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Abstract 

Absolute counting of total leukocytes and specific subset (such as T-cells and B-cells) within small amounts of whole 
blood is difficult due to the lack of techniques that enables separation of leukocytes from limited volume of whole 
blood. In this study, a microfluidic chip equipped with a size controlled micropillar array for highly separation of T-cells 
and B-cells from sub-microliter of whole blood was studied. Based on the difference in size and deformability, leuko-
cytes were separated from other blood cells by micropillar arrays. However, the variability of cells in size, morphology 
and color intensity along with the spectrum crosstalk between fluorescence dyes make cell detection among pillars 
extremely difficult. In this paper, an support vector machine supervised machine learning classifier based on both 
Histogram of Oriented Gradients (HOG) and color distribution features was proposed to distinguish T-cells and B-cells 
fast and robustly. HOG features were utilized to detect cells from background and noise; color distribution features 
were employed to alleviate the effect of fluorescence spectrum crosstalk. Experiment showed we achieved average 
detection accuracy of 94% for detecting T-cells and B-cells from the background. Furthermore, we also got 96% accu-
racy with cross validation to detect T-cells from B-cells. Both theoretical analysis and experiments demonstrated the 
proposed method and system has high performance in T-cells and B-cells counting. And our microfluidic cell count-
ing system has great potential as a tool for point-of-care leukocyte analysis system.

Keywords:  Histogram of Oriented Gradients features, Microfluidic chip, Machine learning, Support vector machine, 
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Introduction
Leukocytes and their subtypes population numbers 
change dramatically in the presence of infections, malig-
nancies, autoimmune disorders, and chemical-induced 
hematotoxicity. The two categories of lymphocytes, 
T-cells and B-cells, are important constituents of the 
human immune system as their concentration, quanti-
fied by a count test, indicates the state of body’s immune 
response against infections [1]. Currently, fluorescence-
activated cells sorting (FACS) is used as golden standard 

in biological research and clinical diagnostics to auto-
matically determine the count or concentration for one 
or multiple types of cells. However, requirements of large 
volume sample (in the order of mL) and expensive rea-
gent, bulky equipment size, sophisticated costly optical 
component and the requirement of technical personnel 
make conventional FACS prohibitive for point-of-care 
application. In addition, FACS is traditionally relied on 
non-imaging technique by laser scattering and fluores-
cence emission for cell identification and hence there is 
no image information of cells [2]. There is a tremendous 
need for an automated, portable point-of-care blood cell 
counter that could yield results in a matter of minutes 
from a drop of blood without any trained profession-
als to operate the instrument [3]. This technology could 
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potentially have tremendous applications in hospitals, 
private clinics, retail clinics and the developing world.

In order to develop a compact leukocyte counting sys-
tem, researchers are actively looking toward microfluidic 
devices as the platform for the next generation translat-
able cell sorter. Microfluidic based devices are a proven 
technology for cellular handling as they can offer pre-
cise spatial and temporal control in a greatly miniatur-
ized platform [4, 5]. For cell isolation, there are several 
methods that utilize the physical characteristics of the 
cell [6]. Blood cells can be separated using non-inertial 
forces and concepts such as magnetic bead immunoas-
say [7], dielectric properties [8], optical force [9], mag-
netic [10], electrohydrodynamic [11], or acoustic [12, 13], 
as active separation strategies. The non-inertial forces 
may have some unexpected physiological effects on the 
blood component properties which are unsuitable for the 
downstream application of the separated products. These 
techniques add to the complexity of the microfluidic 
devices and normally run at very low flow rates. On the 
other hand, passive separation techniques exploit the dif-
ference in size and deformability of cells in which they do 
not involve external forces but rely purely on the inter-
action of the blood with internal geometries of microflu-
idic devices [14]. The pore-based or pillar-based passive 
devices have simple mechanical design and can function 
in wide range of flow rates [15, 16], WBCs are flexible 
and can deform to pass through 7 µm pores. The RBCs 
are more flexible and can fold or align to cross the filter 
opening of 3–4 µm [17]. A perfect blood microfilter can 
trap all WBCs and pass all RBCs continuously without 
loss of separation efficiency at different flow rates and cell 
concentration.

After isolation, captured cells are usually distinguished 
from microfluidic chip’s fluorescent microscopy images. 
Using different cell markers, we can detect, identify 
and count cells. However, cells imaged by fluorescence 
microscopy exhibit heterogeneous intensity levels and 
are often badly contrasted. The variability of cell size and 
morphology, differences in illumination over time and 
across whole microfluidic chip hamper the ability to spec-
ify a global set of parameters for cell detection algorithms 
over the whole experiment. Furthermore, there are seri-
ous spectrum crosstalk between fluorescence dyes when 
performing dual or multiple cells detection. The available 
algorithms for illumination correction and segmentation 
do not perform well enough to achieve satisfying results 
on many experiments [18]. Therefore, there is a strong 
motivation for the development of an automatic cell 
detection and counting method [19]. A machine learn-
ing algorithm, with an appropriate feature extractor for 
the application is the key to success. For this, Histogram 
of Oriented Gradients (HOG) represents a robust feature 

descriptor used in computer vision area for object detec-
tion [20]. One of the key advantages of HOG is being able 
to describe object orientation while showing invariance 
to geometric and photometric transformations because it 
operates in localized regions. In other words, HOG tends 
to be unaffected by changes in shapes and lighting, which 
appear in larger spatial regions. These advantages make 
HOG features fit our situation especially well due to the 
cells variability in intensity and shape on pillar based 
microfluidic chip. A support vector machine (SVM) 
can be used to classify HOG features. SVM is a super-
vised machine learning algorithm, which creates a model 
according to the training data, and then the test data can 
be classified according to said model [21].

In this study, we propose a pillar-based microfluidic 
chip and system with machine-learning for T-cells and 
B-cells isolation and detection. The design of micropil-
lar array with gradually narrowed gaps were optimized to 
trap leukocytes while allowing other blood cells to flow 
through [22]. The size and deformability-based sepa-
ration of leukocytes require micropillar of proper gap 
size and precise control of pressure applied to the array. 
Under optimized conditions, a sub-microliter of whole 
blood was suspended in a buffer and then directly intro-
duced to the micropillar array without pre-treatment 
such as density gradient or RBCs lysis. All leukocyte 
types were individually trapped between micropillars, 
while other elements of blood passed through the micro-
pillar array into a waste reservoir. To detect T-cells and 
B-cells from fluorescence microscopy images, a machine 
learning method based on both HOG and color features 
was studied.

Materials and methods
Peripheral blood sample preparation
Human blood samples were collected from healthy 
donors at National Hospital Organization Nagoya 
Medical Center. The study protocol was reviewed and 
approved by the institutional review board, and written 
informed consent was obtained from all participants. The 
samples were collected in a collection tube with EDTA 
to prevent coagulation and were used within 24  h. For 
T-cells and B-cells detection, blood sample was mixed 
with a two-color direct immunofluorescence reagent (BD 
Simultest TM CD3-FITC/CD19-PE, BD Bioscience, San 
Jose, CA) and incubated in room temperature for 15 min.

A pillar‑based microfluidic chip
We designed a pillar-based microfluidic chip to isolate 
leukocytes from peripheral blood with high efficiency 
and without clogging [22]. Figure  1a shows the sche-
matic layout of the proposed microfluidic filter. Blood is 
pumped into the device via inlet port, enters the filtration 
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zone and leaves it at outlet port. Outlet port is for col-
lecting the components of blood passing the filter. Pro-
posed microfluidic chip has 12 different groups of pillar 
arrays [22]. Main difference between these pillar arrays 
is the spacing between each pillar, which we call gap 
size. The gap size for these 12 pillar arrays are gradu-
ally decreasing in size from the inlet port to the outlet 
port, 15–3 µm respectively. The smallest gap size, 3 µm, 
can prevent leukocytes flowing away while allow red 
blood cells or platelets to pass through. Larger and less 
deformable cells are captured by pillar arrays with big-
ger gaps while smaller cells flowed through, which makes 
this design suitable to prevent clogging. To further avoid 
clogging, escape routes without trap structure among 
pillars are designed, as Fig. 1a shows. The schematic and 
prototype of microfluidic chip was shown in Fig. 1b. The 
single inlet single outlet fabricated device was connected 
to a gastight syringe pump (1710 TLLX SYR, Hamil-
ton, USA), which was manipulated by a high precision 

controller (QT-AMH2, Chuo Precision Industrial, Japan). 
The PTFE tubing was inserted into the Tygon tubes of 
the device fluidic interconnects and was used for pump-
ing of sample to the inlet port of the device and transfer 
of separated components from the device outlet port to a 
collection tube. The whole experiments were monitored 
with an inverted optical microscope for detailed inves-
tigation of the filtration process. The images and videos 
were captured by a camera (ASI178 MC, Zhen Wang 
Optical Company, China, 3096 × 2080, pixel size 2.4 µm) 
installed on the eyepiece body tube of the microscope. 
The procedure of acquisition is semi-auto and the opera-
tor controls some camera parameters, such as, magnifica-
tion, exposure time and focus. After sample introduction, 
the filtration zone on chip was scanned automatically 
frame by frame for counting trapped T-cells and B-cells. 
As described in sample preparation part, T-cells were 
stained by CD3-FITC (Ex 494 nm, Em 520 nm) excitation 
and B-cells were stained by CD19-PE (Ex 496  nm, Em 

Fig. 1  Overview of the proposed system. a Design of the microfluidic chip, blood is pumped into the device via inlet port. Due to the difference 
in size and deformability, leukocytes will be trapped in different zones. b Experiment setup. c Block diagram of cell detection framework using 
machine learning method
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578 nm). In the next section, we would present a method 
for detecting T-cells and B-cells in the images character-
ized in this section.

Microfluidic chip fabrication
Our microfluidic chip fabrication process is based on the 
soft-lithography technique. We used a Si-wafer to make 
a master mold. The microchannel part is made of poly-
dimethylsiloxane (PDMS) by using a molding process. 
Then, the microchannel part is bonded to a glass plate 
to form the microfluidic chip. First, the photomask was 
prepared using laser lithography (DWL66FS, Heidelberg 
Instruments Mikrotechnik GmbH, Heidelberg, Ger-
many). We then prepared the Si-wafer (thickness 500 μm, 
Matsuzaki Ltd., Japan) for spin coating with an epoxy-
based photoresist (SU-8 3010, Microchem, MA, USA) 
to the required thickness (~ 10 μm) and cured it using a 
soft bake (95 °C, 30 min) process. Next, the Si-wafer was 
exposed to UV light with the photomask using a mask 
aligner (Suss MA6, SUSS MicroTec, Germany). The Si-
wafer was developed and dry-etched by deep reactive 
ion etching (RIE-800, Samco, Japan). Plasma polymeriza-
tion (RIE-800, Samco, Japan) of octafluorocyclobutane 
(C4F8) was used for passivation of the Si-mold to make 
the surface non-adhesive during repeated PDMS micro-
fluidic chip demolding processes. The PDMS microchan-
nel part was prepared using a PDMS pre-polymer (Silpot 
184, Dow Corning Toray Co., Ltd., Japan) mixed in a 
10:1 (w/w) ratio with a curing agent, then pouring onto 
the Si-mold and baking at 85  °C for 45  min. The cured 
PDMS was then demolded and the PDMS microchannel 
part was treated with an O2 plasma (Femto Science Cute-
MPR, South Korea) to complete the PDMS-glass bond-
ing process.

Cell detection
The framework of object detection with HOG and color 
features is illustrated by the block diagram in Fig. 1c. It 
consists of separate training and testing phases. In the 
training phase, we trained two separate SVMs to detect 
cells from background and to identify the detected cells 
as T-cells or B-cells. First using the dataset that is gener-
ated from the dual dyed images, a linear-kernel SVM is 
trained to detect cells from background. Then, the images 
that is dyed with only singe dye is exhaustively searched 
using sliding window method, finding HOG for each 
window and classified by the first SVM. Found cells then 
used for their color information to train a Radial Basis 
Function (RBF)-kernel SVM [21] to identify T-cells from 
B-cells. Although RBF-SVM is timewise costly, it gives 
better accuracy. In the testing phase, unseen images are 
scanned with sliding window and HOG features are gen-
erated from the position of each window in the image. 

These features are classified as cell or background with 
the linear SVM classifier, then classified cells are further 
processed to get the color information and classified as 
T-cells or B-cells using the RBF SVM.

The HOG and color-based features extraction will be 
described in the next section.

Results
In order to get an idea about how well the T-cells and 
B-cells are detected, it is necessary to study both SVM 
classifier and performance of the system as a whole.

Cell isolation
Cell isolation experiment is performed for several times, 
to test the performance of our system and method. The 
experiment condition is decided empirically [22]. First, 
we introduced sheath liquid (PBS with 5 mM EDTA) into 
the microfluidic chip to remove the bubbles. We intro-
duced 1 µL peripheral blood into chip and collected the 
fluid out of chip in a tube. After all blood sample flowed 
through the chip, 30  µL sheath liquid was introduced 
to remove non-trapped cells. The flow rates for periph-
eral blood and sheath liquid are both set to be 10  µL/
min. Then, the whole filtration part on chip was scanned 
frame by frame with the control of motorized stage. 
When scanning, T-cells and B-cells are excited (488 nm). 
420 frames were captured for the whole filtration zone. 
Figure  2 shows partial scanned images of the filtration 
zone. According to the design principle, larger cells were 
mostly trapped in wide pillar gaps, while smaller cells, 
such as T-cells and B-cells, were mainly trapped in nar-
row pillar gaps. As Fig. 2 shows, most T-cells (green) and 
B-cells (yellow) were captured in 5–8 µm gaps area.

Dataset and methodology
There is no standard dataset for fluorescent cell images, 
so we created a custom dataset to be used in our detec-
tion algorithms. To train and test the detection of cells we 
used the scan images from 10 experiments that is dyed 
with the dual dye. Seven experiments are used as training 
data which consists of 2940 images. Another three exper-
iments which consists of 1320 images are reserved for 
test. A total of 6200 cell images and 35,000 background 
images are gathered semi-automatically from the training 
images. Figure 3 shows a sample from this dataset.

Cells come in many sizes and shapes since they are 
deformed by the pillars of the microfluidic chip. To 
simplify the problem we scaled each cell, so the detec-
tor only needs to be trained for the shape information. 
First a small set of cell images are cropped manually 
from the training images. This is used to train the initial 
detector which is then used to automatically detect and 
gather training images time effectively. Found cells are 
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then cropped and scaled. Then all the cropped images 
are manually checked to eliminate the misdetections 
and noises, which are used as hard negatives as Fig. 3b 
shows. After this semi-automated process, 50 training 
images which are dense in cells are annotated manually, 
also fixing the scaling of the cells when necessary. Neg-
ative training samples are then automatically cropped 
in different scales from these annotated images. Using 
the positive and negative training data from this 
semi-automatic process the detector is trained, then 
annotated images are exhaustively searched for misde-
tections. Found hard negatives are added to the train-
ing dataset to re-train the final detector.

Crosstalk between the dyes, prevents us from manu-
ally annotating the datasets to be used as training data. 
Hence in order to train the second SVM which identi-
fies T-cells from B-cells, we used the datasets which are 
only dyed with one color.

HOG descriptor and color distribution features
Preparing the data set appropriately is vital for achieving 
good performance. Cell images are centered and scaled. 
Since the size of the cells vary, we upscaled them to 80 pix-
els squares, with the scaling factor appropriate to the long-
est side of the cell bounding boxes. A margin of 16 pixels 
around the cell on all four sides are included, as this bor-
der provides a significant amount of context that helps 

detection. As Fig. 4 shows, HOG helps us define the shape 
context of the cells effectively, which in return makes it 
possible to detect all different shapes of cells deformed by 
the micropillars in our study.

We computed HOG descriptors for the prepared cell 
samples. A HOG feature vector is modeled for such an 
image. Figure 4 shows step by step computation of HOG 
descriptors. First, one the image gradient values are deter-
mined, representing directional changes in the intensity or 
color. The gradient vector is formed by combining the par-
tial derivatives of image I in the x and y directions, 

The gradients in the two directions are computed by 
applying the 1D centered, point discrete derivative mask in 
the horizontal and vertical directions,

The gradient orientations are computed using the verti-
cal and horizontal gradients as,

The image I is then divided into cells, and for each 
cell, a local 1D histogram of gradient directions (orien-
tations) is calculated over the pixels from that cell. We 
used nine bins for the local histogram. The histogram 
channels are evenly spread over 0°–180° in absolute val-
ues, so each histogram bin corresponds to a 20-degree 
orientation interval. The obtained cell histograms are 
then combined into a descriptor vector of the image. 
First, these cells locally contrast normalized, due to the 
variability of illumination and shadowing in the image. 
That requires grouping the cells together into larger, 
spatially-connected blocks. Once the normalization is 
performed, all the histograms can be concatenated in a 
single feature vector, representing the HOG descriptor. 
Depending on the cell size and block overlap, the amount 
of detail one could get changes. We used [8 × 8] cell size 
to calculate blocks of [16 × 16] pixels with overlaps using 
nine histogram channels. These setting can be thought as 
default choice in object detection. The feature vector of 
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Fig. 2  Partial scanned images of the filtration zone for T and B 
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the image is computed as its HOG descriptor, with 2916 
coefficients.

Because the long emission spectrum tail of dyes causes 
overlap like with the fluorophores FITC and PE, in our 
T-cells and B-cells counting experiment, cells are stained 
by a two color (CD3-FITC/CD19-PE) immunofluores-
cence dye. The color vectors for cells fluctuate in a big 
range. Cells can be sorted from background and noise 
through HOG features, but among the detected cells, it 
is difficult to decide the cell type when taking multicolor 
cell detection. To alleviate the influence of fluorescence 
emission spectrum crosstalk, we calibrated the color dis-
tribution of FITC and PE single dye stained cells and then 
classified dual stained cells by the model trained from 
single dye stained cells color features. We stained sam-
ples with single dye, FITC Mouse Anti-Human CD3 (BD 
Pharmingen™, BD Bioscience, San Jose, CA) for T-cells 
and PE Mouse Anti-Human CD19 (BD Pharmingen™, 
BD Bioscience, San Jose, CA) for B-cells. The single dye 
stained samples were introduced to the same isolation 
system and sorted under the same condition as dual dye 
stained sample. As stained by only one fluorescent dye, 
the detected cells’ type could be decided. We used pre-
viously trained HOG detector to detect the cells and 
extracted the average color in RGB space for every cell 
in FITC and PE. After the cells are detected, an adaptive 

thresholding using Otsu’s method is performed to find 
the cell segment [23]. Then average color in RGB is cal-
culated using this thresholding as a mask. We trained an 
RBF kernel SVM using the color averages from single dye 
stained cells. This calibration needs to be performed only 
once. Through cross-validation, an average accuracy of 
96% was achieved.

Detection results of T‑cells and B‑cells
We have created a data set to test the performance of the 
HOG detector. 500 positive cell images are cropped, cen-
tered and scaled from the annotated test images. 50 diffi-
cult examples containing noise and 450 randomly 
selected background examples are used as negative test 
set. To quantify the HOG detector performance, we plot 
Receiver Operating Characteristics (ROC’s), i.e. true pos-
itive rate 

(

TruePos
TruePos+FalseNeg

)

 versus false positive rate 
(

FalsePos
FalsePos+TrueNeg

)

 . Using also this test set we calculated 

accuracy, specificity and sensitivity values as:

In addition to this set of 1000 image patches, negative 
images from test data exhaustively searched and around 
4,500,000 negative images are added to plot Detection 
Error Tradeoff (DET) curve on log–log scale i.e. miss 
rate 

(

FalseNeg
TruePos+FalseNeg

)

 versus false positive per window 
(

FalsePos
TotalPopulation

)

 . DET curves present the same informa-

tion as ROC’s but small differences in probabilities are 
easier to distinguish. Figure 5 presents ROC’s and DET 
curves.

Different points in ROC and DET curves corresponds 
to different accuracy, specificity and sensitivity. We 
have achieved an accuracy of 94% and sensitivity of 90% 
when specificity was chosen to be 99%.

In one experiment, 420 frames are scanned for the fil-
tration zone on the microfluidic chip. With the classifi-
ers trained with HOG and color distribution feature, all 
the 420 images were processed in 67 s with our experi-
ment PC (CPU i7-8700 K 3.7 GHz, Nvidia GTX 1080Ti, 

Accuracy =

(

TruePos + TrueNeg

Total Population

)

Specificity =

(

TrueNeg

TrueNeg + FalsePos

)

Sensitivity =

(

TruePos

TruePos + FalseNeg

)

Fig. 3  Example images from the dataset. a Cell images centered 
and scaled. b Hard negative images, that is manually eliminated. c 
Background images
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64 GB RAM). We have used OpenCV libraries for HOG 
to perform GPU processing. Figure 6 shows the results 
of an example detection, although cells are of different 
morphology and size, all cells have been detected.

Discussion
Several methods exist for counting the cells in an image 
[24, 25]. The difficulty of performing the cell segmenta-
tion or detection task and choosing the correct algorithm 
depends much on the type of cells being targeted. If the 
cells are well separated from each other and have uni-
form intensity, simple thresholding or watershed algo-
rithms are popular choices of approach. If the cells are 
packed together, algorithms which account for cell shape 
and size are preferred [26]. But in our application, the 
unavoidable uneven illumination over time and across 
the whole microfluidic chip makes the cells fluorescence 
intensity differs from image to image. And the cells’ shape 
and size were deformed by pillar structure. The intensity, 
shape and size features could not be utilized directly to 
detect cells in our pillar-based microfluidic chip system. 
Another approach, like the one used in this study, is to 
recognize cells using training-based machine learning 
methods. Examples of cells and background are shown 
to the detector, which then learns their most important 
characteristics. Furthermore, to detect both T-cells and 
B-cells in a single experiment, the emission spectrum 
crosstalk of these two cells’ dyes should also be overcome. 
In this work, cell detection from fluorescence microscope 
images is studied using both HOG and color distribution 

features with SVM learning classifier. HOG features were 
utilized to distinguish cells from background noise. But 
HOG features could only distinguish cells from back-
ground and noise, how to eliminate the crosstalk between 
FITC and PE emission spectrum is still a question. We 
evaluated the color distribution of cells solely stained by 
FITC or PE and trained the classifier based on the sin-
gle stained cells’ color features. The classifier was used 
to determine the cell type when sample were stained by 
dual-color fluorescence (FITC and PE).

In our work, detection of T-cells and B-cells are impor-
tant in terms of ratio in between them, hence it is more 
important to have small ratio of false positives than hav-
ing small ratio of miss rates. Therefore, we set our detec-
tor to have less false positives. This is the reason we chose 
to prioritize having a high enough specificity such as 99% 
while sacrificing accuracy and sensitivity which were 94% 
and 90% respectively. For one single experiment, the total 
experiment time on microfluidic chip takes about 33 min, 
which was calculated as follows. Staining the sample 
requires 15 min, introducing 1 µL peripheral blood and 
30  µL sheath liquid with 10  µL/min flow speed takes 
about 3  min, the whole chip scan costs 15  min, image 
processing can be simultaneously performed while scan-
ning. FACS requires red blood cell lysis for sample prep-
aration, therefore FACS needs time for the experiment. 
Compared to the time FACS need (> 1 h), the microflu-
idic chip requires less time to separate leukocytes directly 
from whole blood (no lysis). For specific cells types, 
such as total lymphocytes or T-cells and B-cells, the 

Fig. 4  Original image 1(a), horizontal and vertical derivatives of image 1(b), orientations of gradients overlaid on each pixel 1(c), orientations 
gathered into histograms and block normalized 1(d). Histogram of gradient features overlaid on cells 2(a, b), noise 2(c) and background image 2(d)
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microfluidic counting system provided a fast and robust 
way for cell isolation and detection. Although, comparing 

to expensive FACS systems, there are still problems (clog-
ging and spectrum overlap) in multi-type cells sorting for 
current microfluidic system.

Conclusion
A pillar-based microfluidic chip with machine learning 
algorithm for T-cells and B-cells isolation and detection 
were studied in this paper. A HOG and color features 
based SVM classifier was proposed to overcome the dif-
ficulties in cell detection process, such as fluorescence 
emission spectrum crosstalk, variability of cell size and 
morphology, differences in illumination and inconsist-
ence fluorophores expressing level on living cells. We 
have performed numerous cell detection experiments 
using the detection technique provided here. The experi-
ment tests performed on various image datasets, have 
produced satisfactory detection results that prove the 
effectiveness of our proposed approach. It has achieved a 
high accuracy of 94%, specificity of 99% and sensitivity of 
90%. For T-cells B-cells detection we have achieved 96% 
cross-validation accuracy. The proposed method and sys-
tem could also be applied to all other specific leukocytes 
using different stain agent. Compared to current com-
mercial cell sorter, our system is low cost, small size and 
microfluidic chip is disposable, it has great potential as a 
tool for point-of-care cell sorting and analysis.
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Fig. 5  ROC (a) and DET (b) curves for HOG detector

Fig. 6  Results of counting, a part of the image is cropped for better 
visibility. The detected T-cells were labeled with green rectangle and 
detected B-cells were labeled with orange rectangle
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