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Abstract 

A visual assistance system has become attractive as a technique to improve the efficiency and stability of remote 
control. While an operator controls a working robot, another autonomous monitoring robot evaluates a suitable 
viewpoint to observe the work site, and dynamically moves to the optimal viewpoint for monitoring. Choosing the 
observation region (ROI: region of interest) is equivalent to deciding the action of the following autonomous monitor‑
ing system. Therefore, we focus on ROI detection in our visual support system. We propose an ROI selection method 
to identify the most suitable observation point and interobject relations. The monitoring robot detects a gestalt of the 
scene in order to identify the relations between objects. Such an adaptive ROI in real time improves the efficiency of 
the remote control. The experimental results indicate the effectiveness of the proposed system in terms of execution 
time and number of errors.
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Introduction
Autonomous intelligent robots have been employed in 
various challenging situations. Remote-controlled robots 
are mostly used when control accuracy and precision 
are necessary. In the 2015 DARPA robotics challenge, 
most of the robots were semiautonomous. Autonomous 
operation has already been implemented in posture con-
trol and route planning; however, overall human control 
remains unreplaceable [1, 2]. The most common appli-
cations for teleoperated robots include missions under 
unstructured or unknown environments such as search-
and-rescue operations at disaster sites [3], deep sea or 
space exploration [4], and dealing with radioactive waste.

Various researchers have worked on enhancing oper-
ability by providing the operator with the necessary 
information to reduce operation time and errors. Errors 
usually occur because of distance uncertainties or blind 
spots (occlusions resulting from a sensor’s location or 
surrounding objects). The following work focused on pro-
viding additional information to the remote-controlled 

robot to avoid blind spots and improve measurement 
accuracy. Barnes et al. [5] developed a control system that 
switches between remote control and autonomous con-
trol for autonomous obstacle detection and avoidance. 
Nielsen et al. [6] developed an operation interface using 
a 3D map based on 3D SLAM. Both works attempted to 
reduce error outbreaks by providing additional informa-
tion; however, a large amount of information will also 
increase the load on an operator.

Multirobot systems (MRS) have been attracting atten-
tion for practical missions because a number of robots 
can be deployed to cover large areas and cooperatively 
complete tasks that a single robot cannot accomplish. 
MRS is also expected to enhance remote-control tasks. 
One of the features of MRS is that each mobile robot can 
share the information through mutual communication. 
Several robots can simultaneously observe the work envi-
ronment from appropriate viewpoints. Hence, it is possi-
ble to reduce the number of blind spots and dynamically 
find the region of interest (ROI) to assist with remote 
control. In the visual support based on the MRS, in 
order to reduce the operator’s cognitive load and avoid 
conflict recognition, robots have to match the collected 
data to share the ROI. While observation from various 
viewpoints by monitoring robots may provide excessive 
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information, narrowing the ROI to the most relevant to 
the current task will reduce substantial cognitive load 
on the operator. With regard to the ROI sharing issue, 
Rokunuzzaman et al. [7] proposed the concept of seman-
tic stability to determine the appropriate ROI size, which 
contains semantically related objects of interest evaluated 
by WordNet but excludes unrelated miscellaneous vis-
ual objects from the scene. ROI sharing is accomplished 
through multirobot cooperation. For example, Piasco 
et al. [8] proposed a connecting range of view for multi-
robots to increase the overall observation area.

The visual support based on the MRS requires criteria 
to allow a multirobot to selectively collect the necessary 
information for remote control. In a conventional work 
on remote control support systems, Kamezaki et  al. [9] 
developed a remote-control support system by using 
multiple cameras that switched the image depending on 
the distances between the robots. Maeyama et  al. [10] 
proposed a visual support system in which a monitoring 
robot followed a remote-controlled robot to constantly 
monitor the rear area of the remote-controlled robot. 
Neither of these works uses selection criteria for the 
observation target object.

In this paper, we propose a multirobot visual support 
system to reduce the number of blind spots and the 
uncertainty in distance perception by focusing on the 
necessary objects for remote control. In the proposed 
system, multiple autonomous monitoring robots are 
deployed around a remote-controlled working robot, and 
observe the objects that are highly related to the remote-
controlled robot. The following technical issues must be 
taken into account in order to develop a multirobot visual 
support system.

1.	 Detection of neighboring objects and interobject 
relations to identify an important object.

2.	 Understanding environmental situations for the 
remote-controlled working robot.

3.	 Intention estimation to avoid undesired actions by 
the operator.

4.	 Information sharing of observation from the moni-
toring robots.

5.	 Path planning to move to a desired observation point.

This paper attempts to solve the technical issues for 
“(1) object and relation recognition” and “(2) situation 
interpretation”.

We propose the probabilistic recognition of interob-
ject relations by applying Deep Learning based on a con-
volutional neural network and gestalt psychology. An 
autonomous monitoring robot conducts image analysis 

to provide visual feedback to the operator. For image pro-
cessing, the Scale-Invariant Feature Transform (SIFT) 
[11] is a well-known image feature matching algorithm. 
Another method based on Deep Learning [12] can be 
used for object recognition, and has many other appli-
cations such as human action analysis [13]. Moreover, 
Deep Learning can be applied to some unlearned objects. 
Hamamoto et  al. [14] proposed a relation recognition 
method by using hidden Markov models (HMMs). How-
ever, the HMMs derive only previously learned relations. 
Preliminary learning is difficult because the natural envi-
ronment has various relations. Thus, this paper adopts 
human perception principles to recognize relations 
between objects. The engineering applications of gestalt 
psychology [15, 16] allow for the detection of unique 
objects based on the strength of the relation. Hence, this 
paper adopts an engineering application of the gestalt 
psychology to detect latent interobject relations.

In addition, the proposed multirobot visual support 
system estimates a situation by applying Latent Dir-
ichlet Allocation (LDA) to the results of object recog-
nition. LDA is a language model that probabilistically 
obtains topics of words in documents. It is necessary to 
acquire information that allows the operator to accu-
rately understand the working situation. TF-IDF [17] and 
LDA [18] are used to sort information in various sub-
ject fields including text summarizing and classification. 
Both techniques filter information based on the appear-
ance frequency of the information. TF-IDF is calculated 
on a premise without context of information, but LDA 
is calculated on a premise with context of information. 
Because of this difference, LDA possesses a higher abil-
ity for situational understanding than TF-IDF. Hence, 
this paper adopts LDA to understand the environmental 
situation.

Proposed system overview
Architecture of autonomous monitoring system
Figure 1 shows the architecture of the proposed autono-
mous monitoring system. This system is composed of the 
operator, working robot, wide-view monitoring robot, 
and local-view monitoring robot. The operator remotely 
controls the working robot. The wide-view monitoring 
robot observes the entire work environment. The local-
view monitoring robot observes the work environment 
locally.

The wide-view monitoring robot selects an ROI suit-
able for the working environment by estimating the 
relations between objects. In addition, the wide-view 
monitoring robot decides whether the objects found 
inside a selected ROI are related to a dangerous situation. 
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The wide-view monitoring robot calculates the degree 
of relevance to the dangerous situation of the object by 
the LDA, and warns the operator based on the degree of 
relevance.

The local-view monitoring robot evaluates the relation 
of the object, and selects and adjusts the ROI with wide-
view monitoring robot. Next, the local-view monitoring 
robot moves to a viewpoint depending on the interobject 
composition to provide visual support.

Gestalt factor as the relation evaluation item
The relations between a working robot and surrounding 
objects are evaluated by geometric relations and seman-
tic relations.

Geometric relations describe how the objects are 
located in space. Semantic relations describe the contex-
tual connection between the objects, that is, how their 
meaning or utilization purpose can be related. Geometric 
relations are evaluated using gestalt factors of common 
fate, proximity, and continuity. Semantic relation is eval-
uated by a gestalt factor of similarity. These gestalt fac-
tors in this paper are summarized as follows:

1.	 Common fate The common fate is the property for 
which the things of synchronizing motion are united.

2.	 Proximity The proximity is the property for which 
the objects in the neighborhood are united.

3.	 Continuity The continuity is the property for which 
the objects on a smooth line or curve are united.

4.	 Similarity The similarity is the property for which 
objects having the same elements (color, shape, 
semantics, etc.) are united.

Image processing methods for object recognition
General object recognition
In this paper, we adopt a technique based on depth image 
segmentation from an RGB-D camera [19]. The object is 
extracted by the object contour from the depth image. 
Next, the monitoring robot obtains the object’s 3D coor-
dinates by comparing the RGB image with the depth 
image. Once the object is extracted, it is assigned a name 
by the neural network. Figure 2 shows the process of gen-
eral object recognition.

In this paper, a convolutional deep neural network is 
executed by using a library called Caffe [20]. Table 1 lists 
the details for the deep learning implemented in this 
paper. In addition, Table 1 shows the recognition preci-
sion of a main object used in the experiment. Figure  3 
shows the structure of the deep learning.

Working robot detection
Detecting the working robot on a work site is of great 
importance. To calculate various relations between the 
robot and environment, we have to robustly detect and 
recognize the robot regardless of environmental condi-
tions. The working robot has manipulators with multiple 
degrees of freedom (DoF); hence, it can have a complex 
shape and contour. Therefore, a recognition method 
based on depth image segmentation from an RGB-D 
camera is not sufficient. We adopted a high-speed detec-
tion method object detection method based on a YOLO 
convolutional neural network published by Redmon 
et al. [21]. We trained the network to detect the working 
robot’s cart because it has relatively stable depth infor-
mation to extract the 3D point. The network architecture 

Fig. 1  Architecture of autonomous visual support system
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used for robot detection and the training process are dis-
played in Fig. 4 and Table 2.

Evaluation of the geometric relation
In this section, we will describe the calculation methods 
used to evaluate the geometric relations between objects.

Figure  5 shows a schematic view of the objects and 
working robot in space. The speed of the working robot 
and the distance between the robot and objects have 
a close relation with the working task. By analyzing the 
speed and the distance, we can describe how the objects 
interact.

Evaluation of the common fate
The factor of common fate groups the objects if they 
move in the same direction with the same speed. Hence, 
we use common fate to detect situations where the work-
ing robot is carrying an object.

First, we define the variables used in the evaluation 
of common fate. vr is the velocity vector of the working 
robot. vo is the velocity vector of the object. vro = vo − vr 
is the relative velocity vector. When the movement of 
the working robot and an object are synchronized, the 

Fig. 2  Process of general object recognition

Fig. 3  Structure of convolutional deep neural network

Table 1  Recognition performance of deep learning

* The probability for which the true name of the object is included in the Top(k) 
(k = 1, 2.3) of the output result of the deep learning

Index items Value

Number of learning image Training: 9000, test: 1000

Number of class 6

Learning iteration 200,000

Pipe* 71.5, 86.6, 94.1%

Valve* 71.9, 85.6, 95.7%
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relative vector becomes zero. As given in Eq. (1), the com-
mon fate: CF(Oi) of the object (Oi: i is the object number). 
The object number is allocated from the one closer to the 
monitoring robot) is calculated by binarization process-
ing using the threshold value δ. When CFi = 1, the object 
has a common fate with the working robot. 

Evaluation of the proximity
The factor of proximity groups the objects that are close 
to each other. When the working robot approaches an 
object, it is considered to have a relation with the work-
ing robot. Thus, the proximity D(Oi) is defined by the 
distance di between the working robot and the object 
i, which is calculated by the respective relative position 
from the RGB-D camera. The smaller the distance di, the 
stronger the proximity. The maximum distance dmax var-
ies according to the type of camera. This paper used Asus 
Xtion as the RGB-D camera. Therefore, the normalized 
coefficient Rd is defined by

From Eq. (2), the evaluation of the proximity D(Oi) is 
given by

The proximity is stronger when D(Oi) is smaller.

Evaluation of the continuity
The factor of continuity groups the objects on the same 
line or on a curve. If an object is placed along the moving 
direction of the working robot, it is regarded as a relevant 
object. From Fig.  5, (vx, vy) is the velocity vector of the 
working robot. Let (xw , yw), (xi, yi) be the positions of the 
working robot and the object i, respectively. Note that 
the origin of the positions is defined as the position of the 
wide-view monitoring robot. We draw an arc connecting 
the positions (vx, vy), (xw , yw) and (xi, yi). (Cx,Cy) are the 
central coordinates of the arc given by Eqs. (4a) and (4b), 
and r is the radius of the arc given by Eq. (4c). 

(2)Rd = dmax/2.

(3)D(Oi) = (di/Rd)
2.

(4a)

Cx =
(x2i − x2w + y2i − y2w)vy + 2(yw − yi)(vx · xw + vy · yw)

2[vx(yw − yi)− vy(xw − xi)]

(4b)

Cy =
(x2i − x2w + y2i − y2w)vx + 2(xw − xi)(vx · xw + vy · yw)

2[vy(xw − xi)− vx(yw − yi)]

Fig. 4  YOLO-v1 network’s architecture [26]

Table 2  Working object detection performance

Index items Value

Number of learning image Training: 1500, test: 500

Number of class 2

Learning iteration 15,000

Intersection over union 89.6%

Mean average precision 75.5%

Fig. 5  Schematic view showing a geometric relation. Note that ori‑
gin of positions is defined as position of wide-view monitoring robot
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 The angle of the arc ϕi is given by

To normalize ϕi, the coefficient is determined as 
Rc = π/2 because the maximum angle is π. The evalua-
tion of continuity �(Oi) is defined by

If the working robot’s speed is zero, we cannot evaluate 
whether there are any objects along the line of robot’s 
movement; hence when the (vx,vy) is equal to zero, �(Oi) 
is also equal to zero. The relation of continuity is strong 
when �(Oi) is smaller.

Geometric relation evaluation function
The geometric evaluation value Eg is defined by (7) using 
D(Oi) and �(Oi) defined by Eqs. (3) and (6).

where the range of Eg (Oi) is 0 ≤ Eg (Oi) ≤ 1, and weight 
coefficient �g = 0.7. Larger values of Eg (Oi) imply the pres-
ence of close interaction with the working robot and object i.

Evaluation of the semantic relation
Semantic relations can be described through understand-
ing the meaning of the objects in space. Depending on 
how the objects can be used, we estimate whether the 
robot can interact with them.

Evaluation of the similarity
The gestalt factor of similarity groups the objects if they 
have similar features, patterns, or shapes. However, in this 
paper, we evaluate the relation between the objects based 
on their semantic connections with the ongoing task. This 
enables adaptive support to find and include in the ROI an 
object that can be used by the robot’s end effector.

In this paper, the similarity is calculated by applying 
WordNet [22]. WordNet is a hierarchical dictionary of 
the English language. We compare the semantic connec-
tion between the words by calculating hierarchical dis-
tances. Figure 6 shows an example of WordNet’s treelike 
hierarchical structure. By comparing the distance from 
two given words to their common root, we estimate how 
similar they are, that is, the similarity relation. len(c1, c2) 
represents the hierarchical distance between the word c1 
and c2 in WordNet.

(4c)r =

√

(xw − Cx)2 + (yw − Cy)2

(5)ϕi = arccos

(

2r2 − d2i
2r2

)

.

(6)�(Oi) = (ϕi/Rc)
2.

(7)

Eg (Oi) =

{

1, CF(Oi) = 1

exp{−(�gD(Oi)+ (1− �g )�(Oi))}, otherwise

When len(c1, c2) equals 0, the evaluation value of the 
similarity is 1. A similarity between two words c1 and c2 
is defined as

where D is the maximum hierarchical distance of Word-
Net. Equation (8) is derived by Leacock et  al. [23]. In 
addition, Rs is the normalized coefficient that is defined 
by

where the range of sim(c1, c2) is 0 ≤ sim(c1, c2) ≤ 1 . 
sim(c1, c2) indicates that a semantic relation is strong 
when the value approaches 1. For example, from Fig.  6, 
when c1 is hand_tool and c2 is valve, the hierarchical 
distance is len(hand_tool, valve) = 5, and similarity is 
sim(hadn_tool, valve) = 0.735. The normalized coeffi-
cient is Rs = 1.84.

Expected value of the semantic relation
In this section, the evaluation value of the similar-
ity Es(Oi) between an object Oi and the tools is defined, 
where the tools are the objects that are handled by the 
robot’s end effector. In our work, the names of the tools 
nw are predefined. Algorithm  1 shows the calculation 
process of the expectation with regard to the semantic 
relation. By using deep learning, the robot acquires the 
name of the object from the camera image. Next, several 
object name candidates are outputted by deep learning. 
Therefore, it is necessary to define the similarity evalua-
tion when there is more than one candidate for the object 
name. The expected value of the semantic relation Es(Oi) 
is defined by Eq. (10) where p(nk |Oi) are the Top-k prob-
ability values in which each object has a name nk (k is the 
name number).

(8)sim(c1, c2) = 1− exp

[

−

{

ln(len(c1, c2))

2DRs

}2
]

.

(9)Rs =
1

2
argmin
c1,c2∈C

(ln(len(c1, c2)/2D)).

(10)Es(Oi) =

K
∑

k=1

p(nk |Oi)
∑K

l=1 p(nl |Oi)
sim(nk , nw).

Fig. 6  Example of WordNet
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The range of Es(Oi) is 0 ≤ Es(Oi) ≤ 1. Larger values of 
Es(Oi) imply the presence of close interaction with the 
working robot and an object.

ROI selection based on the relation evaluation
ROI selection
By using geometric and semantic evaluation values 
defined in Eqs. (7) and (10), the unified relation evalua-
tion is calculated by

where the range of E(Oi) is also 0 ≤ E(Oi) ≤ 1 with the 
weight factor coefficient � = 0.75. The weight coefficient 
was experimentally determined. When the value of E(Oi) 
approaches 1, the system interprets it as the presence of a 
close interaction with the neighboring object.

By using a threshold in the relation evaluation value, 
the system decides which objects are included in the ROI. 
The threshold T is calculated in real time by applying a 
discriminant analysis method. The threshold varies from 
0 to 1 virtually, and objects are classified into two sets, 
that is, the set α inside the ROI or the set β outside the 
ROI. This is defined by 

The set α includes nα objects and has the average of 
the evaluation value Ēα with variance σ 2

α. Likewise, the 
set β includes nβ has the average of the evaluation value 
Ēβ with variance σ 2

β. A within-class variance σ 2
W  and a 

between-class variance σ 2
B are defined by 

 where E is the mean of the evaluation value of all objects 
in the working environment, and N is the total number of 
objects. Based on the degree of separation, threshold T is 
defined as

(11)E(Oi) = �Eg (Oi)+ (1− �)Es(Oi),

(12a)α ={Oi|E(Oi) ≥ T },

(12b)β ={Oi|E(Oi) < T }.

(13a)σ 2
W =

nασ
2
α + nβσ

2
β

N
,

(13b)σ 2
B =

nα(Ē − Ēα)
2)+ nβ(Ē − Ēβ)

2

N
.

(14)
T = argmax

T∈0,1

(

σ 2
B

σ 2
W

)

.

Validation of usability of ROI selection system
In this section, we determine whether the proposed ROI 
selection system is coherent with human choices. We 
compare the ROI selected by a human operator with the 
proposed system’s evaluations. To estimate the system’s 
ROI selection, we asked three laboratory members to 
watch a video for the experiment. Three subjects watched 
a recording where a working robot carried an object (a 
valve or a pipe) to a destination while avoiding obstacles. 
Next, for each frame, the subjects selected which objects 
they would like the working robot to focus on or observe 
from a closer distance. Similarly, the proposed ROI selec-
tion system analyzes the video and selects the objects. 
The reliability of the proposed ROI selection system is 
evaluated by comparing the participants’ answers with 
proposed system’s answers.

Figure  7 shows the set of objects classified based on 
each answer. n(Aj ∩ Cj) is the number of objects that 
were selected as inside-ROI by the subjects and the pro-
posed system in Frame j. n(Bj ∩ Dj) is the number of 
objects that were selected as outside-ROI by the sub-
jects and the proposed system in Frame j. The agreement 
degree P is calculated by

where N is the number of video frames.
The agreement degree P with the first subject S1 was 

0.875. The agreement degree P with the second subject 
S2 was 0.829. The agreement degree P with the third sub-
ject S3 was 0.840. In all cases, the agreement degree was 
beyond 0.8. Overall, the average of the agreement degree 
between the subjects was 0.83.

Table 3 shows the agreement degree P based on gestalt 
factors used to evaluate the interobject relations. When 
the proposed system uses only one gestalt factor, as we 
can see from Table 3, the ROI selection using only a prox-
imity factor scores the highest with P = 0.798. On the 
other hand, a system evaluation based on a combination 
of similarity and common fate factors scored the lowest 
with P = 0.470. The reason is that the similarity and com-
mon-fate factors estimate the relation when the robot is 
interacting with a specific object using the manipulators 
or an end effector. Hence, these factors are inferior to the 

(15)P =

∑N
j=1

{

n(Aj ∩ Cj)+ n(Bj ∩ Dj)
}

∑N
k=1 n(Ck ∪ Dk)

,

Fig. 7  Set of objects grouped by selection category
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factors of proximity and continuity that evaluate the rela-
tion between the robot and multiple objects in space. In 
addition, according to results given in Table  3, the pro-
posed system using four gestalt factors has the highest 
agreement score with P = 0.875 and can be used to rep-
resent the human choices.

Situation interpretation based on the LDA
Understanding the situation at a work site is of great 
importance in providing suitable visual support. During 
teleoperation, the operator is already preoccupied with 
controlling the working robot and has to react to vari-
ous changes in environment. The working situation and 
dynamic relations between objects are closely linked in 
the remote-control tasks. The situation interpretation 
of a still image that does not include a dynamic relation 
change can narrow the choices of the situation but can-
not arrive at the only correct answer. Therefore, we pro-
pose a situation interpretation system based on data of 
the working robot’s actions.

In addition, an assessment of the working situation 
requires various intertask relations to correctly estimate 
the working situation. For example, a semantic relation 
is more important than a geometric relation when deter-
mining whether the robot is approaching an object or is 
about to collide with that object. The movement of the 
robot at the time of a collision resembles that at the time 
of the approach operation, but the semantic connection 
between the target object and the robot at the time of 
collision is different than that at the time of the approach 
operation. From the above, a situation interpretation sys-
tem requires data that represents various relations for 
dynamic image analysis.

Preparing of training data
In this paper, we use latent dirichlet allocation (LDA) [18] 
to predict potential interactions between objects. This 
paper employs the GibbsLDA++: AC/C++ Implemen-
tation of Latent Dirichlet Allocation [24] developed by 

Xuan-Hieu et  al. as the learning code of the LDA topic 
model. Time-series data of gestalt evaluation values pro-
posed in the previous section are used as the training 
data. Time-series data for gestalt factor evaluation are 
acquired from the video of a robot’s movement under 
various conditions, e.g., carrying an object, maneuvering 
around an obstacle, and collisions.

Learning process by the LDA
Table  4 lists the parameters used for the LDA topic 
model. The target document θ is time-series data over 
gestalt evaluation values. Classification target topic φ is 
the choice made under each situation. Optimizing the 
distribution of time-series data over gestalt evaluation 
values, and the distribution of the situation choices, are 
called LDA learning in this paper.

The parameter of learning target date distribution is 
α , and the parameter of classification target topic distri-
bution is β. Each parameter of Dirichlet distribution is 
updated by 

(16a)αnew = α

∑D
d=1

∑K
k=1�(Ndk + α)− DK�(α)

K
∑D

d=1�(Nd + αK )− DK�(αK )
,

Table 3  Agreement degree values based on gestalt factors used for ROI selection

*The agreement degree is highest. Therefore, these gestalt factors are used in proposed system

Gestalt factor P Gestalt factor P

Proximity 0.798 Continuity 0.613

Similarity 0.475 Common fate 0.575

Proximity, continuity 0.856 Proximity, similarity 0.802

Proximity, common fate 0.792 Continuity, similarity 0.567

Continuity, common fate 0.632 Proximity, continuity, similarity 0.868

Similarity, common fate 0.470

Proximity, continuity, common fate 0.859 Proximity, similarity, common fate 0.797

Continuity, similarity, common fate 0.602 Proximity, continuity, similarity, common fate 0.875*

Table 4  Parameters used in LDA topic model

Parameter Details

θ Probability that time-series data of gestalt evaluation value 
belongs to situation choice k

φ Probability that gestalt evaluation value w appears in situa‑
tion choice k

Z Situation choices

W Time-series data of gestalt evaluation value

w Gestalt evaluation value

D Number of time series documents

K Number of topics

V Number of the kinds of data in time-series data

α Parameter for distribution over situation choices

β Parameter for distribution over gestalt evaluation value
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where Ndk is the number of documents assigned to the 
topic k in time-series data d, Nkv is the number of docu-
ments v assigned to the topic k in all time-series data, and 
Nd is the number of documents included in time-series 
data d. �(x) is a Digamma function.

Table 5 shows the learning conditions. The situation is 
estimated based on the situational choices with respect 
to the highest value among the topic distributions with 
respect to the time-series data for each neighboring 
object. The probability that time-series data d is assigned 
to topic k is calculated as

Danger warning based on topic classification result
By applying LDA topic modeling to the data based on a 
gestalt time series, the system creates a sentence using 
information regarding to the working robot and each 
object around it, for example, “the working robot is 
approaching an obstacle” or “the working robot is near 
Object-A”. Next, the created sentences for a given frame 
in a video sequence are grouped as one document, and 
topic classification is applied.

The system will classify the document by topics. From 
the topic that was predefined as dangerous, the system 
will extract the object name and classify it as a danger-
ous object. In our system, collision is set as a dangerous 
topic. A warning alert is set based on the probability 
value of the collision, which is calculated by estimating 
the object’s relation evaluation value.

A warning is indicated by using different color signals. 
The color signal is displayed on the screen presented by 
the monitoring robot. The color level CL is determined 
by (18) based on the probability of dangerous situation 
choice kdanger. 

(16b)βnew = β

∑K
k=1

∑V
v=1�(Nkv + β)− KV�(β)

V
∑K

k=1�(Nk + βV )− KV�(βV )
.

(17)θdk =
Ndk + α

Nd + αK
.

Confirmation experiment of the situation interpretation
This section examines whether the proposed system can 
correctly classify moving images containing only single 
situations. The outlines of the moving image sequences 
show that each situation is summarized as follows: trans-
portation, avoidance, and collision.

Classification accuracy is evaluated based on the cor-
rect answer ratio and average selection probability. The 
correct answer rate CR is the rate at which the correct 
answer option is selected from all video frames. The cor-
rect answer rate CR is calculated by

where Ncc is the number of frames that contain the cor-
rect answer choices, and Nf  is the total number of video 
frames. The average selection probability is the average 
value of the selection probability θdkcorrect of the correct 
answer choice kcorrect in each frame. The average selec-
tion probability AP is calculated by

where θdkcorrect i is the selection probability of the correct 
answer choice in frame i.

Table  6 lists the correct answer rate CR and average 
selection probability AP for each choice. The value of 
correct answer rate CR in all options exceeds 0.85. Thus, 
it can be said that the proposed system has a high situ-
ational interpretation capability. In addition, since the 
value of the average selection probability is about 0.7–0.8, 
the threshold value in Eq. (18) is appropriate.

Control of local monitoring robot
The local monitoring robot is an omni-wheel robot 
which is composed of three motors and can move to any 
direction while turning at any rotary speed by controlling 

(19)CR =
Ncc

Nf
.

(20)AP =

∑Nf

n=1 θdkcorrect i

Nf

Table 5  Learning condition

Parameter Details

Number of classification topics 3

Name of topics Transportation, avoidance, collision

Number of learning data 20 cases per topic

Size of 1 learning data 3–5 (kB)

Hyperparameter initial value α 0.5

β 0.1

Learning iteration 20,000

Table 6  Topic classification result

Topic AP CR

Transportation 0.821 1.0

Avoidance 0.724 0.875

Collision 0.857 0.894
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the speed of three motors. A flowchart of robot control is 
shown in Fig. 8. The monitoring robot receives the infor-
mation regarding to objects that were selected to ROI 
and moves to the suitable position for observing. In this 
paper, we used the viewpoint selection method devel-
oped by Ito et al. [25]. In this method, depending on the 
position of objects in space, candidate viewpoints are 
generated. The robot estimates the composition and gives 
an evaluation score for each candidate viewpoint. The 
viewpoint with the highest score is selected as the opti-
mal viewpoint.

Experiments
ROI selection in a working environment
This section evaluates the proposed ROI selection system 
in a working environment. The robot performs a trans-
portation task. The transportation object is a pipe. The 

destination is set near the valve. Experiment snapshots 
are shown in Fig. 10. (The object numbers are allocated 
from the one closer to the monitoring robot.) Figure  9 
shows the changes in relation evaluation value E over 
time. Table 9 shows how the proposed system interprets 
situation around the working robot.

Figure  10a shows the snapshots from the wide-view 
monitoring robot at frame 128. The wide-view moni-
toring robot outputs three images: the wide view on 
the right that contains the number of objects detected, 
and also the color signal to warn the operator accord-
ing to Eq. (18), a graph displaying the objects’ name with 
evaluation value, and the selected ROI for the respec-
tive frame. From Table 7 and Fig. 9, we can see that for 
frame 128, the evaluation value for the pipe is the high-
est and is greater than threshold T from Eq. (14). There-
fore, it is selected as the ROI for frame 128. Moreover, we 

Fig. 8  Flowchart of robot control

Fig. 9  History of relation value throughout task
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can see from Table 9a the robot is moving towards pipe 
and valve. Thus from Eq. (18) the color signal shown in 
Fig. 10a is yellow.

Similarly, in Fig. 10b and Table 8, the pipe and valve are 
included in the ROI. From Fig.  9, we can see that after 
frame 350, E for the pipe is around 0.9. Thus, we can say 
that is the moment when the pipe is picked. As for the 
valve from frame 460 E increases and reaches value over 
0.7. The proximity and continuity values for the valve 
are very small. Thus results in a high geometric relation. 
Therefore, the valve is selected as the ROI for frame 512. 
From Table 9b, the robot is still; hence according to Eq. 
(18) the color signal shown in Fig. 10b is green.

The above result indicates that the proposed ROI selec-
tion system can dynamically select an ROI. Overall, 
the proposed system was able to extract the important 
objects by estimating their relations using gestalt factors.

Validation of adaptability to unlearned objects
Compared to the risk recognition system that we pro-
posed in the past [26], the advantage of the risk recog-
nition system based on the time-series data of a gestalt 
evaluation is that it can cope with unlearned objects. The 
performance of the proposed system was evaluated based 
on the system’s ability to warn the operator in an environ-
ment that contains both unlearned and learned objects.

This experiment was conducted under the following 
conditions:

• • Case A is a condition where five learned objects are 
detected as obstacles.

• • Case C is a condition where eight unlearned objects 
are detected as obstacles.

Table  10 lists the conditions and number of objects 
used for each case. The remote control for all cases was to 
transport a valve while avoiding the obstacles.

Figure 11a, b show corresponding images of the work-
ing robot approaching the obstacles in the case of A and 
B, respectively. Table 11a, b show the sentences created 
by LDA learning to evaluate the potential risks. The pro-
posed system warns the operator using color signals in 
case of danger according to Eq. (18). Green indicates Safe, 
yellow indicates Caution, and red indicates a Warning.

In case A, the working robot is around objects that are 
known to the system. From Fig. 11a and Table 11a we can 
see a situation where the robot is still and not moving. 
Therefore, since there is no change in the robot’s posi-
tion, the system outputs the Green color, stating that the 
situation is Safe.

In case B, the working robot is surrounded by more 
objects, and all obstacles are unknown to the system. 
However, the object detection method based on depth 
image segmentation allows us to extract all objects in 
space. Next, the system evaluates the relations between 
all objects and the robot. Because we know the 3D posi-
tions of the unknown objects, we are able to evaluate the 
geometric relations. Table 11b shows the sentences cre-
ated by proposed system for case B.

We already mentioned that the factors of proximity and 
continuity are sufficient to select the ROI. Next, the data 
based on the gestalt-evaluation time series is classified 

Fig. 10  ROI selected during transportation task. a Frame = 128, b 
Frame = 512

Table 7  Each evaluation value at Frame = 128

Object name Common fate Proximity Continuity Geometric relation Semantic relation Evaluation value

Debris 0 0.54 0.46 0.597 0.481 0.568

Valve 0 0.73 0.99 0.447 0.649 0.498

Pipe 0 0.38 0.17 0.728 0.492 0.669
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by LDA learning for risk evaluation. As a result, the sys-
tem is able to detect the unknown obstacles and warn the 
operator. From Fig. 11b, we can see that the color signal 
turned Red when the working robot started to move in 
the direction of the obstacles.

Therefore, even in an environment where unlearned 
objects are placed, the proposed system successfully esti-
mates the risks and sends a notification using colors.

However, the following problems were revealed: The 
first problem is a decline in the number of FPSs when 
the number of detected objects increases as a result of 
increased calculation costs. The second problem is that 
the monitoring robot may not be able to recognize small 
objects. In Fig. 11b, the monitoring robot could not sta-
bly recognize the spray can at the center of the screen.

Verification of improvement of operability in remote 
control
In this section, the ability for operability improvement 
of the remote control with the proposed visual support 
system is evaluated. To evaluate the effectiveness of the 

proposed system, we performed an experiment. Our goal 
was to validate the improvements in robot teleoperation 
by using the proposed system. We have to note that, the 
target objects, destinations and task scenarios described 
below are unknown to proposed system.

Environment description
The experiment took place in our laboratory. The KUKA 
youBot with two 5DoF manipulators was used as a tel-
eoperation robot, hereinafter called a working robot 

Table 8  Each evaluation value at Frame = 512

Object name Common fate Proximity Continuity Geometric relation Semantic relation Evaluation value

Debris 0 0.72 0 0.604 0.488 0.575

Valve 0 0.28 0 0.817 0.636 0.772

Pipe 1 – – 1 0.524 0.881

Table 9  Sentences created by  LDA learning at  Frame = 
128 and Frame = 512

Object number Sentences

(a) Frame = 128

 0 Robot approaches to valve; robot is moving

 1 Robot moving away from debris; robot is moving

 2 Robot approaches to pipe; robot is moving

(b) Frame = 512

 0 Robot is near valve; robot is standing

 1 Robot has pipe; robot is standing

 2 Robot is near debris; robot is standing

Fig. 11  State of danger warning under each condition. a Warning of 
danger under case A, b warning of danger under case B

Table 10  Environmental conditions for each case

Case A Case B

Number of target object 1 1

Number of goal point object 1 1

Number of learned obstacle object 5 0

Number of unlearned obstacle object 0 8
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(Robot-W). One of the working robot’s manipulators was 
equipped with a camera and was programmed to track 
another arm’s end effector. Thus, the operator could see 
the manipulator’s end effector and perform various tasks 
while relying on the images from the camera arm. The 
proposed support system consisted of two robots: a fixed 
wide-view monitoring robot (Robot-MW) and a moving 
local-view monitoring robot (Robot-ML). Both monitor-
ing robots were equipped with RGB-D cameras. The task 
site contained both known and unknown system objects.

To create conditions close to a real-life situation, all par-
ticipants remote controlled the working robot behind a 
screen, relying only on real-time images from the cameras 
outputted to monitors, as can be seen in Fig. 12. The target 
object and destination are unknown to proposed system. 

Participants
Six subjects who were members of our laboratory par-
ticipated in the experiment. All participants were males 

between 24 and 30 years old. In addition, all participants 
had some experience related to robotics. However, only 
half of the subjects were familiar with the working robot’s 
controls. Therefore, those who were not familiar with the 
robot were introduced to manipulators and practiced for 
40 min one day before the experiment. All participants 
were given about 5 min to practice immediately before 
the experiment.

Task
The teleoperation task was a simple Peg-in-Hole manipu-
lation. As target objects, a container with pencils and a 
case with holes were chosen. The experiment tasks are 
described below:

1.	 Approach the container with pencils, and pick up a 
pencil.

2.	 Carry the pencil to the destination.
3.	 Peg the pencil into one of the holes.
4.	 Repeat the process three times.

Evaluation methods
Each participant had to complete the tasks twice:

• • Relying on camera arm + two fixed cameras.
• • Relying on camera arm + developed support system.

To examine the improvements in operability, we meas-
ured the success rate, time spent on the task, and the 
number of operational mistakes between two conditions 
given above. The success rate was evaluated as 100% if 
the operator managed to peg three pencils during three 
attempts.

If only 2/3, 1/3, or 0/3 were pegged, then the success 
rate was evaluated as 66, 33, or 0%, respectively. The 
number of operational mistakes was counted as the num-
ber of collisions between the working robot and sur-
rounding objects. If owing to collision the target objects 
were dropped, the task was considered complete with a 
success rate of 0%. The time spent on the task was meas-
ured from the moment the operator moved the working 
robot until the third pencil was pegged.

Figure  13 shows the experiment environment. There 
were several obstacles around the working robot. We can 
also see that the pencils in the container were not per-
pendicular; hence, the operator had to adjust the manip-
ulator to pick up the objects. Neither the container nor 
the case with designated holes was fixed, so in case of 
mistakes, they could fall or flip over.

The views from each robot and support images pro-
vided by monitoring robots in this experiment are sum-
marized below:

Table 11  Sentences created by  LDA learning for  Case A 
and Case B

Object number Sentences

(a) Case A

 0 Robot is near valve, robot is standing

 1 Robot is near debris, robot is standing

 2 Robot is near debris, robot is standing

(b) Case B

 0 Robot approaches to unknown; robot is moving

 1 Robot approaches to unknown; robot is moving

 2 Robot approaches to valve; robot is moving

 3 Robot approaches to unknown; robot is moving

 4 Robot approaches to unknown; robot is moving

 5 Robot approaches to unknown; robot is moving

Local View 

Wide View 

Working Robot’s 
 View 

joys�ck 

Fig. 12  User interface
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Figure 14a shows the view sent from Robot-W’s camera 
arm. The camera arm was programmed to track the sec-
ond arm’s end effector. Therefore, the operator was able 
to remote control Robot-W and perform various manip-
ulations using only the camera arm. However, the view 
was limited, and the operator had to constantly change 
the end effector’s direction to see the surroundings. To 
visually confirm that the object was grasped, the operator 
might need to also move Robot-W’s cart and determine 
how to approach the objects to get a suitable view. Since 
the view from the camera arm was not intuitive to oper-
ate the robot, and the camera was able to capture only a 
limited area, the teleoperation process became very dif-
ficult and time consuming.

Robot-MW  observed the entire working environment 
and selected the ROI by evaluating the relation between 
Robot-W and the surrounding objects. Hence, the move-
ment of Robot-MW  was limited compared to that of 
Robot-ML. In addition, Robot-MW  evaluated the possi-
ble risks and warned the operator with color signals. Fig-
ure 14b displays the image sent from Robot-MW . As we 
can see, Robot-MW  output the image that contained the 
color signal and output the global position of Robot-W in 
the environment.

The colored ellipse in the larger window is an example 
of a color signal that the system output based on the risk 
evaluation method [26].

Robot-MW  selected the ROI after evaluating the inter-
object relations in the given scene, and shared it with 
Robot-ML. Since Robot-MW  focused on grasping the 
entire scene, the target objects could sometimes be 
blocked by Robot-W or its manipulators. Yet, by sharing 
the ROI, the proposed system was able to provide a suit-
able support from an optimal viewpoint.

Figure  14c shows the images sent by Robot-ML. 
Robot-ML received information on the objects that were 
selected for the ROI by Robot-MW , determined a new, 
combined ROI, and autonomously moved to the optimal 
viewpoint. As a result, the local-view-monitoring robot 
observed the working robot and provided visual support 
from a closer range.

Figures 15 and 16 show the snapshots from the experi-
ment. We can observe the changes in Robot-ML’s posi-
tion. From Fig.  16b, we can see that Robot-ML had a 
control interface. Since the observation region of Robot-
ML was limited, the robot had to move a lot while track-
ing Robot-W. Hence, in case of error, the operator could 
also remote control Robot-ML.

Results
Figure 17 shows a comparison of the remote-control effi-
ciency and accuracy with/without the proposed visual 
assistance.

Figure  17c shows the success rate in each case. On 
average, when the support system was not used, the suc-
cess rate was 58%. When the support was enabled, the 
success rate increased to 80.3%.

Furthermore, there was also a decrease in the number 
of operational mistakes and execution time by using the 
proposed system.

The average time spent on a task without support was 
1456.1 s (24 min), whereas the execution time with sup-
port was 835 s (13 min). The average of operational mis-
takes without support was 8, and the number of mistakes 
when support was enabled was only 3, which is more 
than two times less.

Since the view from each camera was outputted on a 
different display, participants had a difficulty in choos-
ing which view is the most appropriate at a given time 
during remote control operation. An experienced oper-
ator can efficiently use static cameras to position the 
robot in environment and adjust the camera arm to the 
desirable view. However, it requires practicing and high 
concentration.

By using Gestalt psychology, we are able to determine 
ROI that will correspond to human operator choices. Our 
system selects the ROI for an operator that reduces the 
time required to analyse the image from cameras. Next, 
monitoring robots cooperatively determine the optimal 
observation angle and move to observe the selected ROI 
from an optimal angle of view. By dynamically providing 
the only relevant information from a suitable viewpoint, 
our adaptive visual support method helps operators to 
effectively teleoperate working robot in a shorter period 
of time.

From these results, we can say that the proposed sys-
tem significantly enhanced the teleoperation process. 

Fig. 13  Experiment environment
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However, owing to task complexity, it is difficult to com-
pletely eliminate the mistakes. The Peg-in-Hole process 
requires precise robot control. By providing the opera-
tor with both global and local views, we were able to 
decrease the time required for the operator to decide 

how to approach the target to pick or peg an object. To 
achieve accurate control, the operator must comprehend 
the information provided from the available viewpoints. 
This generally requires more time. Therefore, there is 

Fig. 14  Images sent by each robot. a View from working robot Robot-W, b view from Robot-MW, c view from Robot-ML, d view from top
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a trade-off between the time spent and the number of 
mistakes.

Questionnaire survey
To evaluate the usability of proposed system we con-
ducted a questionnaire survey. Our goal was to evaluate 
an overall user experience and also to analyze operator’s 
feedback on proposed visual support system.

In total 6 laboratory members participated in the sur-
vey. The task scenario was the same as in the verification 
of improvement in operability experiment. Each partici-
pant had to control the working robot and perform Peg-
in-Hole manipulation twice:

• • Relying on camera arm + two fixed cameras.
• • Relying on camera arm + developed support system.

After both of the tasks were completed, operators 
answered the questionnaire. Survey included questions 
on control experience and also various aspects of local 
view and wide view monitoring robots. Evaluation was 
made based on 5 point Likert scale:

• • Strongly agree = 5.
• • Agree = 4.
• • Neutral = 3.
• • Disagree = 2.
• • Strongly disagree = 1.

Each participant had 4 trials and total number of ques-
tionnaires collected was 24.

First of all, participants were asked whether they felt 
that the remote control was easier and the distance per-
ception improved when the proposed support system 
was used. Figure 18 shows the survey results. Regarding 
to distance perception more than 60% of responses were 
positive, with the average score of 3.83. Next, similarly 
the majority of the responses was in agreement with the 
statement that remote control became easier with the 
average score of 4.41, where 50% of the answers were in 
strong agreement with the statement.

Next, the participants evaluated various aspects of pro-
posed system and how they used them during execution 
of chosen task scenario. Figure 19 shows the evaluation 

Fig. 15  Snapshot of experiment without support. a Working robot under operation, b view from static camera one, c view from working robot, d 
view from static camera two
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results for visual support provided by local view and wide 
view monitoring robots.

From Figure  19a, c we can see that operators mostly 
relied on wide view monitoring robot during Navigation 
with average score of 3.71 whereas only 25% of partici-
pants with score of 2.22 used wide view monitoring robot 
during Peg-in-Hole manipulation. Furthermore, the 
majority of survey results on ROI relevance and danger 
warning using color signals were also positive, with the 
average score of 3.59 and 3.29 respectively.

Figure  19b, d show the questionnaire results on local 
view monitoring robot evaluation. The number of posi-
tive responses on usage of local view monitoring robot 
was high not only for Peg-in-Hole manipulation but also 
for Navigation with the score of 4.42 and 4.62 respec-
tively. The optimality of selected viewpoint was also eval-
uated, and the survey results show that slightly more than 
50% of the answers were in agreement with the optimal-
ity statement with the average score equal to 3.33.

Furthermore, we also investigated the movement of 
local view monitoring robot and the problems regard-
ing to optimal viewpoint selection. Figure  20 shows 

the survey results on the local view monitoring robot’s 
movement and chosen viewpoints for two cases: during 
Navigation and Peg-in-Hole manipulation. As we can see 
from Fig. 20a, b, the monitoring robot mostly moved in 
desired direction of operator, with the percentage of posi-
tive responses equal to 70 and 60% respectively. However, 
the survey revealed that the robot’s movement was not 
smooth and stable, since 50% of answers were in agree-
ment with the statement that the robot’s movement was 
jerky during both Navigation and Peg-in-Hole manipula-
tion tasks, with the average evaluation scores equal to 3.3 
and 3.42 respectively.

We also found out that during navigation the local view 
monitoring robot’s observation was within an accept-
able distance, because the participants disagreed with 
the statement of need to observe from closer range. On 
the other hand, in case of Peg-in-Hole manipulation, the 
number of positive and negative responses varied for the 
same statement regarding to the observation range: 40% 
negative, 30% neutral and 30% positive.

The opinion of participants also largely diverted on the 
statement whether the objects of their interest were in 

Fig. 16  Snapshot of experiment with support. a Working robot under operation, b control panel of local-view monitoring robot, c view from work‑
ing robot, d view from wide-view monitoring robot
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the middle of the screen both during Navigation and Peg-
in-Hole tasks. Some of the participants commented that 
particularly during the Peg-in-Hole task, they wanted 

the local view monitoring robot to focus more on work-
ing robot’s end-effector rather than on target objects. 
Therefore, we need a further investigation on what kind 

a b

c
Fig. 17  Evaluation of effectiveness of proposed autonomous visual support system by execution time and number of errors. a Number of errors 
occurrence, b execution time, c success rate

a

b
Fig. 18  Survey results on overall system evaluation. a Response frequency, b average score
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of visual support the operator wants during various task 
scenarios.

Conclusion and future work
In this paper, we proposed a support system with the 
“perception of latent interactions” and “situation estima-
tion” as constituent elements to support remote opera-
tion. We realized an adaptive ROI selection system based 
on the perception of latent interaction between objects 
using the principles of gestalt psychology. We also devel-
oped a system that notifies the operator of danger by a 
situation estimation system using LDA.

By adaptively selecting ROI and sharing it monitoring 
robots can adapt to changes in environment and under-
stand the situation around the working robot. Once ROI 
is determined, the monitoring robot moves to observe the 
scene from suitable angle. As a result, the proposed system 

provides an adaptive visual support to the operator by out-
putting the most relevant information from an optimal 
viewpoint. Experimental results show that the proposed 
system succeeded in reducing the number of errors and the 
operation time and increasing the operation’s success rate.

A problem revealed during the experiments is a com-
promise between the execution time and the number of 
errors. To decrease the number of errors, careful remote 
control is required. However, to reduce the execution 
time, the operator must act faster, which may lead to 
operational errors. In real-life conditions, control accu-
racy can be vitally important compared to the time spent. 
Therefore, a certain time cost might be unavoidable.

From the participants feedback collected through 
questionnaire survey, it was revealed that more work on 
monitoring robots navigation is required. To enhance 
the remote control process, monitoring robots should 

a

b

c d
Fig. 19  Survey results on the evaluation of support by wide view and local view monitoring robots. a Response frequency for wide view robot, b 
response frequency for local view robot, c average score for wide viewrobot, d average score for local viewrobot
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provide visual support not only from suitable angles 
but also move and adapt to environmental changes in 
a smooth motion with appropriate velocity. Therefore, 
to deploy the team of monitoring robot’s in real-life 
environments, the velocity control and adaptability to 
changes in terrain is of great importance.

For our future work, to simplify the control task, we 
will develop a navigation system for remote control in a 
dynamic environment. Complex tasks require high con-
centration by the operator; hence, the longer the execu-
tion time, the heavier the mental load on the operator. 
A navigation system that adapts to the environment can 

decrease the execution time without affecting the accu-
racy of the remote operation.

Furthermore, to provide an intuitive control experi-
ence, we will integrate an intention evaluation method 
into our system. Depending on operator’s skill level and 
also on the task scenario the requirements for visual sup-
port will vary. By evaluating the operator’s intention, 
the monitoring robots can adjust the position to avoid 
unnecessary actions. Understanding operator’s intention 
can help to develop a better user interface and to enhance 
the teleoperation through providing the most relevant 
information.

a

b

c d
Fig. 20  Survey results on the evaluation of Local View Monitoring Robot’s movement. a Response frequency for navigation, b response frequency 
for Peg-in-Hole task, c average score for navigation, d average score for Peg-in-Hole task
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