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Abstract 

Estimating the distance of a target object from a single image is a challenging task since a large variation in the object 
appearance makes the regression of the distance difficult. In this paper, to tackle such the challenge, we propose 2.5D 
anchors which provide the candidate of distances based on a perspective camera model. This candidate is expected 
to relax the difficulty of the regression model since only the residual from the candidate distance needs to be taken 
into account. We show the effectiveness of the regression with our proposed anchors, by comparing with ordinary 
regression methods and state-of-the-art 3D object detection methods, through Pascal 3D+ TV monitor and KITTI car 
experiments. In addition, we also show an example of practical uses of our proposed method in a real-time system, 
robot navigation, by integrating with ROS-based simultaneous localization and mapping.
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Introduction
Detecting a target object from an image is an impor-
tant task and recent deep learning based methods such 
as Faster R-CNN  [1] and YOLO  [2] have enormously 
advanced its performance and speed. However, the loca-
tion of an object on an image plane provided by object 
detection methods would not be enough for a real appli-
cation. Standard approaches to measuring the distance 
from a monocular camera are to use triangulation over 
a pair of images captured by the camera moving along 
with navigation robots [3]. This approach is cost-effective 
compared with the stereo camera; however, the move-
ment to make the disparity would not be time effective. 
That is, as for tracking a target object, a robot may be 
required to detour to make the disparity for measuring 
the distance and thus it would delay the tracking.

Thus, measuring the distance from a single camera 
image would be expected in a real application. How-
ever, the regression of distance from a single image is 
prohibitively difficult due to the variation in the object 
appearance. Figures  1, 2 and 3 depict the examples of 
the relation between the appearance and distance using 

KITTI dataset  [4]. Ground truth (GT) bounding boxes 
(BBs) in Figs. 1 and 2 have similar shapes and sizes, how-
ever, the GT distances are largely different, i.e., 12.1 and 
8.4 m (see values in green boxes). Meanwhile, the dis-
tances in Figs. 1 and 3 are almost same but the appear-
ances of two cars are different. These examples imply 
that training regression models for the distance estima-
tion would be difficult due to the diverse relationships 
between appearances, BBs, and distances.  

In this paper, to tackle such the challenging task, we 
propose 2.5D anchors which provide the candidate of dis-
tances using perspective camera model. This candidate is 
expected to relax the difficulty of training regression model 
since only the small residual between GT and the candidate 
distances have to be taken into account. Using this pro-
posed 2.5D anchor, called perspective anchor, we extend 
one of state-of-the-art object detection method, Faster 
R-CNN, and show its performance improvement by com-
paring with ordinary regression methods through experi-
ments with Pascal 3D+ TV monitor dataset. In addition, 
we show that the performance of our proposed method is 
well comparable with the state-of-the-art 3D object detec-
tion methods  [5, 6] over KITTI car dataset. Finally, we 
show an example of practical uses of our proposed method, 
on a real-time system, robot navigation, by integrating with 
simultaneous localization and mapping (SLAM).
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Related works
Related to the distance measurement from a monocular 
image, 3D object detection methods have been actively 
studied recently  [5–8]. There are mainly two types of 
approaches for 3D object detection, i.e., model-based and 
model-free approaches. The model-based approaches [7, 
8] prepare a variety of 3D CAD models and make them fit 
to target objects on the image plane and infer its 3D posi-
tion and pose. These model-based approaches provide 
high performance given appropriate 3D CAD models but 
are limited only to rigid objects, e.g., car and TV moni-
tor—non-rigid object like a human could not be detected. 
Meanwhile, model-free approaches  [5, 6] directly per-
form the regression of the dimension and orientation of 
3D box using good initial deployment of candidate 3D 

boxes through subcategories  [6] and MultiBin  [5]. These 
methods do not need CAD models and thus can be more 
flexibly applied to a variety of objects including a human 
and an animal. In these 3D box detection approaches, 
both 2D BB and 3D box are detected and the projection 
matrix from the 3D box to 2D BB is estimated to obtain 
the 3D position of the object. However, there are as many 
as 8 target variables, i.e., 4 for 2D BBs and 4 for 3D box 
dimension (height, width, and length) and orientation 
at Y-axis in camera coordinate. Annotating these 8 tar-
get variables of 2D BBs and 3D boxes could be expensive 
since the visual inspection by a human is necessary—
especially annotating 3D boxes on a 2D image would be 
difficult due to unseen parts of the object.

Therefore, in this paper, we propose a direct distance 
estimation method by extending, a 2D object detection 
method, Faster R-CNN [1] to 2.5D object detection, e.g., 
2D BB and distance.

Faster R‑CNN
In this section, we review Faster R-CNN. As shown 
in Fig.  4, Faster R-CNN  [1] consists of four parts: pre-
trained CNN (convolutional neural network), RP (region 
proposal) network, RoI pooling and FC (fully connected) 
network. For more details, in pre-trained CNN, given 
an input image, a variety of feature maps are extracted. 
In RP network, at each pixel of feature maps, the com-
bination of 3-different-shape and 3-different-size 2D 
anchors are created as candidates of BBs. Then, the 
RP network selects 2D anchor potentially containing 
the target object, and regresses the residual of its posi-
tion i.e., aj2D ≡ (x

j
min, y

j
min, x

j
max, y

j
max)

⊤ to the target BB 
b
∗i
2D ≡ (x∗imin, y

∗i
min, x

∗i
max, y

∗i
max)

⊤ . Based on selected 2D 
anchors and RoI proposals, feature maps are cropped and 
converted to the same size feature map by RoI pooling. 
Finally, in FC layer, for each RoI map, the label of object is 
classified and BB is regressed again to refine its position.

2D anchors
A noteworthy mechanism of Faster R-CNN is to use 
anchors as candidates of BBs—these anchors could cover 
a variety of BBs for multiple types of objects with various 
sizes and rotations. With such anchors, the regression 
problem of the BB can be simplified to the selection of 
most fitting 2D anchors and the regression of the residual 
between those 2D anchors and the GT BB.

2.5D bounding box estimation
In this section, we extend Faster R-CNN to estimate 2.5D 
BBs:

(1)b
∗i
2.5D ≡ (x∗imin, y

∗i
min, x

∗i
max, y

∗i
max, z

∗i)⊤

Fig. 1  Examples of the relation between the appearance of target 
objects (cars), and those distance in KITTI dataset. The green and red 
rectangles are the ground truth (GT) and estimated bounding boxes 
(by our proposed method) respectively. The values in green and red 
boxes are the GT and estimated distances respectively in meter. The 
distance of the car on the right hand side is 12.1 m

Fig. 2  Examples of the relation between the appearance of target 
objects (cars), and those distance in KITTI dataset. The green and 
red rectangles are the ground truth and estimated bounding boxes 
(by our proposed method) respectively. The values in green and red 
boxes are the GT and estimated distances respectively in a meter. The 
distance of the car on the left-hand side is 8.4 m

Fig. 3  Examples of the relation between the appearance of target 
objects (cars), and those distance in KITTI dataset. The green and 
red rectangles are the ground truth and estimated bounding boxes 
(by our proposed method) respectively. The values in green and red 
boxes are the GT and estimated distances respectively in a meter. The 
distance of the car on the left-hand side is 11.9 m
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where the distance z∗i from a camera to the target object 
face is added to the original 2D BB b∗i2D . To estimate 2.5D 
BB, we assume to have the training data D consisting of 
pairs of an image I i and a 2.5D BB b∗i2.5D as follows:

where Ntrain is the number of training data. This assump-
tion on the data availability would be acceptable since if 
a laser sensor calibrated with a camera is available in the 
data collection phase, the distance z∗i can be systemati-
cally annotated by using scan data corresponding to the 
2D BB annotated by a human as in KITTI dataset [4].

From this observation, one advantage of estimating 
2.5D BBs over 3D Box approaches [5, 6] in terms of the 
distance estimation, is this feasibility of data annotation, 
i.e., 3D Box approaches need 8 different annotations for 
2D BB, 3D box dimension, and orientation. But let us 
clear the difference in the target applications between 3D 
approaches and our 2.5D BB approach. The target appli-
cations of 3D approach are to localize a variety of target 
objects e.g., car, bicycle and pedestrian in an arbitrary 
3D space and make a 3D visualization of objects like a 
birds eye’s view using computer graphics (e.g., Fig.  4 in 
[6]). Meanwhile, our target application is a simple dis-
tance measurement of specific target objects, like cars 

(2)D ≡ {I i,b∗i2.5D}
Ntrain
i=1

in roads or TV monitors in rooms. That is, it is assumed 
in our approach, that the target objects would have rel-
atively small variance in size; for example, the case that 
target objects in a range from miniature cars and real cars 
would be out of scope.

To perform such 2.5D BB estimation in Faster 
R-CNN, we extend 2D anchor ai2D to 2.5D anchor 
a
i
2.5D = (a

j⊤
2D, z

j)⊤ which additionally contains a distance 
candidate zj . Similarly to the original Faster R-CNN, the 
key to success lies on a good design of anchors. To this 
purpose, we propose the perspective anchor based on the 
perspective camera model.

Perspective camera model
We briefly review perspective camera model. As shown in 
Figs. 5 and 6, the perspective camera model here consists 
of image plane, projected object, and object face in the 
camera coordinate system. The distances from the image 
and the object face to the origin (i.e., camera center) are 
corresponding to the focal length f and object distance 
z′ respectively. With similar triangles rule, the following 
equations are derived

here k is the camera parameter for converting the unit 
from meter to pixel in the image space. W and H are the 
width and height of the object face, and w′ and h′ are the 
width and height of its projection onto the image plane. 
Note that the height H and h′ are not depicted at Fig. 6 

(3)w′ =
kfW

z′

(4)h′ =
kfH

z′

Fig. 4  Diagram of architecture of Faster R-CNN
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Fig. 5  Diagram of perspective camera model in 3D
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since only widths w′ and W in this figure are replaced 
with heights h′ and H.

Let us multiply this width w′ and height h′ to express 
the object distance z′ as the ratio between two areas WH 
and w′h′ as

This indicates that given two areas of the object face WH 
and the projected object w′h′ (e.g., BB), we can systemati-
cally calculate the distance z′ of the target object. How-
ever, the width W and height H of the object face cannot 
be observed and is changeable depending on the orienta-
tion of the target object against the camera.

Base distance
To omit such unobservable value W and H from Eq. 6, we 
introduce the base distance b which is a small distance z′ 
when the target object is close to the camera so that the 
area of projected object w′h′ is also close to the area of 
image plane wh, i.e., w′h′ ≈ wh , as shown in Fig. 7.

(5)w′h′ =

(
kf

z′

)2

WH

(6)z′ = kf

√
WH

w′h′

(7)z′ = kf

√
WH

w′h′
≈ kf

√
WH

wh
≡ b

Using this base distance b, we express the distance z′ of 
the target object without W and H by dividing Eq. 6 by 
Eq. 7 as follows:

That is, the distance z′ is now expressed as the inverse 
of the projected object area w′h′ , multiplied by the con-
stants of the image plane area wh and the base distance b 
which can be set based on training data D.

Perspective anchor
Although Eq.  9 may not hold in reality since the gap 
between w′h′ ≈ wh would be large, it must be helpful for 
setting the candidate of 2.5D anchors. From this idea, we 
generate 2.5D anchors as shown in Fig. 8 where at each 
pixel of the feature map, different shapes and sizes of 2D 
anchors are allocated and the depth of each anchor is 
set by Eq. 9. That is, zi of 2.5D anchor ai2.5D is calculated 

(8)z′

b
=

√
wh

w′h′

(9)z′ = b

√
wh

w′h′
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Fig. 6  Diagram of perspective camera model in 2D
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Fig. 7  Diagram of base distance b on the perspective camera model
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given the image size wh, the anchor plane size w′h′ and 
the base distance b is a hyperparameter.

The advantage of the perspective anchor with the base 
distance b lies in twofold: (i) the distance candidate zi can 
be calculated only from the ratio between the size of the 
corresponding 2D anchor ai2D and the size of the input 
image; (ii) the base distance b could be tuned automati-
cally from training data. In addition, in the case that there 
is a large variance in the target object or there are multi-
ple target object categories, our proposed 2.5D anchors 
can be flexibly extended by preparing multiple 2.5D 
anchors for each 2D anchor with different base distances. 
For example, if there are two object categories car and tv 
monitor, we can generate two 2.5D anchors as follows:

where Na is the number of 2D anchors.

Setting of base distance
There is one hyper parameter in our proposed 2.5D 
anchors, base distance b to be tuned. Since the base dis-
tance b is a small distance when the target object is close 
enough to the camera, one heuristic approach would be 
to set b at α-percentile of GT distances {z∗,i}Ntrain

i=1  in train-
ing data D as follows:

(10)a
j
2.5D = (a

j⊤
2D, z

j
car)

⊤

(11)a
j+Na

2.5D = (a
j⊤
2D, z

j
tv)

⊤

(12)b = z
∗,⌊

Ntrain×α

100 ⌋

sorted

Here, z∗sort is the sorted distance in descending order. α is 
usually set at small values like 3, 5 and 10.

Training with perspective anchors
For each pair I i and bi2.5D of training data D , we select 
positive and negative 2.5D anchors based on the follow-
ing condition:

where IoU(a
j
2D,b

∗i
2D) is Intersection over Union 

(IoU) between a 2D anchor aj2D and GT BB b∗i2D , and 
Edist(a

j
2.5D,b

∗i
2.5D) is relative distance error between the 

depth of 2.5D anchor aj2.5D and the one of GT 2.5D BB 
b
∗i
2.5D defined as

τIoU and τdist are the threshold of IoU and distance 
respectively, and Nanchor is the number of 2.5D anchors, 
e.g., 5940 for 3-shape and 3-size of 2.5D anchors.

That is, if 2.5D anchors are overlapping GT 2.5D BB to 
some extent, those anchors are selected as positive data 
and otherwise are selected as negative data. With selected 
positive 2.5D anchors, we train RP network using follow-
ing loss-function 1

where Ncls and Nreg are the number of anchors for the 
binary classification (object or non-object) and the 
regression of 2.5D anchors for the i-th pair of I i and b∗i2.5D 
respectively. p∗

a
j
2.5D

 is the true probability of being classi-

fied as object or non-object, i.e., p∗
a
j
2.5D

= 1 for the anchor 

satisfying the condition of Eq. 13 and 0 otherwise. Then, 
the softmax loss Lcls between p∗

a
j
2.5D

 is calculated. In addi-

tion, Lreg is the smooth L1 loss between the true 2.5D BB 
b
∗
2.5D and the estimated 2.5D BB b̂2.5D for each anchor 

a
j
2.5D . Using those loss functions, RP network for classifi-

cation RPNcls(a
j
2.5D) and RP network for regression 

(13)
IoU(a

j
2D,b

∗i
2D) ≥ τIoU ∧ Edist(a

j
2.5D,b

∗i
2.5D) ≤ τdist

j = 1, 2, . . . ,Nanchor

(14)Edist(a2.5D,b
∗
2.5D) =

|z − z∗|

max (z, z∗)

(15)

Lm(RPNcls, RPNreg) ≡
1
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∑

j=1
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2.5D)

)

+
1

Nreg

∑

j=1

p
∗j
a2.5DLreg(b

∗i
2.5D, RPNbbox(a

j
2.5D))

'h'w

w
h

'h
'w

' '' h wwhbz =

Fig. 8  Diagram of perspective anchors

1  The definition of loss function of FC network is almost same as Eq. 15 and 
thus is omitted.
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RPNbbox(a
j
2.5D) consisting of convolution and ReLU lay-

ers are trained.

Evaluation
In this section, we evaluate the performance of our pro-
posed Faster R-CNN with 2.5D anchors using PASCAL 
3D+ TV monitor  [9] and KITTI car  [4] datasets. We 
implement our proposed method by extending the py-
faster-rcnn codes provided by github  [10]. Our code will 
be also available on github https​://githu​b.com/hirot​aka-
hachi​ya.

Evaluation metric
To evaluate the performance of the distance estimation 
without the influence of BB detector, we introduce preci-
sion of distance (PD) defined as follows:

where #S is the number of element in a set S . That is, PD 
is the ratio of correctly estimated distances in the set of 
corrected estimated 2D BBs. In following evaluations, the 
threshold values are set at τIoU = 0.5 and τdist = 0.25.

Evaluation on Pascal 3D+ TV monitor
We utilize the Pascal 3D+ dataset to evaluate the perfor-
mance of distance estimation. Pascal 3D+ dataset pro-
vides 12 rigid categories with distance and we use only 
TV monitor category for our evaluation purpose. The 
reason why we chose the TV monitor from 12 categories 
is that there is a large variation in shape, size and pose as 
shown in Figs. 10,  11 and  12, and thus the regression of 
the distance would be reasonably difficult. There are 595 
images in “tvmonitor_pascal” and we randomly split the 
data to 90% (535 images) for training and validation data 
D , and 10% (60 images) for testing data.

We compare four distance regression methods as 
follows

• • Distance regression given 2D region proposals (ordi-
nary regression)—the regression of the distance is 
performed in fully connected (FC) network for each 

(16)
SIoU ≡{i | IoU(b̂i2D,b

i,∗
2D) ≥ τIoU, i = 1, 2, . . . ,Ntrain}

(17)PD ≡
#{i | Edist(

̂
b
i
2.5D,b

∗i
2.5D) ≤ τdist, i ∈ SIoU)

#SIoU

selected 2D BB by region proposal (RP) network2 (see 
the network architecture described in Fig. 4).

• • Distance regression with 2D region proposals and 
MultiBin—following Eq.  5 in the paper  [5], the 
regression of residuals from the mean distance com-
puted from training data D is performed in FC net-
work for each selected 2D BB by the pretrained RP 
network.

• • Regression using 2.5D anchors with fixed base dis-
tance b set at each of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}—as 
for 2D anchors, 3-shape and 3-scale (8, 16 and 32) 
anchors are used [1].

• • Regression using 2.5D anchors with the base dis-
tance b set by each of {3, 5, 10}-percentile of the GT 
distances in training data D (see Eq. 12)—as for 2D 
anchors, 3-shape and 3-scale (8, 16 and 32) anchors 
are used [1].

Figure 9 and Table 1 depict the precision of distance for 
four regression methods. Figure  9 shows that ordinary 
regression (see red line) fails to predict distances for 
given 2D BBs, indicating that the distance regression for 
TV monitors with various appearance is prohibitively dif-
ficult. This difficulty would be mitigated by introducing 
MultiBin which split the target distance value to the half 
at the mean computed over training data  [5] as the PD 
is improved to 0.88 (see blue line in Fig. 9 and Table 1). 
However, only the half-split is not helpful enough to 

MultiBin

Fig. 9  Distance precision with four distance regression methods: 
ordinary regression, regression with MultiBin, regression with 
2.5D anchors of base distance b ∈ {1, 2, 3, . . . , 10} and of 3, 5 and 
10-percentile

2  RP network is pretrained with 2D BB {b∗i
2D
}
Ntrain
i=1

 in the training data D and 
fixed when training the distance regression.

https://github.com/hirotaka-hachiya
https://github.com/hirotaka-hachiya
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achieve higher precision in comparison with our pro-
posed methods. That is, regression with 2.5D anchors 
given good base distance b outperforms both ordinary 
regression and regression with MultiBin (see black line in 
Fig.  9). This indicates that with a tuned base distance b 
can be generated for the accurate distance regression. In 
addition, the setting of base distance b based on α-per-
centile distance is good heuristic as those performances 
(see red, blue and green circles in Fig. 9 and Table 1) are 
well comparable with the best performance. This implies 
that our proposed 2.5D anchors are not so sensitive to 
the base distance and then users can easily tune using α
-percentile.

Overlap‑level of 2.5D anchors
For further analysis of the usefulness of perspective 2.5D 
anchors, we evaluate how largely 2.5D anchors overlap 
GT 2.5D BB. Table  2 depicts average IoU , average Edist 
and the PD of the closest 2.5D anchor to each of GT 2.5D 
BB {b∗i2D}

Ntrain
i=1  . That is, the closest 2.5D anchor here is the 

one holding the maximum IoU and the minimum Edist 
to each of {b∗i2D}

Ntrain
i=1  . This table shows that our perspec-

tive anchors have lower Edist and higher PD than 2.5D 
anchors with the α-percentile depth. For example, PD of 
perspective anchors with α = 3 or α = 5 are about 0.5, 
meaning that the half of GT distances could be estimated 
by only 2.5D anchors without regression. This indicates 
that perspective anchors can provide good references for 
the distance regression to treat appearance variations. 
We note that the PD is improved to from 0.5 to 0.95 by 
the distance regression as shown in Fig. 9 and Table 1.

Figures 10, 11 and 12 depict examples of object detec-
tion and distance measurement of TV monitors in the 
case of 3-percentile b. This shows that small, medium 
and large sized TV monitors can be detected and those 
distances are estimated accurately (GT and estimation 
are depicted in green and red respectively). Note that 
although the distance value in Pascal 3D+ is not abso-
lute, it is not problematic for the evaluation purpose.

Evaluation on KITTI car
As mentioned in the section of Related Works, 3D box 
object detection methods using subcategories and Multi-
Bin [5, 6] can also estimate the object distance (actually 
3D location). These methods have the following proce-
dure to estimate the 3D location as follows:

• • 2D BB and the dimension and orientation of 3D box 
of the object are detected by the regression with sub-
categories or MultiBin.

• • Using the estimated corners of 2D and 3D boxes, the 
projection matrix (including translation and rotation) 
between 2D and 3D boxes are estimated by solving 
the optimization problem.

Here, we evaluate the performance of our method on 3D 
localization problem in comparison with the state-of-
the-art methods [5, 6]. To this purpose, we utilize KITTI 
dataset  [4] with the training-test data indices provided 
by the paper [6]—7481 images in KITTI are split to 3682 
for training and 3799 for testing. As for the evaluation 
metric, we use the average distance error between the 
estimated 3D location of objects and its GT following 
the paper  [5]—to suppress the influence of the perfor-
mance of 2D BB detection, only the detection satisfying 
IoU ≥ 0.7 are counted on the error. We call this error, 
average location error (ALC).

Fig. 10  Examples of results in Pascal3D+ TV monitor for a small 
TV monitor. The ground truth distance and estimated distance are 
written in green and red boxes respectively. The unit of distance is 
based on CAD models

Fig. 11  Examples of results in Pascal3D+ TV monitor for a medium 
size TV monitor. The ground truth distance and estimated distance 
are written in green and red boxes respectively. The unit of distance is 
based on CAD models



Page 8 of 13Hachiya et al. Robomech J  (2018) 5:22 

To compute ALC for our method, we estimate x3D and 
y3D on the 3D camera coordinate system based on the 
perspective camera model and our estimated distance ẑ  
(see Fig. 6) as follows:

(18)x3D =
kf

ẑ

(
x̂max − x̂min

2
+ x̂min

)

where k and f are calculated from KITTI GT data in 
advance.

Figure  13 depicts ALC of our proposed method with 
1-percentile (black) in comparison with 3D BB detec-
tion approaches [5, 6]. As for 2D anchors in our method, 
3-shape × 6-scale (4, 6, 8, 10, 16 and 32) anchors are used. 
This figure shows that our proposed method estimates 
the 3D location of the object quite accurately, i.e., the 
ALC is small in a range from 1.3 to 3.8 m. The perfor-
mance of our method is well comparable with the state-
of-the-art methods even in 3D localization problem, with 
the advantage of the low number of annotated target 
variables.

More in detail, in 3D box detection approaches  [5, 6], 
since 2D BB and 3D box are detected, there are totally 
8 annotated target variables, i.e., 4 for 2D BB, 4 for 3D 
box dimension and orientation, height, width, length 
and orientation at Y-axis in camera coordinate. Mean-
while, our proposed method estimates only 2D BB 
and distance, and there are only 5 target variables, i.e., 
(ximin, y

i
min, x

i
max, y

i
max, z).

This difference would be a great advantage for our 
method when considering real applications since anno-
tating 3D box by a human is prohibitively expensive. That 
is, for each target object in many images, a 2D BB and a 
3D box need to be annotated manually by a human with 
a careful consideration of the correct orientation and 
dimension of the object  [4]. Meanwhile, in our method, 
if a laser sensor calibrated with cameras is available in 
the data collection phase like KITTI dataset, the distance 
annotation could be systematically performed given a 
2D BB annotated by a human, e.g., by taking the average 
of corresponding distances measured by the laser sen-
sor. We note that if a laser sensor is not available in the 
data collection phase, the distance can be annotated later 
from a single image using the CAD model of the target 
object, as shown in “Application to navigation” section.

Figures  14, 15, and 16 depict examples of estimated 
BB and distance for the side, front and far views of cars. 
These figures show that the estimated BBs and distances 
in red are reasonably close to GT in green in various view 
angles.

Overall, the experimental results with Pascal 3D+ TV 
monitor and KITTI car datasets show that the proposed 
method, 2.5D anchors is a promising approach for dis-
tance regression and even for 3D localization from the 
single camera image.

(19)y3D =
kf

ẑ

(
ŷmax − ŷmin

2
+ ŷmin

)
,

Fig. 12  Examples of results in Pascal3D+ TV monitor for a large flat 
TV monitor. The ground truth distance and estimated distance are 
written in green and red boxes respectively. The unit of distance is 
based on CAD models

Table 1  Average precision (AP) over  foreground 
thresholds {0, 0.1, 0.2, . . . , 0.9, 1}  [16], precision 
of  distance (PD) and  total average precision (AP × PD) 
for TV monitor in Pascal3D+

Regression method AP PD AP × PD

With region proposals 0.77 0.47 0.36

With region proposals and MultiBin 0.78 0.88 0.69

With perspective anchors α = 3 0.78 0.91 0.71

With perspective anchors α = 5 0.77 0.95 0.73

With perspective anchors α = 10 0.79 0.95 0.75

Table 2  Average IoU, precision of  distance (PD) 
and  relative distance error of  the  closest 2.5D anchors 
to GTs (BB and distance) in Pascal3D+ TV dataset

2.5D anchor Avg. IoU Avg. Edist PD (without 
regression)

Fixed depth, z = 0 0.45 1.0 0.0

Fixed depth, z = z̄ 0.45 0.39 0.29

Perspective anchor, α = 3 0.45 0.26 0.50

Perspective anchor, α = 5 0.45 0.27 0.49

Perspective anchor, α = 10 0.45 0.33 0.35
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Application to navigation
We apply our perspective anchors for a real robot navi-
gation task in Tsukuba challenge  [11], navigating to a 
person wearing a specific cloth. Our proposed method 
can be applied to such task by converting the estimated 
BB and distance to the location on a map maintained in 
SLAM system built with slam_gmapping stack and navi-
gation stack of robot operating system (ROS).

Data and annotation
We collect 1006 images ( 744 × 480-pixel) using three 
cameras  [12, 13] along the course of the Tsukuba chal-
lenge in two different times—there are totally 6 data 
groups i.e., 3 cameras at 2 different times. We use Matlab 
codes provided by Pascal 3D+ [14] to annotate the 2D BB 
and the distance. More concretely, for the annotation of 
distance, we prepare CAD model for the signboard next 
to persons as depicted in the top left of Fig. 17. Then, we 
calculate the distance between camera and BB including 
both signboard and person by fitting the signboard CAD 
model to the 2D image as shown in the bottom of Fig. 17.

Evaluation on distance measurement
We use the same setting and evaluation metric as Pascal 
3D+ experiments with real average distance errors. We 
note that distance annotation computed by the anno-
tation tool is of the unit in CAD but we can convert to 
the unit of the meter using a standard calculation based 
on camera geometry. Table  3 shows that our proposed 
method detects the target object and estimates its dis-
tance quite accurately. More specifically, average dis-
tance error (ADE) is only about 0.5 m although ordinary 
regression suffers from variation in appearance and has 
a large error, i.e., 1.92 m. This indicates that the distance 
regression for this task is also extremely difficult since 
the appearance of target objects changes largely due to 
the change of camera angle with moving robot. Related 
to this point, Figs. 18, 19 and 20 depict examples of esti-
mated BB and distance for the side, front and far views. 
These figures show that the estimated BBs and distances 
in red are reasonably close to ground truth in green in 
various view angles.

In addition, Table 4 shows that the average process time 
of our proposed method is reasonably fast as 42.6 ms on 
a desktop PC with GTX980 and 314 ms on Jetson TX1. 
Note that as for the pre-trained CNN in Faster R-CNN, 
we employ Zeiler Fergus (ZF) net which is lighter and 
faster.

Coordinate system transformation
To apply our proposed method to a robot navigation 
system implemented by ROS navigation stack, we cre-
ated two original ROS nodes: Faster R-CNN node and 

Fig. 13  Mean distance error of the 3D localization in KITTI car 
dataset. The performance of our method with the standard deviation 
divided by 10 is superimposed over the result on the paper [5]

Fig. 14  Examples of estimated distance for multiple cars in KITTI 
dataset. The ground truth distance and estimated distance are 
written in green and red boxes respectively. The unit of distance is 
meter. Only BBs with IoU ≥ 0.7 are shown

Fig. 15  Examples of estimated distance for the side-view of cars in 
KITTI dataset. The ground truth distance and estimated distance are 
written in green and red boxes respectively. The unit of distance is 
meter. Only BBs with IoU ≥ 0.7 are shown

Fig. 16  Examples of estimated distance for the far view of cars in 
KITTI dataset. The ground truth distance and estimated distance are 
written in green and red boxes respectively. The unit of distance is 
meter. Only BBs with IoU ≥ 0.7 are shown
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Coordinate transform node as shown in Fig.  21. The 
Faster R-CNN node is to run our proposed method on 
Jetson TX1 and to publish the information of detected 
BB and its distance. Meanwhile, the coordinate transform 

node is to transform coordinate systems from images to 
SLAM map through the camera coordinate system. More 
in detail, firstly, the node converts image coordinate into 
camera coordinate, i.e., the centroid of BB x′ into X in 
Fig. 22, using the following equations:

where φ is the field-of-view of camera and θ is the angle 
of the centroid of BB from the origin of camera coordi-
nate system. Secondly, the node transforms the camera 
coordinate, (X , 0, z′) to the SLAM map coordinate sys-
tem (xmap, ymap, 0) (see Fig. 23) using standard rotation-
translation matrices. We note that the camera coordinate 
Y ≈ 0 is assumed since the height of camera and the 
centroid of the target object (i.e, sitting person) is almost 
same.

Finally, the navigation nodes (see Fig.  21), i.e, naviga-
tion stack, set the subscribed map coordinate of the tar-
get object as the goal and navigate the robot along the 
map.

Evaluation on navigation
To evaluate the effectiveness of our navigation system. 
we conduct experiments using a real mobile robot, called 
mercury  [15], equipped with a 2D LiDAR, wheel encod-
ers, an IMU, cameras and Jetson TX1 as shown in Fig. 24. 
Then, we consider the following navigation scenario:

• • Mobile robot starts moving from a specific start-
point where the target can be found (see Fig. 25).

• • After a while, a pedestrian (disturbance) stands in 
front of the robot for short or long time to hide the 
target object from the robot.

• • Elapsed time from moving and reaching to the target 
object within 1 m is measured for the comparison.

• • The translation and rotation velocity is set at 0.5 m/s 
and 90°/s.

Table 5 depicts elapsed time for both short and long dis-
turbance. This table shows that our navigation system 
guides successfully the robot to the target object in short 
time even if the target object is lost by the disturbance—
the robot does not need to keep eyes on the target since 
the position of the target is registered as the goal on 
navigation stack. Here are videos demonstrating our pro-
posed our navigation system:

• • https​://youtu​.be/pPkgo​nE6tR​M
• • https​://youtu​.be/CC5hI​Se19R​8

for both disturbance cases.

(20)θ =
x′

w
φ, X = z′ tan(θ)

Fig. 17  Capture image of annotation tool

Table 3  Average precision (AP) over  foreground 
thresholds {0, 0.1, 0.2, . . . , 0.9, 1}  [16], precision 
of  distance (PD), total average precision (AP × PD) 
and average distance error (ADE) for Tsukuba dataset

Regression method AP PD AP × PD ADE [m]

With region proposals 0.89 0.5 0.50 1.92

With region proposals and MultiBin 0.90 0.94 0.85 0.65

With perspective anchors α = 3 0.90 0.99 0.90 0.5

With perspective anchors α = 5 0.90 0.99 0.90 0.55

With perspective anchors α = 10 0.90 0.99 0.90 0.52

Fig. 18  Examples of estimated distance for the side-view of the 
target object in Tsukuba Challenge. The ground truth distance and 
estimated distance are written in green and red boxes respectively. 
The unit is in meter

https://youtu.be/pPkgonE6tRM
https://youtu.be/CC5hISe19R8
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Conclusion
In this paper, we have proposed 2.5D anchors (called 
perspective anchors), designed based on the perspective 
camera model, which are suitable for both bounding box 
and distance estimation in Faster R-CNN. Through the 
experiments with Pascal 3D+ TV monitor and KITTI 
car datasets, we have shown the effectiveness of our pro-
posed method in the distance estimation and even in the 
3D localization. In addition, we have demonstrated an 
example of practical uses of our proposed method in a 

real-time system, robot navigation, by ROS-based simul-
taneous localization and mapping (SLAM).

In this paper, we consider estimating the distance of 
a specific target-object category, i.e., TV monitors, cars 
or humans. However, in a real application such as an 
autonomous driving system, multiple target objects, e.g., 
pedestrian and car need to be treated at the same time. 

Fig. 19  Examples of estimated distance for the front-view of the 
target object in Tsukuba Challenge. The ground truth distance and 
estimated distance are written in green and red boxes respectively. 
The unit is in meter

Fig. 20  Examples of estimated distance for the far-view of the 
target object in Tsukuba Challenge. The ground truth distance and 
estimated distance are written in green and red boxes respectively. 
The unit is in meter

Table 4  Process time in  person detection and  its distance 
measurement

Method Time (GTX980) Time (Jetson TX1)

2.5D anchors with 3-percentile 42.6 ms 314 ms

Fig. 21  ROS nodes used in our robot navigation system

'z

x
z

w

θ
φ

f

Fig. 22  Diagram of camera coordinate system used in our robot 
navigation system
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Thus, the task of multiple 3D object distance measure-
ment would be our future work. Although we believe that 
our method could be flexibly extended to such case by 
setting multiple base distances to each 2D anchor, further 
research is needed to investigate an efficient way of the 
multi-class distance regression problem.

In addition, in this paper, we extend one of the state-
of-the-art object detection method, Faster R-CNN  [1]. 
Recently, there are advanced object detection methods, 
e.g., YOLO2 [2], which provide a better and faster perfor-
mance. Thus, extending such advanced method with the 
concept of our proposed 2.5D anchor will be also a future 
work.
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