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Abstract 

The objective of this study was to achieve simultaneous localization and mapping (SLAM) of firefighter robots for pet-
rochemical complexes. Consistency of the SLAM map is important because human operators compare the map with 
aerial images and identify target positions on the map. The global positioning system (GPS) enables increased consist-
ency. Therefore, this paper describes two Rao-Blackwellized particle filters (RBPFs) based on GPS and light detection 
and ranging (LIDAR) as SLAM solutions. Fast-SLAM 1.0 and Fast-SLAM 2.0 were used in grid maps for RBPFs in this 
study. We herein propose the use of Fast-SLAM to combine GPS and LIDAR. The difference between the original Fast-
SLAM and the proposed method is the use of the log-likelihood function of GPS; the proposed combination method 
is implemented using a probabilistic mathematics formulation. The proposed methods were evaluated using sensor 
data measured in a real petrochemical complex in Japan ranging in size from 550–380 m. RTK-GPS data was used for 
the GPS measurement and had an availability of 56%. Our results showed that Fast-SLAM 2.0 based on GPS and LIDAR 
in a dense grid map produced the best results. There was significant improvement in alignment to aerial data, and the 
mean square root error was 0.65 m. To evaluate the mapping consistency, accurate 3D point cloud data measured by 
Faro Focus 3D (± 3 mm) was used as the ground truth. Building sizes were compared; the minimum mean errors were 
0.17 and 0.08 m for the oil refinery and management building area and the area of a sparse building layout with large 
oil tanks, respectively. Consequently, a consistent map, which was also consistent with an aerial map (from Google 
Maps), was built by Fast-SLAM 1.0 and 2.0 based on GPS and LIDAR. Our method reproduced map consistency results 
for ten runs with a variance of ± 0.3 m. Our method reproduced map consistency results with a global accuracy of 
0.52 m in a low RTK-Fix-GPS environment, which was a factory with a building layout similar to petrochemical com-
plexes with 20.9% of RTK-Fix-GPS data availability.
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Introduction
The motivation of this study was to enable the autonomy 
of firefighter robots at petrochemical complexes. Petro-
chemical complexes in fire disasters pose a high environ-
mental risk because large fires and explosions can cause 
injuries, fatalities, and devastation. The use of firefighter 
robots can reduce the risk to firefighters. Such a system 

is comprised of several vehicles, such as a water-shoot-
ing robot, a hose-extending robot, and an exploration 
robot. An autonomous capability facilitates their control 
and enables many robots to be controlled by only a few 
operators.

One key technology for autonomous firefighter robots 
is simultaneous localization and mapping (SLAM), 
which is required because petrochemical complexes are 
restricted areas and there are limited opportunities to 
update their maps. In addition, the maps are dynamically 
changed in real time with developments such as fires, 
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explosions, moving firefighters and mobile trucks. There-
fore, Fast-SLAM is used in such an environment.

In this work, two dimensional Fast-SLAM is used for a 
firefighter robot in petrochemical complexes. The road of 
a petrochemical complex has no difference in the ground 
level because the road is built to accommodate the large 
firefighter trucks and large water shooting nozzles. In 
this environment, we can develop a two-dimensional 
Fast-SLAM without considering ground level differences. 
Long-range light detection and ranging (LIDAR) sen-
sors are used with Fast-SLAM to develop a map of petro-
chemical complexes.

Petrochemical complexes have a sparse layout of very 
large oil tanks, where distances between oil tanks are 
40–80 m. LIDAR is suitable because it can measure dis-
tances of 0–100  m with high accuracy (e.g., Velodyne 
HDL-32E ± 0.02 m). Consequently, a map with a sparse 
oil tank layout can be built by SLAM.

Our procedure using Fast-SLAM for the autonomy 
of a firefighter robot is explained here. The purpose of 
Fast-SLAM is to build a map for facilitating autonomy. 
First, Fast-SLAM is used to construct a map in a normal 
environment by human firefighters manually controlling 
the robot. Next, using the Fast-SLAM constructed map, 
human firefighters set a target point for the robot and the 
robot autonomously moves to the target by localizing its 
position using the map. Therefore, the autonomy of fire-
fighter robots can be realized by using the Fast-SLAM 
map.

The main purpose of this research is map consistency 
because a map can be used not only by firefighter robots, 
but also by human firefighters who operate these robots. 
The use of GPS helps increase the consistency. In this 
study, we used GPS and LIDAR data to build the map. 
GPS and LIDAR provided the heterogeneous data; their 
combination therefore required consideration for the 
map consistency.

This paper describes a method that employs two Rao-
Blackwellized particle filters (RBPFs). The method is 
based on GPS and LIDAR for map consistency in petro-
chemical complexes. Fast-SLAM 1.0 (FS 1.0) and Fast-
SLAM 2.0 (FS 2.0) by Grisetti et al. both in a grid map, 
were used for the RBPFs [1]. Their weight functions were 
revised for the RBPFs based on the GPS and LIDAR sen-
sor for map consistency in petrochemical complexes. 
GPS and LIDAR data have heterogeneous characteristics. 
These sensor data are complementary and can be used 
to improve the accuracy and consistency of the result-
ing map. Therefore, we propose the use of Fast-SLAM 
to combine GPS and LIDAR. The difference between 
the original Fast-SLAM and the proposed method is the 
use of the log-likelihood function of GPS; the proposed 

combination method is implemented using probabilistic 
mathematics formulation.

Figure 1 shows the result of FS 2.0 based on GPS and 
LIDAR using the proposed weight function. The upper 
figure shows an aerial image of the petrochemical com-
plex; the lower figure is three-dimensional (3D) point 
cloud data reconstructed by our proposed FS 2.0 based 
on GPS and LIDAR.

The remainder of this paper is organized as follows. 
In “Related works” section, review on related works are 
described. In “Simultaneous localization and mapping 
tomaintain consistency in large areas” section, the pro-
posed method is formulated. In “Evaluation” section, we 
describe the experiments conducted for evaluating the 
map consistency estimated by our method. In “Discus-
sion” section, the experimental results are presented. In 
“Conclusion” section, our conclusions are provided.

Related works
There are two types of SLAM. The first includes filter 
SLAM, such as RBPFs [3], extended Kalman filter (EKF) 
[4], sparse information filter [5], and topological/hier-
archical filter [6, 7]. The other type includes batched 
SLAM, such as respective graph-based [8], square-
root-based [9], sparse-pose-adjustment (SPA) [10], and 

Fig. 1  Result of petrochemical complex (380–550 m) consistency: 
map for Fast-SLAM 2.0 in a grid map based on GPS and LIDAR (bot-
tom) compared to an aerial map (top) [2]
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incremental-smoothing-and-mapping (iSAM) methods 
[11]. This research used filter SLAM, which is an RBPFs 
because of limited processing power. The filter SLAM 
showed better results in the case of limited processing 
power [12].

RBPFs were first introduced by Doucet et  al. [13]. 
Montemerlo et  al. extended RBPFs into Fast-SLAM 1.0 
by using EKF for landmark feature representation [14]. 
Later, Montemerlo et al. extended it into a faster RBPFs, 
specifically, Fast-SLAM 2.0 (FS 2.0) [14]. Their research 
determined that the use of scan-matching results for pro-
posal distribution could increase Fast-SLAM 1.0 speed 
and accuracy. Furthermore, Grisetti et  al. formulated 
Fast-SLAM 2.0 in a dense grid map environment [1]. 
Therefore, FS 1.0 and FS 2.0 were selected for the RBPFs 
SLAM. To increase the SLAM consistency, sensors with 
high consistency, such as GPS, could be used.

Several researchers used GPS to increase map consist-
ency. For example, Gamma-SLAM uses GPS to improve 
the camera-based RBPF results [15]. In the first step, 
the map and trajectory are estimated by RBPFs. The 
map and trajectory are then aligned using GPS data to 
minimize the error between the GPS and RBPF trajec-
tories. Singular value decomposition (SVD) and a batch 
algorithm are used. In addition, Schleicher proposed 
hierarchical SLAM [16]. For low-level sub-maps, a wide-
angle-camera-based EKF SLAM was fused with GPS for 
consistency. Each sub-map was then combined by using 
batch-algorithm multi-level relaxation (MLR) based on 
GPS to increase the global consistency of the combined 
map. Our work fuses GPS data with LIDAR inside RBPFs 
by the proposed weight function for RBPFs, which fuses 
LIDAR and GPS. This method does not require an addi-
tional batch SLAM. GPS and LIDAR are heterogeneous 
sensors; therefore, the correct sensor fusion is required 
to achieve a complementary result.

The method for fusion of GPS with LIDAR was pro-
posed by several researchers. Wei et  al. used a normal-
ized innovation squared (NIS) method to evaluate each 
camera/laser/GPS sensor validity before fusing the sen-
sors with an unscented information filter for localiza-
tion [17]. Soloviev used a Kalman filter with GPS, inertial 
measurements, and LIDAR [18]. Hentsche et  al. used a 
Kalman filter to integrate GPS and the inertia measure-
ment. For position estimation, the Kalman filter result 
was added to Monte Carlo localization by replacing 10% 
of the overall particles with the lowest weight [19]. Our 
present research aims to achieve sensor fusion of GPS 
and LIDAR with a complementary effect. To this end, the 
proposed method employs RBPFs with an importance 
weight function for the fusion.

Fusion of GPS with an RBPF importance function was 
previously proposed. Fusion of GPS and IMU by the 

Kalman filter for RBPF particle reweighting was used in 
[20, 21]. These RBPFs are similar to FS 1.0 in that sen-
sors are fused by EKF. Ren et al. used the Kalman filter to 
separately estimate GPS and IMU [20]. Depending on the 
sensor availability, only the sensor will be updated to the 
particle filter. Fusion of sensors is successful because the 
particle filter follows a Bayesian rule. Both approaches 
employ fusion data using a method similar to FS 1.0 for a 
landmark-based environment. Our approach focuses on 
fusion of GPS and LIDAR for FS 1.0 and FS 2.0 for grid-
map environments.

Simultaneous localization and mapping 
to maintain consistency in large areas
We herein propose RBPFs based on GPS and LIDAR to 
maintain map consistency. GPS and LIDAR sensor data 
are complementary. SLAM based on LIDAR uses scan 
matching to localize the robot positions. A character-
istic of LIDAR scan matching is local accuracy in man-
agement and oil refinery building areas in which several 
buildings are located near a road. However, scan match-
ing increases errors in areas with large oil tanks, where 
tanks and building layouts are sparse (more than 80  m 
between structures). On the other hand, a characteristic 
of GPS data is that they are globally absolute and accu-
rate in areas including large-oil-tank areas, especially 
where there is high satellite availability. The errors in GPS 
measurements increase in management buildings and 
oil refinery areas because of satellite signal diffraction. 
For effective fusion, complementary sensors, which are 
GPS and LIDAR, are used for map consistency. We pro-
pose two extension methods of RBPF based on GPS and 
LIDAR using a dense grid map. FS 1.0 and FS 2.0, both 
renowned methods for RBPFs, were used, as formulated 
by Grisetti et al. [1]. To achieve a complementary effect 
on sensor fusion of RBPF based on GPS and LIDAR, 
probabilistic mathematics was used to combine GPS and 
LIDAR data in RBPFs importance weight w(i)

t . For imple-
mentation, the RBPFs importance weight was formulated 
using the log-likelihood.

RBPFs based on GPS and LIDAR 
Douce et al. showed that RBPFs are an effective solution 
for SLAM by factorizing the states of maps and paths 
[13]. RBPFs use importance resampling to prevent cor-
rect particles from being resampled away. To obtain sen-
sor fusion, a probabilistic mathematical formulation is 
used; in particular, the formulation of importance weight 
w
(i)
t , mentioned above, is proposed to handle the GPS and 

LIDAR data. Figure 2 shows the graphical model of our 
proposed RBPFs, which contains two observations zGPS t 
and zLIDAR t as parts of observation zt .
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Formulation of RBPFs
RBPFs estimate robot pose x1:t and map m from the 
sensor data, including motion u1:t and observation z1:t . 
Equation (1) shows the factorization of RBPFs [22]:

The main idea of RBPF is that SLAM problems are 
divided into pose estimation, p(x1:t |m, z1:t ,u1:t−1), and 
map estimation, p(m|x1:t , z1:t). Here, the target distribu-
tion is p(x1:t |m, z1:t ,u1:t−1). A particle filter is used to 
estimate the target distribution. The map is built based 
on particle positions. Therefore, the target distribution is 
modified for the sensor fusion of GPS and LIDAR data. 
The target distribution in Eq. (1) can be divided into an 
importance distribution and a proposal distribution by 
the Bayesian rule and Markov assumption, as shown in 
Eq. 2.

Here, γ = 1/p(zt | z1:t−1,u1:t−1) is a normalizer. Thrun 
showed that the importance factor in Eq. (2) is inter-
preted as a set of particles, w(i)

t , weighted by observation 
z1:t . The normalizer is omitted in the weight of impor-
tance, w(i)

t , as the weight of importance is a marginal 
probability [23] given by:

where an importance weight is assigned to each particle 
(i). The importance weight can be calculated by using a 
recursive formula [24]. This involves recursive multi-
plication of the previous weight, w(i)

t−1, with the current 
observation, p(zt). It thus becomes:

(1)

p(x1:t ,m | z1:t ,u1:t−1)

= p(x1:t | m, z1:t ,u1:t−1)
︸ ︷︷ ︸

Target distribution

· p(m | x1:t , z1:t)
︸ ︷︷ ︸

Map

.

(2)

p(x1:t | m, z1:t ,u1:t−1)
︸ ︷︷ ︸

Target distribution

= γ p(z1:t | m, x1:t , z1:t−1,u1:t−1)
︸ ︷︷ ︸

Importance factor

p(x1:t | m, z1:t−1,u1:t−1)
︸ ︷︷ ︸

Proposal distribution

.

(3)w
(i)
t =

Target distribution

Proposal distribution
.

Equation (4) uses an observation sensor. In this work, 
the observation sensors were expanded to fuse GPS and 
LIDAR.

Formulation of RBPFs based on GPS and LIDAR
Our proposed fusion of GPS and LIDAR is a conditionally 
independent sensor fusion. GPS and LIDAR independ-
ence is shown in the Markov graphic in Fig.  2. No arrow 
indicates the dependence between GPS and LIDAR. In 
addition, GPS has no dependence on the map, as shown in 
Fig. 2. We propose the weight of importance equation using 
the Bayesian rule and Markov assumption is implemented 
for the two RBPFs of FS 1.0 in Eq. (7) and FS 2.0 based on 
GPS and LIDAR in Eq. (9). Given that observation z is

then, using the Bayesian rule and Markov assumption, the 
weight of importance w(i)

t  equation for RBPFs based on 
GPS and LIDAR in Eq. (4) becomes

We formulate our GPS and LIDAR fusion on both FS 1.0 
and FS 2.0 because both FS 1.0 and FS 2.0 are renowned 
RBPFs.

FS 1.0 uses an odometry-based motion model, 
p(xt | xt−1,ut−1). This model is used as a proposal distri-
bution (denominator) for Eq. (6). Hence, the weight func-
tion becomes

The FS 2.0 proposal distribution uses odometry with a 
recently reported scan-matching-based motion model, 
p(xt | m

(i)
t−1, x

(i)
t−1, zldr t ,ut−1) [1]. FS 2.0 provides sig-

nificantly better accuracy when odometry with the 
scan-matching based motion model is used. The scan-
matching-based motion model shows more accurate 
results than when using odometry alone. For this pur-
pose, odometry with the scan-matching-based motion 
model is used as a proposal distribution (denominator) 
for Eq. (6), whereby the weight function becomes

Thus, combining Eqs. (8 and 6) gives

(4)w
(i)
t =

p(zt | m
(i)
t−1, x

(i)
t )p(x

(i)
t | x

(i)
t−1,ut−1)

p(xt | m
(i)
t−1, x

(i)
1:t−1, z1:t ,u1:t−1)

· w
(i)
t−1.

(5)z = {zgps, zldr},

(6)

w
(i)
t = w

(i)
t−1 ·

p(zgps t | x
(i)
t )p(zldr t | m

(i)
t−1, x

(i)
t )p(x

(i)
t | x

(i)
t−1,ut−1)

p(xt | m
(i)
t−1, x

(i)
t−1, zt ,u1:t−1)

.

(7)w
(i)
t = p(zgps t |x

(i)
t )p(zldr t |x

(i)
t ,m

(i)
t−1)w

(i)
t−1.

(8)

p(xt | m
(i)
t−1, x

(i)
t−1, zldr t ,ut−1)

=
p(zldr t | m

(i)
t−1, xt)p(xt | x

(i)
t−1,ut−1)

p(zldr t | m
(i)
t−1, x

(i)
t−1,ut−1)

.

Fig. 2  Graphical model of SLAM based on GPS and LIDAR
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and

Based on the total probability, the term 
p(zldr t | m

(i)
t−1, x

(i)
t−1,ut−1) becomes 

∑K
j=1 p(zldr t | m

(i)
t−1,

xj) · p(xj | x
(i)
t−1

,ut−1), where j is the potential pose of 
the robot and K is the number of potential robot poses. 
Therefore, the new w(i)

t  becomes

Implementation of balance weight fusion
For implementation, the log-likelihood function is used 
to calculate the weights for both (a) FS 1.0 based on GPS 
and LIDAR and (b) FS 2.0 based on GPS and LIDAR. This 
is because the log-likelihood calculation is more efficient 
owing to its use of summation rather than multiplication.

For FS 1.0 based on GPS and LIDAR implementation, 
the LIDAR likelihood is calculated using the beam model 
[23]. The GPS likelihood is the Gaussian error of the cur-
rent estimated motion model position to the GPS obser-
vation position. The weight function becomes

where x(i)t  is the pose reported by the odometry-based 
motion model, and zgps t is the observation pose for GPS. 
z
(i)
ldr n,t is the measurement from pose x(i)t , and ź(i)ldr n,t 

is the true measurement on map(x, y)T . σgps is the GPS 
measurement error and σldr is the LIDAR scan-match-
ing measurement error. N is the total number of LIDAR 
laser beams and n is the identification number for a laser 
beam. The log-likelihood importance weight becomes

(9)

w
(i)
t = w

(i)
t−1

·
p(zgps t | x

(i)
t )p(zldr t | m

(i)
t−1, x

(i)
t )p(x

(i)
t | x

(i)
t−1,ut−1)

p(zldr t |m
(i)
t−1,xt )p(xt |x

(i)
t−1,ut−1)

p(zldr t |m
(i)
t−1,x

(i)
t−1,ut−1)

(10)
w
(i)
t = w

(i)
t−1p(zldr t | m

(i)
t−1, x

(i)
t−1,ut−1)

· p(zgps t | x
(i)
t ).

(11)

w
(i)
t = w

(i)
t−1

K∑

j=1

p(zldr t | m
(i)
t−1, xj) · p(xj | x

(i)
t−1,ut−1)

· p(zgps t | x
(i)
t ).

(12)

w
(i)
t = w

(i)
t−1

1
√

2πσ 2
ldr

1

N

N∑

n=1

e

−(z
(i)
ldr n,t

−ź
(i)
ldr n,t

)
2

2σ2
ldr

×
1

√

2πσ 2
gps

e

−(x
(i)
t −zgps t )

2

2σ2gps ,

(13)
ŵ
(i)
t = w

(i)
t−1 + w

(i)
constant t + w

(i)
gps t + w

(i)
ldr t

∝ w
(i)
t−1 + w

(i)
gps t + w

(i)
ldr t ,

where

and

Constant ŵ(i)
constant t is omitted from Eq. (13) because 

importance ŵ(i)
t  is marginal [23]. For the latter, FS 2.0 

based on GPS and LIDAR, the likelihood weight function 
is derived in the same way as FS 1.0:

x̂
(i)
t = argmaxxp(x̂

(i)
t | m

(i)
t−1, zt , x

(i)
t ) is the pose reported 

by scan-matching using the so-called beam end-point 
[1]. ẑ(i)ldr n,t is the LIDAR measurement from pose x̂(i)t  for 
a LIDAR’s laser beam and ź(i)ldr n,t is the true measure-
ment on map (x, y)T . N is the total number of LIDAR 
laser beams and n is the identification number for a 
laser beam. The log-likelihood importance weight thus 
becomes:

where

Evaluation
Our method was evaluated in a closed petrochemical 
complex in Japan (shown in Fig.  3), which was charac-
terized by typical attributes of Japanese petrochemical 
complexes. The size of the environment was 550  m in 
width and 380  m in length. There were two areas: (1) 

(14)
w
(i)
gps t = log e

−(x
(i)
t −zgps t )

2

2σ2gps ,

(15)w
(i)
ldr t = log

1

N

N∑

n=1

e

−(z
(i)
ldr n,t

−ź
(i)
ldr n,t

)
2

2σ2
ldr ,

(16)w
(i)
constant t = log

1
√

2πσ 2
ldr

+ log
1

√

2πσ 2
gps

.

(17)

w
(i)
t = w

(i)
t−1

1
√

2πσ 2
ldr

1

N

N∑

n=1

e

−(ẑ
(i)
ldr n,t

−ź
(i)
ldr n,t

)
2

2σ2
ldr

×
1

√

2πσ 2
gps

e

−(x̂
(i)
t −zgps t )

2

2σ2gps ,

(18)ŵ
(i)
t ∝ w

(i)
t−1 + ŵ

(i)
gps t + ŵ

(i)
ldr t ,

(19)
w
(i)
gps t = log e

−(x̂
(i)
t −zgps t )

2

2σ2gps .

(20)w
(i)
ldr t = log

1

N

N∑

n=1

e

−(ẑ
(i)
ldr n,t

−ź
(i)
ldr n,t

)
2

2σ2
ldr .
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management and oil refinery buildings located near a 
road (Area 1), and (2) large oil tanks sparsely distributed 
for safety reasons (Area 2). An electric vehicle (EV) was 
used to collect sensor data because firefighter robots 
have a car-like mechanism and the EV has the same 
mechanism and size. During data collection, the EV was 
manually driven at a speed of 5 km/h for safety concerns. 
The EV was equipped with an RTK-Fix-GPS receiver 
with an error of 0.02 m, a long-range 3D LIDAR with an 
error of 0.02 m, an inertial measurement unit (IMU) with 
an error of 0.1 deg/s, and an odometer equipped with a 
rotary encoder having an error of 0.1 m/s.

The sensor data were recorded during data collection. 
The vehicle was stopped at each cross-junction until the 
GPS measurement acquired an RTK-Fix-GPS for addi-
tional RTK-Fix-GPS data. The junctions had wide satellite 
visibility and were thus suitable for acquiring RTK-Fix-
GPS measurements. During the whole experiment, the 
RTK-Fix-GPS availability was 56% as shown in Fig. 4.

For validation, we compared (a) FS 2.0 based on GPS 
and LIDAR, which is proposed in this paper, (b) FS 2.0 
based on LIDAR [1], (c) FS 1.0 in a grid map (FS 1.0) 
based on GPS and LIDAR, also proposed in this paper, 
(d) FS 1.0 based on LIDAR, (e) FS 1.0 based on GPS, 
and (f ) Karto SLAM based on LIDAR, which is a kind 

of open-source graph-based SLAM in a grid map [25]. 
We evaluated (1) global accuracy of the maps based on 
aerial map data and (2) local accuracy of the maps based 
on FARO Focus 3D data for different SLAMs. Map con-
sistency was also evaluated by comparing the maps with 
aerial images.

These SLAM methods used open source libraries 
provided by OpenSLAM and Robot Operating System 
(ROS).

For Fast-SLAM, we modified the SLAM Gmapping 
library. The authors of Gmapping are Giorgio Grisetti, 
Cyrill Stachniss, and Wolfram Burgard. It is distributed 
by OpenSLAM, and the ROS wrapper is provided by the 
ROS community. We modified the weight of importance 
based on Eqs. 13 and 18 for FS 1.0 and FS 2.0 based on 
GPS and LIDAR, respectively. In addition, for FS 1.0 
based on GPS and LIDAR, we disabled scan matching for 
the motion model based on scan matching [26].

The parameters used for Fast-SLAM are explained here. 
A grid map resolution of 0.2 m and 50 particles were used 
because they comprise the maximum values allowed by 
our computer for this environment size. The adaptive 
resampling threshold was set to a value of 0.01 because 
we desired a higher resampling rate when GPS value was 
available. We strived to use GPS as a closed loop; that 
is, when we received sufficient GPS data, we desired to 
have a closed loop by resampling. The beam end-point 
model two-dimensional scan matcher was used because 
it produced better results than ICP in unstructured out-
door environments [23]. The computation time for our 
implementation was the same as that of Grisetti et al. [1] 
because the additional weight calculation was very short.

For LIDAR, the sigma parameter value, σldr, we use is 
0.2 m. To fuse GPS with LIDAR data, we evaluated sev-
eral combination parameters of GPS sigma, σgps, with 

Fig. 3  Petrochemical complex environment. Area 1 (blue) features 
management and oil refinement buildings located near a road; Area 
2 (red) shows an area of large oil tanks positioned sparsely for safety 
reasons

Fig. 4  Petrochemical complex environment. The red path is the 
robot trajectory; the green path is the RTK-Fix-GPS data
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the LIDAR sigma of 0.2 m as shown in Fig. 5. The result 
shows that, when the GPS sigma, σgps, is 0.5  m and 
larger; the Fast-SLAM path follows the RTK-GPS data, 
while σgps is less than 0.5 m; the Fast-SLAM path have a 
larger position difference with the RTK-GPS. Therefore, 
we need to use σgps equal to 0.5 m or larger for the Fast-
SLAM path to follow the RTK-GPS data.

We have chosen 2 m as the σgps value to compensate for 
the RTK-Fix-GPS multipath error when moving near the 
building area. Lee et. al. have evaluated the RTK-Fix-GPS 
horizontal multipath error, which is 1.069 m [27]. To pre-
vent overconfidence on the RTK-Fix-GPS data, we care-
fully fused GPS data setting a value of 2 m for σgps.

For Graph SLAM, we used Karto SLAM [28]. We used 
a default parameter because it produced the best results 
when compared with several parameters.

For 3D mapping, a 3D occupancy map stored the 3D 
point cloud data to erase moving trucks and people from 
the 3D map [29]. The 3D map was built based on the final 
trajectory of SLAM.

Result
Global map consistency
Aerial map building position data were used as the global 
positioning reference. For the evaluation, a robot 2D 
map and the aerial map were overlapped based on their 
respective GPS coordinates. Figure  6 shows the visual 
result. Figure  7 shows the numerical result. FS 2.0 and 
FS 1.0 based on GPS and LIDAR showed small position 
errors of 0.65 and 0.81 m, respectively.

Using only the LIDAR sensor, FS 2.0 and FS 1.0 based 
on LIDAR showed large position errors of 6.82 and 
7.77 m, respectively. Karto SLAM based on LIDAR also 
showed a large position error of 6.44 m. Using only the 
GPS sensor, FS 1.0 based on GPS had a significantly large 
position error of 1.36  m caused by an incorrect assess-
ment of GPS measurements near the building area. 

Therefore, the result showed that both FS 1.0 and FS 2.0 
based on GPS and LIDAR had a high global accuracy. In 
particular, FS 2.0 based on GPS and LIDAR had the high-
est global accuracy. In addition, mapping consistency was 
required, including both the correct building position 
and correct building size. Accordingly, the local error was 
evaluated.

Local map consistency
Figures 9 and 10 show the local accuracy of the map by 
evaluating the local building size. Faro Focus 3D data 
with high accuracy was used as the building size refer-
ence, as shown in Fig. 8, while a Fig. 3 shows the locations 
of Area 1 and Area 2.

FS 1.0 and FS 2.0 based on GPS and LIDAR had a high 
local accuracy in both Areas 1 and 2. For FS 2.0 based on 
GPS and LIDAR, the error in Area 1 was 0.17 m (Fig. 9), 
and the error in Area 2 was 0.08 m (Fig. 10). For FS 1.0 
based on GPS and LIDAR, the error showed a small 
increase compared to that of FS 2.0: in Area 1 it was 
0.25 m (Fig. 9); in Area 2 it was 0.26 m (Fig. 10). For both 
methods, no building shape duplication is visually evi-
dent in Figs. 9 and 10.

In addition, FS 2.0 based on LIDAR showed a high 
accuracy in Area 1 and a low accuracy in Area 2. On the 
other hand, FS 1.0 based on LIDAR had a high accuracy 
in Area 2 and a low accuracy in Area 1. FS 2.0 based 
on LIDAR showed a high accuracy of 0.39  m in Area 1 
(Fig. 9) and very low local accuracy in Area 2 of 3.04 m 
(Fig.  10). FS 1.0 based on LIDAR had a very low accu-
racy of 2.85  m occurring in Area 1 because of a failed 

Fig. 5  Fast-SLAM trajectory result based on RTK-GPS sigma values, 
which are 0.2 (dark red), 0.5 (red), 1.0 (brown), 1.5 (green), 2.0 (black), 
2.5 (dark blue), and 3.0 (blue). RTK-GPS measurement (cyan)

Fig. 6  Global consistency evaluation using an aerial map as a refer-
ence. Each building position in the 2D map (yellow) was compared 
with building the 2D position in the aerial map
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close-loop (Fig.  9) and a high local accuracy of 0.61  m 
in Area 2 (Fig.  10). The local error is visually apparent 
from obviously duplicated buildings for FS 2.0 based on 
LIDAR in Fig. 10 and for FS 1.0 based on LIDAR in Fig. 9.

Furthermore, FS 1.0 based on GPS had a low local 
accuracy in Areas 1 and 2. The error in Area 1 was 0.31 m 
(Fig.  9) and that in Area 2 was 0.57  m (Fig.  10). Dupli-
cates of building shapes are observed in Figs.  9 and 10. 
The graph SLAM based on LIDAR in a grid map (Karto 
SLAM) [25] had a high accuracy in Area 2, but a low 
accuracy in Area 1, which was caused by a failed closed 

loop. The low accuracy in Area 1 was 1.18 m (Fig. 9) and 
the high accuracy in Area 2 was 0.18 m (Fig. 10). Dupli-
cates of building shapes are evident in (Fig. 10).

Thus, the results showed that both FS 1.0 and FS 2.0 
based on GPS and LIDAR had local accuracy in both 
areas.

Visual map consistency with an aerial image
Figure 11 result shows a 3D map built by FS 2.0 based on 
GPS and LIDAR from a side view. This was the best 3D 
map result. Figures 12 and 13 show the visual consistency 
between 3D maps and an aerial map [2] from Google, 
which was the reference. FS 2.0 based on GPS and LIDAR 

Fig. 7  Global consistency result

Fig. 8  Faro Focus 3D map measured for a locally consistent refer-
ence. a Faro Focus top view. b Example of the mapping result from 
the RBPF approach

Fig. 9  Result of local consistency in Area 1

Fig. 10  Result of local consistency in Area 2

Fig. 11  3D map built from FS 2.0 based on GPS and LIDAR from a 
side view

Fig. 12  3D map built from FS 2.0 based on GPS and LIDAR (consist-
ency with the aerial map): 3D point cloud with correct building 
shapes and 3D point cloud positions aligned with the aerial map
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provided correct building shape consistency and correct 
building positions (Fig.  12). FS 1.0 based on GPS and 
LIDAR had correct building shape consistency and cor-
rect building positions (Fig. 13).

Reproducibility by multiple runs
We validated our method reproducibility based on the 
results of global position variance between ten runs in 
runs in the petrochemical complexes. To evaluate the 
reproducibility, we selected four points to cover the 
entire area on the map because three is the minimum 
number of points required to evaluate plane geometrical 
differences, which include rotation, location, and scale. 
The result shows the global position variance between all 
runs is ± 0.3 m.

Reproducibility for different environments.
In addition, we intended to confirm SLAM reproducibil-
ity in petrochemical complexes with low-RTK-Fix-GPS 
availability. Because GPS data availability is one of the 
main factors for map consistency, we selected two addi-
tional environments for this purpose. The first environ-
ment was Factory A with 20.9% RTK-Fix-GPS availability, 
as shown in Fig. 14a. The second environment was Fac-
tory B, which was similar to a petrochemical complex 
management area with 29.9% RTK-Fix-GPS availability, 
as shown in Fig. 15a.

To solve the issue of low RTK-Fix-GPS data availabil-
ity, we used both RTK-Float-GPS, which has the accu-
racy of the order of a decimeter, and RTK-Fix-GPS data, 
which have accuracies to the order of a centimeter [30]. 
As a result, the RTK-fix-GPS measurement availabil-
ity increased from 20.9 to 58.1% in Factory A, as shown 
Fig. 14b, and from 29.9 to 59.7% in Factory B, as shown 
in Fig.  15b. For the weight of important calculation, we 
increased GPS σgps from 2 to 4 m for the RTK-Float-GPS 

error. In rare cases, the multipath error can become 
much higher, such as those in Fig.  16, which shows the 
RTK-Fix-GPS and RTK-Float-GPS data; the red arrow 
points to a multipath error. Figure 17 shows the enlarged 
image of the multipath error observed in Fig. 16. To pre-
vent overconfidence on the RTK-Float-GPS data, we use 
the setting value of 4 m for σgps.

For evaluation, we used mobile mapping system (MMS) 
data with an accuracy of 0.1 m [31]. Environments of Fac-
tories A and B were not restricted; therefore, we could 
measure MMS data. We evaluated the global accuracy 
and visual consistency of the maps on the basis of com-
mercial point-cloud data, as shown in Fig.  18a. For the 
evaluation, the GPS x–y position was used to overlap the 
SLAM-constructed map with the MMS map, as shown in 

Fig. 13  3D map built from FS 1.0 based on GPS and LIDAR (consist-
ency with the aerial map): 3D point cloud with correct building 
shapes and 3D point cloud positions aligned with the aerial map

Fig. 14  Red denotes the robot trajectory and green is the GPS data 
in a Factory A. a GPS availability of 20.9%: RTK-Fix-GPS; b GPS avail-
ability of 58.1%: RTK-Fix-GPS and RTK-Float-GPS

Fig. 15  Red path denotes the robot trajectory and green is the GPS 
data in a Factory B.  a GPS availability of 29.9%: RTK-Fix-GPS;  b GPS 
availability of 59.7%: RTK-Fix-GPS and RTK-Float-GPS
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Fig.  18c. We used the Gauss-Kruger projection method 
calculation, which was also used by MMS to determine 
x–y coordinates based on GPS latitude and longitude. 
The corresponding accuracy was in the order of microm-
eters [32]. We evaluated the map consistency based on 
14 buildings in Factory A and 22 buildings in Factory B 
(Table 1).

Reproducibility of global accuracy for FS 2.0 based 
on GPS and LIDAR in Factories A and B were 0.52 and 
0.72 m, respectively. For FS 1.0 based on GPS and LIDAR, 
the reproducibility in Factories A and B were 0.70 and 
0.77 m, respectively. On other hand, for other me thods 
of FS 2.0 based on LIDAR, FS 1.0 based on LIDAR, and 
Karto SLAM the global errors were larger than 16.23 m.

Reproducibility of visual consistency for FS 2.0 based 
on GPS and LIDAR and FS 1.0 based on GPS and LIDAR 
in both cases are visually consistent because no distor-
tions are obviously visible between MMS data with map, 
as shown in Fig. 19a, b for Factory A, and Fig. 20a, b for 
Factory B. However, visual results for Karto SLAM are 
not consistent because a large distortion is observed n 
in Factory A in Fig.  19c and in Factory B, as shown in 
Fig. 20c.

Discussion
The proposed approach employs two SLAMs based on 
GPS and LIDAR and the RBPF weight of importance 
for sensor fusion. Our results showed that the robot-
obtained map corresponded well with a geo-referenced 
map. This is very important for firefighters because they 
send target positions to robots using robot obtained 
maps, and they can understand the robot obtained maps 
by referencing real maps.

Fig. 16  RTK-Fix-GPS and RTK-Float-GPS data (green) and estimated 
RTK-Fix-GPS and RTK-Float-GPS trajectory (black line) with multipath 
error (red arrow)

Fig. 17  Multipath error enlarged from Fig. 16. RTK-Float-GPS data 
(green), estimated RTK-Float-GPS trajectory (black line), and RTK-
Float-GPS measurement error of 7.26 m caused by the multipath error 
(red line)

Fig. 18  Data in petrochemical complexes:  a red denotes MMS point-cloud data;  b 2D map by proposed method;  c using GPS position, MMS data 
overlap our 2D map

Table 1  Global accuracy

SLAM Global accuracy (m)

Factory A Factory B

FS 2.0 GPS and LIDAR 0.52 0.72

FS 1.0 GPS and LIDAR 0.70 0.77

FS 2.0 LIDAR 23.91 32.91

FS 1.0 LIDAR 16.23 29.20

Karto LIDAR 61.20 91.28
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In our study, both Fast-SLAM successfully aligned 
positions with GPS geo-referenced data and produced 
locally consistent maps. FS 2.0 based on GPS and LIDAR 
showed the best consistency with real maps, as evidenced 
by comparing results with those of FS 1.0 based on GPS 
and LIDAR, FS 2.0 and FS 1.0 based on LIDAR, FS 1.0 
based on GPS, and Karto SLAM based on LIDAR. FS 2.0 
based on GPS and LIDAR had accurate alignment with 
the geo-referenced positions: the trajectory error was 
0.65 m based on the aerial map data, as shown in Fig. 7. 
The map distortion was 0.17 m near buildings and 0.08 m 
near the area with oil tanks (Figs. 9 and 10).

Figure 12 shows that FS 2.0 based on GPS and LIDAR 
is consistent with an aerial map. FS 1.0 based on GPS 
and LIDAR had a small increase of alignment error to 
GPS compared to FS 2.0. The trajectory error was 0.81 m 
based on the aerial map data (Fig.  7). The map distor-
tion was 0.25 m near buildings and 0.026 m near the area 
with oil tanks (Figs.  9 and 10). Figure  13 shows that FS 
1.0 based on GPS and LIDAR is also consistent with the 
aerial map.

Our method could reproduce the map variance of 
0.3  m for 10 runs. Furthermore, we could reproduce 
map consistency for our method in two low-RTK-Fix-
GPS environments by using both RTK-Fix-GPS and 

RTK-Float-GPS. The visual cue and global accuracy were 
used to show map consistency.

FS 2.0 based on GPS and LIDAR are visually consistent, 
as shown in Fig. 19a in Factory A and Fig. 20a in Factory 
B. The global accuracy is 0.52 and 0.72  m in Factory A 
and B, respectively. FS 1.0 based on GPS and LIDAR are 
also visually consistent, as shown in Fig. 19b for Factory 
A, and Fig. 20b for Factory B. The global accuracy error, 
specifically, 0.18 m in Factory A and 0.05 m in Factory B, 
increased compared to that of FS 2.0 based on GPS and 
LIDAR.

The limitation of this method pertains to roads with 
no ground level differences. This method does not work 
well in environments with large ground level differ-
ences. However, this method satisfies the firefighter robot 
requirement in petrochemical complexes where the 
roads have no ground differences.

In this work, we selected RTK-Fix-GPS and RTK-
Float-GPS. In addition to filter good measurements, we 
filtered GPS data with the horizontal dilution of preci-
sion (HDOP) > 1.2 to use only accurate data. However, 

Fig. 19  Data in petrochemical complexes where red is ground truth 
MMS data and the result of SLAM: a FS 2.0 based on GPS and LIDAR 
map and b FS 1.0 based on GPS and LIDAR map are visually shown to 
have consistency. On the other hand, c Karto SLAM based on LIDAR 
map has no consistency because large distortions are evident on the 
map

Fig. 20  Data in a factory where red is ground truth MMS data and 
the result of SLAM: a FS 2.0 based on GPS and LIDAR map and b FS 
1.0 based on GPS and LIDAR map are observed to have consistency. 
However, c Karto SLAM based on LIDAR map has no consistency 
because large distortions are apparent on the map
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we still observed incorrect RTK-Fix-GPS and RTK-Float-
GPS when moving near building. These errors caused 
GPS multipath signal errors. To prevent over overconfi-
dence on RTK-GPS data, we carefully fused GPS data by 
using large GPS sigma σgps.

Conclusion
In this study, we extended two RBPFs based on GPS and 
LIDAR for consistent map construction in petrochemical 
complexes. FS 2.0 and FS 1.0, both in a grid map, were 
used for SLAM. We herein proposed a weight function 
that fuses GPS and LIDAR data inside the RBPFs. An 
importance weight function is derived to achieve sensor 
fusion. The weight function enables maintenance of the 
respective advantages of both GPS and LIDAR sensors. 
Therefore, these RBPFs based on GPS and LIDAR not 
only have local consistency, but also global consistency. 
An experiment was conducted in a closed petrochemical 
complex in Japan (550 m × 380 m). RTK-GPS availabil-
ity was 56% in the petrochemical complex. Our results 
showed FS 2.0 had the best result with a significant 
improvement of alignment to geo-referenced positions. 
The mean global error was 0.65  m. A significant result 
for mapping consistency was 0.17 m near buildings and 
0.08 m near sparsely placed oil tanks. Results also showed 
that both maps had consistency with an aerial map [2]. 
Our method could reproduce map consistency results 
for ten runs with a variance of ± 0.3  m. Our method 
reproduced map consistency results in low RTK-Fix-
GPS environment, which was a factory with a building 
layout similar to petrochemical complexes with 20.9% of 
RTK-Fix-GPS data availability. The best global accuracy 
achieved was 0.52 m (Additional file 1).
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