predict 
that the view of a camera attached at the tip of the 
device will be shaken by a motion of the tip, we must 
develop an image stabilizing method for the proposed 
device. We plan to synchronize an image update and a 
pressurizing pattern so that the view is updated with 
same device shape.

Additional file

Additional file 1. Path selection of a six braided-tube locomotive device 
with steering hook.
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