
Irie ﻿Robomech J  (2018) 5:14 
https://doi.org/10.1186/s40648-018-0110-1

RESEARCH ARTICLE

A graph optimization approach 
for motion estimation using inertial 
measurement unit data
Kiyoshi Irie* 

Abstract 

This study presents a novel approach for processing motion data from a six-degree-of-freedom inertial measurement 
unit (IMU). Trajectory estimation through double integration of acceleration measurements results in the generation 
and accumulation of multiple errors. Existing IMU-based measurement methods often use constrained initial and 
final states to resolve these errors. The constraints on the initial and final states lead to a uniform distribution of the 
accumulated errors throughout the calculated trajectory so that they cancel each other. We develop a generalized 
method that can incorporate the constraints from the measurements of intermediate states. The proposed approach 
is inspired by graph-based simultaneous localization and mapping processes from robotics research. We tested the 
proposed method with simulated and actual IMU data and found that our method estimates trajectories more accu-
rately than conventional methods with acceptably higher computational costs.

Keywords:  Motion estimation, Inertial measurement unit, Graph-based simultaneous localization and mapping

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Introduction
Background
Measuring athlete motion is an important aspect of 
sports science. The typical instruments employed for this 
purpose include high-speed video cameras and infrared 
motion capture cameras. However, these instruments are 
expensive and require time and effort for installation.

Recently, small and inexpensive inertial measurement 
units (IMUs) have become available, making sports 
motion measurements accessible to a wide range of 
people. For example, measurement devices that can be 
attached to a golf club  [1, 2] or a tennis racket  [3] have 
been developed.

Considering these applications, this study seeks to 
improve the data-processing algorithm for extracting 
trajectories from IMU data. The IMU employed herein 
is assumed to comprise a three-axis accelerometer and 
a three-axis gyroscope. We aim to estimate a time series 

of the attitude, velocity, and position values with a time 
series of acceleration and angular velocity measurements.

Main issues to be addressed
The integration of IMU measurements is the simplest 
way to extract a trajectory from IMU data. Theoreti-
cally, attitude can be calculated by integrating the angu-
lar velocity, velocity can be calculated by integrating the 
acceleration, and position can be calculated by the double 
integration of the acceleration. However, position estima-
tion by simple double integration amplifies the error [4]. 
Even a small error in the integration of the acceleration 
can lead to a bias drift in the velocity values. Additionally, 
the integration of biased velocity causes rapid generation 
of the positional errors. In addition, if the measurement 
is performed for a long period, the attitude and velocity 
estimations are affected by the bias drift in the angular 
velocity and acceleration values. Thus, it is necessary to 
correct the accumulated errors.

Open Access

*Correspondence:  irie@furo.org 
Future Robotics Technology Center, Chiba Institute of Technology, 2‑17‑1, 
Tsudanuma, Narashino, Chiba, Japan

http://orcid.org/0000-0001-7272-2203
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40648-018-0110-1&domain=pdf


Page 2 of 10Irie ﻿Robomech J  (2018) 5:14 

Related work
Human gait analysis is a well-studied topic in IMU-based 
motion estimation. Several methods that can precisely 
track human gait have been developed [5, 6]. Error cor-
rection methods for gait data rely on the assumption that 
the foot velocity is zero during the stance phase, which 
is the period during which the foot is in contact with the 
ground. The errors accumulated in the velocity data can 
be eliminated using this assumption [6, 7].

A method to correct motion errors without such zero-
velocity assumptions needs to be developed because the 
assumptions are not always applicable to various sports 
motions. Sagawa et al. developed a method for measur-
ing the pitching motion used in baseball  [8]. They con-
strained the target motion with a known initial state and 
a known final state. The accumulated errors are corrected 
with regard to these constraints.

However, this method is limited as error correction 
is performed only with one constraint, thereby return-
ing inaccurate trajectories for motions that extend over 
a long period of time. Therefore, a more powerful error 
correction method is needed to measure longer sets of 
motions, such as a rally in a tennis match.

Contribution
Herein, we propose a novel error correction method that 
can incorporate multiple constraints. While the rela-
tion between the initial and final states is the only con-
straint employed in the conventional motion estimation 
method, the proposed method employs generalized con-
straints that can represent the differences between any 
two known points in time. The problem is formulated as 
a least-squares fit of the constraint errors. Steps reducing 
the computational complexity of the algorithm are also 
introduced to make computations practical. We quantify 
the performance of the proposed algorithm with simu-
lated and actual data.

IMU‑based motion estimation: review
Problem definition
We consider the problem of estimating a time series of 
the states of an IMU.

Here, u, v, and t denote the attitude, velocity, and posi-
tion, respectively. We assume that the initial state of 
the IMU, x0 , is known and that the IMU collects three-
dimensional (3D) acceleration and 3D angular velocity 
over time {ai,ωi}ni=1.

Herein, we employ a rotation vector [9] to represent 
the 3D attitude u . The definition of the rotation vector 

(1){xi}ni=1, xi :=





ui

vi
t i



 .

representation and the operations performed with it are 
available in Appendix.

Naive integration
The simplest method for IMU state estimation is the naive 
integration of the measured data. We estimate the attitude 
by integrating 3D angular velocity data obtained by the 
IMU. Assuming that the time step �t is small, the attitude 
at each time step can be incrementally calculated as follows:

where the ∗ operator represents the concatenation of two 
rotation vectors.

Velocity can be estimated through the integration of 
the 3D acceleration data. Note that we need to compen-
sate for the gravitational acceleration, which is denoted 
by g , as follows:

where Ri represents the rotation matrix representation of 
the attitude ui and Riai represents the acceleration trans-
formed into the world frame.

Position can be estimated through the integration of 
velocity data as follows:

Sagawa et al.’s error correction method
The aforementioned integration typically leads to signifi-
cant error accumulation. We now review a method pro-
posed by Sagawa et al. [8] for correcting such errors.

This method assumes that the initial and final states are 
known, so the relative difference between the initial and 
final states is used as a constraint on trajectory reconstruc-
tion. The estimated time-series states are corrected by uni-
formly distributing the accumulated errors along the time 
sequence so that the error at the final state is canceled out.

This method uses the following steps:

1.	 Initial estimates of attitude are calculated via simple 
integration. The accumulated errors in these attitude 
values are corrected using the constraint.

2.	 Velocities are estimated via integration using the 
acceleration data and the corrected attitudes. The 
accumulated errors are again corrected using the 
constraint.

3.	 Positions are estimated through the integration of the 
corrected velocities, and these estimations are cor-
rected with respect to the constraint.

Although the algorithm in the original paper  [8] was 
described using the rotation matrix representation, we 
will detail the steps in rotation vector notation for easy 
comparison with the proposed algorithm.

(2)ui+1 = ui ∗ (ωi�t),

(3)vi+1 = vi + (Riai − g)�t,

(4)t i+1 = t i + vi�t.



Page 3 of 10Irie ﻿Robomech J  (2018) 5:14 

Attitude correction
The attitudes estimated via simple integration are 
denoted as {ũi}ni=1 , and the known final attitude is 
denoted by uGT

n  . The accumulated attitude error can be 
expressed as a single rotation:

Attitude error correction is accomplished by uniformly 
distributing the error according to the time sequence as 
follows:

Velocity correction
The velocity error is corrected so that the estimated final 
velocity ṽn matches the given final velocity vGTn  . The accu-
mulated error is assumed to be caused by a constant 
acceleration bias, aE , which is calculated as follows:

The corrected velocity sequence {v̂i}ni=1 is then calculated 
as follows:

Position correction
Although the position correction step was not detailed 
in the original paper  [8], we assume that Sagawa et  al. 
repeated the above process. The difference between the 
final position estimated via simple integration t̃n and 
the given final position tGTn  assumed to be caused by a 
constant velocity bias, vE , which satisfies the following 
relation:

The corrected position sequence {t̂ i}ni=1 is then calculated 
as follows:

uE = (−ũn) ∗ uGT
n .

ûi = ũi ∗ (
i

n
uE).

aEn�t = vGTn − ṽn.

v̂i = ṽi + aEi�t.

vEn�t = tGTn − t̃n.

t̂ i = t̃ i + vEi�t.

Proposed method
The aforementioned error correction employed a sin-
gle constraint. Thus, we extend the problem to multiple 
constraints.

We treat the problem as an optimization of a graphical 
model shown in Fig. 1. The state at each time is modeled 
as a graph node. The constraints representing a relation 
between two nodes are modeled as graph edges.

Objective function
We define a vector containing all time-series state param-
eters as follows:

This vector is used as an objective variable in our optimi-
zation problem.

Next, given a set of constraints, we aim to find the opti-
mal vector x∗ . Constraint cij is a nine-dimensional vec-
tor representing the state of xj relative to xi , which is 
obtained from IMU measurements and prior knowledge 
about the target motion. The problem is formulated as 
the maximization of the posterior density as follows:

Assuming that the errors in the constraints are statisti-
cally independent of each other and Gaussian, we can 
express the posterior density as follows:

where f (x|µ,�) is the probability density function of the 
normal distribution N (µ,�) and eij(x) denotes the error 
of the constraint cij.

By taking the logarithm of Eq.  (6), the optimization 
problem can be rewritten as follows:

x := [x⊤1 , . . . , x⊤n ]⊤.

(5)x∗ = arg max
x

p(x|{cij}�i,j�∈C).

(6)p(x|{cij}�i,j�∈C) =
∏

�i,j�∈C
f (eij(x)|0,�ij),

(7)x∗ = arg min
x

F(x),

Fig. 1  Sample graphical model



Page 4 of 10Irie ﻿Robomech J  (2018) 5:14 

Constraints
Each component (attitude, velocity, and position) in the 
constraint cij is denoted as u(ij), v(ij) , and t(ij) , respectively. 
Two types of constraints are employed: a constraint 
between consecutive nodes ( j = i + 1 ) and that between 
non-sequential nodes (loop-closing constraints). The 
former type of constraints can be calculated using IMU 
measurements as follows:

In contrast, the non-sequential constraints can be 
obtained from prior knowledge about the motion or 
observations with external sensors. The single constraint 
used in Sagawa et al.’s method is given in this form. For 
example, a constraint that the initial (time t = 0 ) and 
final (time t = n ) states are identical can be expressed as 
follows:

Error function
We define the error function as follows:

The error function returns a zero vector when the state of 
node j relative to node i matches cij.

Optimization
We employ the Gauss–Newton method to minimize 
function F in Eq.  (8). This method is a gradient descent 
method that can be used for nonlinear least-squares 
problems. We initiate the objective variable with an ini-
tial estimate, x̂ , and iterate over the following three steps 
until convergence:

1.	 Linearization: Calculate F̄x̂(d) , i.e., the linear approx-
imation of F(x) at x = x̂.

2.	 Minimization: Determine the update vector d , which 
minimizes F̄x̂(d).

3.	 Update: Update the current estimate x̂ using d.

Linearization
In the first step, we obtain the linearized objective func-
tion F̄x̂(d) as follows:

(8)
F(x) :=

∑

�i,j�∈C
eij(x)

⊤�ijeij(x),

(9)�ij := �−1
ij .

cij =





ωi�t
(Riai − g)�t

vi�t



 .

c0,n = [0, 0, 0, 0, 0, 0]⊤.

eij(x) :=





(−u(ij)) ∗ (−ui) ∗ (uj)

−v(ij) + vj − vi
−t(ij) + t j − t i



 .

Here, J ij is the Jacobian matrix of eij(x) at x = x̂.
The linearized objective function F̄x̂(d) can be 

expanded into a quadratic function as follows:

Minimization
By setting the derivative of Eq. (10) to zero, the minimizer 
d̂ is obtained by solving the following linear equation:

H is a 9n × 9n matrix, and it grows rapidly as the num-
ber of nodes increases. Therefore, naive methods, includ-
ing Gauss–Seidel minimization, require a large amount 
of time for computations. Since H is symmetric, posi-
tive-definite, and sparse (i.e., the number of loop-closing 
constraints is small), the linear system can be efficiently 
solved via sparse Cholesky decomposition or the precon-
ditioned conjugate gradient method [10, 11].

Update
Finally, using the obtained minimizer d̂ , we update the 
current estimates using the following equation:

Relevance to graph‑based simultaneous localization 
and mapping
The formulation can be considered as an extension of 
graph-based simultaneous localization and mapping 
(SLAM)  [12, 13]. Graph-based SLAM produces atti-
tude and position estimates, and the proposed method 
extends the state vector with velocity as an extra degree 
of freedom.

Improving initial estimates
The computational cost of the proposed method is higher 
than those of the graph-based SLAM methods for the 
same number of nodes and constraints as H becomes 
larger. Therefore, to achieve practical processing time, 

F(x̂ + d) =
∑

�i,j�∈C
eij(x̂ + d)⊤�ijeij(x̂ + d)

≈
∑

�i,j�∈C
(eij(x̂)+ J ijd)

⊤�ij(eij(x̂)+ J ijd)

:= F̄x̂(d).

(10)F̄x̂(d) = d⊤Hd + 2b⊤d + const.,

(11)

where

H :=
∑

�i,j�∈C
J⊤ij �ijJ ij ,

b :=
∑

�i,j�∈C
eij(x̂)

⊤�ijJ ij .

(12)Hd = −b.

(13)x̂ ← x̂ + d̂.



Page 5 of 10Irie ﻿Robomech J  (2018) 5:14 

we employ an initialization technique, which is described 
below.

The positions estimated via simple integration are typi-
cally far from the optimum value. If we begin optimiza-
tion with such poor initial estimates, the optimization 
will require a large amount of time to converge.

Therefore, we improve the initial estimates by solv-
ing a sub-problem. The sub-problem employs the same 
graph-based formulation as the main problem and 
only optimize the attitude and velocity estimates. More 
specifically,

is used as an objective variable. The attitude and velocity 
components of the constraints were also extracted and 
employed.

We initialize the position estimates for the main prob-
lem by integrating the attitudes and velocities returned 
by sub-problem optimization, thereby reducing the itera-
tions required for convergence in the main optimization 
problem.

Results
Simulation experiments
Experiments with simulated data were conducted as 
follows. IMUSim [14] was employed to generate 100 
different random trajectories with ideal 100-Hz IMU 
measurements. The duration of each generated trajectory 
was 3 s.

To improve the realism of the simulation, artificial 
white noise was added to the ideal measurements. The 
standard deviations of the noise terms were 0.1 m/s2 for 
acceleration and 0.3°/s for angular velocity. Bias errors of 
0.2°/s were also added to the angular velocity data.

First, we tested the processing methods for motions 
with only one constraint. The estimation accuracy of the 

x′ :=
[

u⊤
0 , v

⊤
0 ,u

⊤
1 , v

⊤
1 , . . . ,u

⊤
n , v

⊤
n

]⊤

proposed method was compared with those of the naive 
integration and Sagawa et al.’s conventional method [8].

The examples of estimated trajectories and RMS errors 
of each method are shown in Fig. 2 and summarized in 
Fig.  3. Regarding position and velocity estimations, the 
proposed method returned errors that were almost same 
as those returned by the other methods, which makes 
sense because both methods used the same information.

However, the proposed method exhibited significantly 
smaller attitude errors in comparison with Sagawa et al.’s 
method ( p < 0.001 using the Wilcoxon signed-rank 
test). The typical attitude estimation results are plot-
ted in Fig. 4, which is generated using the same motion 
as shown in Fig. 2. This plot shows that both correction 

Fig. 2  Sample trajectory estimation result

Fig. 3  Motion estimation errors using simulated data with one loop-
closing constraint. Error bars indicate standard errors



Page 6 of 10Irie ﻿Robomech J  (2018) 5:14 

methods accurately estimated the final attitude; however, 
Sagawa et  al.’s method exhibited larger errors for inter-
mediate states. This was because the method uniformly 
distributed the attitude errors along a single rotation 
axis. Thus, the correction was not expected to necessarily 
match with the direction of the errors.

Next, we tested the method with multiple constraints. 
Several observation points were chosen in the simulated 
data sequences, and the true IMU states at these points 
were used as additional constraints. The relation between 
the number of constraints used and the estimation accu-
racy is summarized in Fig.  5. This figure clearly shows 
that the estimation accuracy improves as the number of 
constraints increases.

Trajectory estimation using real IMU data
The accuracy of trajectory estimation was evaluated 
using real IMU data collected with an Xsense MTi-3 
IMU at 100 Hz. The motion measured is shown in Fig. 6. 
The IMU was moved to four vertices of a 0.3 m × 0.2 m 
rectangle and returned to the initial position and orien-
tation. The motion lasted approximately 7 s. To perform 
the calibration of the IMU’s acceleration and angular 
velocity bias, approximately 3.0 s of motionless time was 
included at the beginning of the motion.

We again compared the proposed method and Sagawa 
et al.’s method [8] in terms of estimation accuracy. Both 
methods were provided the same constraint, i.e., the ini-
tial and final states were identical. Extra constraints were 
employed in the proposed method, which are defined by 
the relative positions of three vertices and the assump-
tion that the device stops moving at these vertices. The 
times when the IMU visited the vertices was calculated 
based on the acceleration spikes caused by collisions with 
the table surface.

The estimated 3D trajectories were projected into a 
two dimensional plane (Fig.  7) for comparison with the 
reference trajectory. The Fréchet distance (a similarity 
measure) between the estimated trajectory and reference 
trajectory was employed for measuring errors. The errors 
were 0.062  m from Sagawa et  al.’s method and 0.022  m 
from the proposed method.

The changes in the estimation accuracy for different 
number of constraints are plotted in Fig.  8. This figure 
shows that the estimation accuracy improves as the num-
ber of constraints increases.

The processing times for the proposed method and 
Sagawa et al.’s method were 0.58 and 0.022 s, respectively, 
on a laptop equipped with a Core i7-7600U processor 

0 50 100 150 200 250 300 350
Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
tti

tu
de

 e
rr

or
 [d

eg
]

Naive integration
Sagawa et al.
Proposed

Fig. 4  Attitude estimation errors for comparison

Fig. 5  RMS errors with different number of constraints (simulated 
data)

Fig. 6  IMU data collection procedure of trajectory estimation experi-
ment

Fig. 7  Two dimensional projection of the estimated trajectories 
using real IMU data



Page 7 of 10Irie ﻿Robomech J  (2018) 5:14 

(mean of 10 trials). Although the proposed method per-
formed slower than Sagawa et  al.’s method, the perfor-
mance of our method does not appear to be a significant 
problem for the purpose of offline motion analysis.

Attitude estimation using real IMU data
The attitude estimation accuracy was also evaluated using 
the MTi-3 IMU. In this evaluation, the IMU was rotated 
randomly and returned to the initial state, as depicted in 
Fig. 9. The constraint that the initial and final states are 
identical was employed. The mean attitude errors for 
the collected 53  sequences of the IMU data are shown 
in Fig. 10. As can be seen from the figure, the estimation 
error of the proposed method was smaller than that of 
Sagawa et al.’s method ( p = 0.0376).

Analysis of the effect of data frequency and length
To evaluate how the data acquisition rate affects the 
performance of the proposed method, we conducted 
an additional experiment using simulated IMU data of 
1000 Hz from the same 100 random motions employed 
in the abovementioned simulation experiments. The 
estimation results are summarized in Fig. 11. The graph 
shows similar trend with that of 100  Hz (Fig.  3). The 
mean processing time of the proposed method was 3.4 s 

for 1000 Hz data and it is 15 times slower than that for 
100 Hz (0.23 s).

The estimation accuracy for longer motions was evalu-
ated using the same settings as the trajectory estimation 
experiments using the MTi-3 IMU. Two additional data 
sequences were collected by slowly moving along the 
rectangle (same procedure as shown in Fig. 6); the dura-
tion of the data was approximately 14 and 21  s. Trajec-
tory estimation results are summarized in Fig. 12. It was 
observed that the estimation accuracy of both the pro-
posed method and Sagawa et al.’s method degraded rap-
idly as motion length increased.

Conclusions and future work
Using IMU data, the proposed motion estimation 
method corrects the accumulated errors via least-squares 
fitting with constraints that are obtained from IMU 
measurements and from prior knowledge of the motion. 
This method can incorporate more than one constraint 
in error correction steps, thereby improving the estima-
tion accuracy. The effect of accuracy improvement was 

Fig. 8  Trajectory estimation errors with different number of con-
straints (real IMU data)

Fig. 9  IMU data collection procedure of attitude estimation experiment

0.4403
0.4748

Fig. 10  Results of attitude estimation experiments using real IMU 
data. Error bars indicate standard errors



Page 8 of 10Irie ﻿Robomech J  (2018) 5:14 

verified by experiments using simulated and real data. 
When using a single constraint, the proposed method 
estimated attitude more accurately than the conventional 
methods. The computation time of the proposed method 
was practical for motions with duration of several 

seconds, thanks to the use of an initialization technique. 
Nevertheless, the computational cost will be large on 
data with long duration or high frequency. One way to 
alleviate the problem would be node thinning.

In future work, we plan to apply this method to actual 
sports data. An analysis of table tennis rallies is in 
progress.

The proposed method has a limitation: it assumes that 
the constraints are independent; however, biased meas-
urements can violate this assumption. A mathematical 
model that considers gyroscope and accelerometer biases 
can compensate for this limitation.

Authors’ contributions
The author read and approved the final manuscript.

Competing interests
The author declares that he has no competing interests.

Ethics approval and consent to participate
Not applicable.

Appendix
Rotation vector definition
A rotation vector is a 3D vector representing a 3D rota-
tion. It can be calculated from a 3D unit vector represent-
ing the rotation axis a = [ax, ay, az]⊤ and the angle of 
rotation θ[rad] as follows:

The inverse rotation can be calculated as follows:

For brevity, the norm of v is denoted as v.

Conversion between unit quaternion
Conversion from a rotation vector to unit quaternion 
q = [qw , qx, qy, qz]⊤ can be expressed as follows:

Conversion from unit quaternion to rotation vector can 
be expressed as follows:

Rotation vector to rotation matrix
A rotation vector can be converted to a rotation matrix 
as follows (Rodrigues’s formula):

(14)v := θa.

(15)v−1 = −v.

(16)qv(v) :=









cos v
2

v1
v sin v

2
v2
v sin v

2
v3
v sin v

2









.

(17)vq(q) :=
2 arccos(qw)
�

1− q2w





qx
qy
qz



 .

(18)R = I3 + sin vK + (1− cos v)K 2,

Fig. 11  Estimation errors using 1000 Hz simulated data

Fig. 12  Trajectory estimation results for long motions (real IMU data)



Page 9 of 10Irie ﻿Robomech J  (2018) 5:14 

Rotation vector multiplication
The product of the two rotation vectors v and u is repre-
sented by v ∗ u , which is calculated in terms of the qua-
ternion product.

This operation represents the concatenation of two rota-
tions (first rotation by v , and the next rotation by u).

Derivatives of rotation vector multiplication
Derivatives of three rotation vector multiplication are 
calculated as follows:

Here, H, G, Q,  and Q̄ are given as follows [9]:

where c := 1
1−q2w

, d := arccos(qw)√
1−q2w

,

where S := sin v
2 , a := v cos v

2 − 2S,

(19)
K := 1

v





0 −v3 v2
v3 0 −v1
−v2 v1 0



 .

(20)v ∗ u := vq(qv(v)qv(u))

(21)

∂(u ∗ v ∗ w)
∂v

= H(qv(u ∗ v ∗ w))Q(qu)Q̄(qw)G(v)

:= U2(u, v,w),

(22)

∂(u ∗ v ∗ w)
∂w

= H(qv(u ∗ v ∗ w))Q(qu)Q(qv)G(w)

:= U3(u, v,w).

(23)

H(q) := ∂vq(q)

∂q

=





2cqx(dqw − 1) 2d 0 0
2cqy(dqw − 1) 0 2d 0
2cqz(dqw − 1) 0 0 2d



 ,

(24)

G(v) := ∂qv(v)

∂v

= S

2v







−v1 −v2 −v3
2 0 0
0 2 0
0 0 2







+ a

2v3









0 0 0

v21 v1v2 v1v3
v1v2 v22 v2v3
v1v3 v2v3 v23









,

(25)Q(q) :=







qw −qx −qy −qz
qx qw −qz qy
qy qz qw −qx
qz −qy qx qw






,

Jacobian matrix calculation
The Jacobian matrix of eij(x) at x = x̂ has the following 
sparse structure:

Here, J (i)ij  and J (j)ij  are the partial derivatives of eij(x) by xi 
and xj , respectively, and they can be calculated as:

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 31 January 2018   Accepted: 16 May 2018

References
	1.	 Seaman A, McPhee J (2012) Comparison of optical and inertial tracking of 

full golf swings. Procedia Eng 34:461–466
	2.	 TruSwing™. http://www.garmi​n.com.hk/produ​cts/intos​ports​/trusw​ing/

(26)
Q̄(q) :=







qw −qx −qy −qz
qx qw qz −qy
qy −qz qw qx
qz qy −qx qw






.

J ij =
(

· · · 0 · · · J (i)ij · · · 0 · · · J (j)ij · · · 0 · · ·
)

.

(27)

J
(j)
ij := ∂eij(x)

∂xj

�

�

�

x=x̂

= ∂

∂xj





(−u(ij)) ∗ (−ui) ∗ (uj)

−v(ij) + vj − vi
−t(ij) + t j − t i





�

�

�

�

x=x̂

=





∂
∂xj

(−u(ij)) ∗ (−ui) ∗ (uj)
�

�

x=x̂
0 0

0 I3 0

0 0 I3





=





U3(−u(ij),−ûi, ûj) 0 0

0 I3 0

0 0 I3



 ,

(28)

J
(i)
ij := ∂eij(x)

∂xi

�

�

�

x=x̂

= ∂

∂xi





(−u(ij)) ∗ (−ui) ∗ (uj)

−v(ij) + vj − vi
−t(ij) + t j − t i





�

�

�

�

x=x̂

=





∂
∂xi

(−u(ij)) ∗ (−ui) ∗ (uj)
�

�

x=x̂
0 0

0 −I3 0

0 0 −I3





= −





U2(−u(ij),−ûi, ûj) 0 0

0 I3 0

0 0 I3



 .

http://www.garmin.com.hk/products/intosports/truswing/


Page 10 of 10Irie ﻿Robomech J  (2018) 5:14 

	3.	 Smart Tennis Sensor for Tennis Rackets. https​://www.sony.com/elect​ronic​
s/smart​-devic​es/sse-tn1w

	4.	 Woodman OJ (2007) An introduction to inertial navigation. Technical 
report, University of Cambridge

	5.	 Madgwick SOH, Harrison AJL, Vaidyanathan R (2011) Estimation of IMU 
and MARG orientation using a gradient descent algorithm. In: IEEE inter-
national conference on rehabilitation robotics, pp 1–7

	6.	 Ojeda L, Borenstein J (2007) Non-GPS navigation for security personnel 
and first responders. J Navig 60(3):391–407

	7.	 Sagawa K, Ohkubo K (2015) 2D trajectory estimation during free walking 
using a tiptoe-mounted inertial sensor. J Biomech 48(10):2054–2059

	8.	 Sagawa K, Abo S, Tsukamoto T, Kondo I (2009) Forearm trajectory meas-
urement during pitching motion using an elbow-mounted sensor. J Adv 
Mech Design Syst Manuf 3(4):299–311

	9.	 Diebel J (2006) Representing attitude: Euler angles, unit quaternions, and 
rotation vectors. Report, Stanford University

	10.	 Konolige K, Grisetti G, Kummerle R, Burgard W, Limketkai B, Vincent R 
(2010) Efficient sparse pose adjustment for 2D mapping. In: Proceed-
ings of the IEEE international conference on intelligent robots & systems 
(IROS), pp 22–9

	11.	 Montemerlo M, Thrun S (2006) Large-scale robotic 3-D mapping of urban 
structures. In: Ang MH, Khatib O (eds) Experimental robotics IX: the 9th 
international symposium on experimental robotics, vol 21. Springer, 
Berlin, pp 141–150

	12.	 Lu F, Milios E (1997) Globally consistent range scan alignment for environ-
ment mapping. Auton Robots 4:333–349

	13.	 Grisetti G, Kummerle R, Stachniss C, Burgard W (2010) A tutorial on graph-
based slam. IEEE Intell Transp Syst Mag 2(4):31–43

	14.	 Young AD, Ling MJ, Arvind DK (2011) IMUSim: a simulation environment 
for inertial sensing algorithm design and evaluation. In: Proceedings of 
international conference on information processing in sensor networks 
(IPSN), pp 199–210

https://www.sony.com/electronics/smart-devices/sse-tn1w
https://www.sony.com/electronics/smart-devices/sse-tn1w

	A graph optimization approach for motion estimation using inertial measurement unit data
	Abstract 
	Introduction
	Background
	Main issues to be addressed
	Related work
	Contribution

	IMU-based motion estimation: review
	Problem definition
	Naive integration
	Sagawa et al.’s error correction method
	Attitude correction
	Velocity correction
	Position correction


	Proposed method
	Objective function
	Constraints
	Error function
	Optimization
	Linearization
	Minimization
	Update

	Relevance to graph-based simultaneous localization and mapping
	Improving initial estimates

	Results
	Simulation experiments
	Trajectory estimation using real IMU data
	Attitude estimation using real IMU data
	Analysis of the effect of data frequency and length

	Conclusions and future work
	Authors’ contributions
	References




