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Abstract 

This paper describes a method to pick up a folded cloth product by a single-armed robot. We focus on a problem 
on picking up a folded cloth, and organize tasks to attack it. Then, we propose methods of grasp position estimation 
composed of two stages: detection of the thickest folded hem and pose estimation of the cloth product. In addition, 
we attempt to search for appropriate grasping postures, and show that there are regions where the success rate of 
grasp was high. In experiments using an actual robot, we achieved a picking task with 92% success rate.
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Introduction
One desired ability for autonomous robots engaging 
daily assistance is “pick-and-place an object” on a des-
ignated place. Among them, object grasping is difficult 
and important issue. A conventional approach to robotic 
grasping in daily assistance assumes to cope with rigid 
objects, and employs geometrical models, and then 
cooperates model-based recognition with motion plan-
ning [1–3]. In this procedure, how to grasp the object is 
one issue. In many cases, it is assumed that the object is 
a rigid body, and the point-to-point contact between the 
robot finger and the object is determined. However, in 
daily environment, we can find essential tasks that non-
rigid objects are needed to manipulate. For instance peo-
ple use various types of clothing in the course of their 
daily lives. If robots have an ability to handle a folded 
cloth, e.g. handing over a towel and putting a shirt in a 
chest, it might be one of the effective contributions of 
autonomous robots, especially for handicapped people 
[4]. When doing grasping of the folded fabric product, it 
is desirable to grasp a proper position of the fabric prod-
uct so as not to destroy the original folded shape.  

The purpose of this study is to develop a method to 
pick up a folded cloth item by a single-armed robot. 
Cloth products are often folded in a rectangular shape 

when they are going to go to shelves and dressers. This is 
a common matter with various types of cloth products. 
Therefore, we will proceed with the study assuming the 
situation that the cloth product folded in a rectangle is 
placed on the horizontal plane. The cloth grasp assumed 
in this paper is required to be reversible deformation. 
That is, it is unacceptable that if the original folded shape 
of the cloth is collapsed when the gripped cloth is placed 
on a designated place.

The contributions of this paper are as follows:

• • We focus on a problem on picking up a folded cloth, 
and organize tasks to attack it.

• • We propose a method to determine the grasping 
position from a folded cloth product placed on a 
table. The proposed method consists of two stages: 
detection of the thickest folded hem and pose esti-
mation of the cloth product.

• • To obtain robust grasping, we attempted to search 
for appropriate grasping postures. As a result, we 
were able to find regions where the success rate of 
grasp was high.

The paper is organized as follows: “Related work” sec-
tion shows related work, and “Issues and approach” sec-
tion explains issues and our approach. “Grasping position 
detection” and “Grasping motion determination” sections 
explains the proposed method. “Experiments” section 
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shows experimental results, and “Conclusion” section 
presents the conclusions of this paper.

Related work
In many previous studies on automatic operation of cloth 
products, there are a phase to make a suspended state. 
Osawa et al. [5] showed that the type of cloth product can 
be determined by repeating the following procedure: a 
robot holds a cloth product by hanging it with one hand, 
and then grasps the lower end portion by another hand, 
and finally hangs the product by the hand. This idea was 
later referred to by many researchers and contributed to 
implementation of several cloth product operations such 
as type discrimination and folding. Willimon et  al. [6] 
introduced the task of picking one gripping point for sus-
pending a single cloth product placed on a table casually. 
Kita et al. [7] proposed a method of matching the model 
with a 3D point cloud measured using a trinocular stereo 
camera using a deformable shape model for the hanging 
state. Abbeel et al. [8] succeeded in identifying the type of 
cloth product by a  robot observing the contour and the 
position of the lower end point while operating the cloth 
product.

There are also studies that aimed at more efficient 
operation, sophisticated selection of gripping points and 
introduction of operation methods other than picking 
and moving. Doumanoglou et al. [9] succeeded in recog-
nizing clothing type and shape using a 3D range camera 
while unfolding. Their framework also provided a next 
grasping point. Li et  al. [10] proposed a framework for 
recognizing the categories and the poses of a deform-
able object. They used RGB-D data, and matched it with 
garment shape registered in database. Yuba et  al. [11] 
proposed a method for unfolding cloth products placed 
casually in a few steps by introducing “pinch and slide” 
proposed by Shibata et al. [12].

In these studies, a robot manipulated a cloth prod-
uct that was placed in a casual way or was suspended. 
Of course, they are difficult tasks due to being complex 

shape state. However, it is clearly different from the 
approach we are assuming about grasping cloth products. 
In the abovementioned studies, they actively changed 
the shape of the cloth, to obtain information or to trans-
form to the desired shape. On the other hand, the task 
assumed in this study is to grasp the folded cloth prod-
uct without collapsing the shape as shown in the right 
side of Fig.  1. If we cannot select the folded hem prop-
erly, we must grasp by clipping multiple cloths together. 
In this case, it was often occurred in the our preliminary 
examination that because of difficult task of inserting fin-
gers under the cloth, it was not possible to grasp or the 
shape of the cloth collapsed even if gripped. Based on the 
above, we have selected study topics from selecting the 
parts to be gripped, proposing and demonstrating the 
solution method.

Issues and approach
Successful grasp definition and issues
A single-armed robot exists in front of a folded cloth 
product. A parallel jaw gripper, which is a simple and 
popular equipment for robot manipulators, is attached as 
the end-effector. A 3D range image sensor is installed to 
observe robot’s workspace. The purpose is to pick up the 
cloth product from the table.

First, we define successful grasping state. When a cloth 
product is folded in a rectangle shape, if we grasp the 
thickest folded hem that was made when we folded at the 
end, we are often grasped without collapsing the shape. 
We can set such fact in various types of clothe products: 
towel, T-shirt, pants and so on. Therefore, we will pro-
ceed with the premise of such a way of folding. Let us 
assume that the grasping position assumed in this paper 
is on the middle of the thickest folded hem depicted as a 
red point in center picture of Fig. 1. If the robot can grasp 
that part and lifts it without breaking the shape of the 
cloth, it will be successful. However, if the shape of the 
cloth is irreversibly deformed after picking up, e.g. when 
the shape of the cloth collapsed because the place to 

Fig. 1  Picking up a folded cloth product: success and failure cases
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grasp was not properly grasped, it becomes failure case. 
Meanwhile, a robot grasps another points on the cloth, it 
is also failure.

This problem setting is pretty simple but includes out-
standing issues as follows:

• • How to detect a grasped position from a folded cloth 
product: since the shape of the cloth has a certain 
regularity, it is relatively easy to detect a hem portion 
as a border. However, it is necessary to verify whether 
the detected border is a suitable site for lifting with-
out collapsing the shape of the cloth. That is, it is nec-
essary to recognize the state of folding of each hem.

• • How to make grasping motion sequence of the robot: 
cloth products are flexible material, so the success 
rate of grasping changes depending on how the hand 
is brought close to and how to grasp. Therefore, con-
sideration should be given not only to the pose at the 
time of grasping but also how to bring the end-effec-
tor closer to the grasping position.

The next subsection introduces our approach to solving 
them.

Approach for acquiring method of grasping cloth products
The left flowchart in Fig.  2 shows a basic procedure for 
grasping a folded cloth product. First, the cloth placed 
on a table is measured by a 3D range image sensor, and a 
pair of color image and depth image are obtained. Using 
these images, a grasp position is determined, and then a 
grasp motion of a robot arm is determined. Finally, the 
result is performed by the real robot.

For the second and third block of the flowchart, two 
types of pre-experimented dataset was used, respectively. 
The first is information on the grasping point, which 
saves pairs of an instructed grasping point and a depth 

image. The other is information for bringing a hand 
closer to the grasping point. It is composed of a pair of a 
grasping posture and via posture of the end-effector.

These pre-experimented data are collected in advance: 
that is, picking up a folded cloth product is performed 
with an instructed grasping position, and sensor data 
therebetween is recorded. In the remaining of this paper, 
we call one data unit (a pair of P and R) “task experience 
data,” and call a dataset consisting of all of the data “task 
experience dataset,” and a dataset collecting only success-
ful case “successfully experience dataset.”

In order to solve the issues mentioned in the previous 
subsection, the following processing is performed by 
using experience data. In the following two sections, each 
of them will be explained in detail.

Grasping position detection
In order to determine a grasping position, it is necessary 
to recognize how a cloth product is placed and then to 
find the position to grasp. Recognition of the placed situ-
ation is accomplished by performing shape-based regis-
tration processing between a task experience data and 
the current sensor data. On the other hand, grasping 
point determination is accomplished by detecting visu-
ally recognizable borders and counting overlapping of 
cloth that can be observed there. However, since ambigu-
ity remains, by observing the relationship of the number 
of the overlapping on a neighboring border, the determi-
nation accuracy is improved.

Grasping motion determination
We solve the problem of finding an appropriate posture 
transition from via posture to grasping posture of the 
end-effector. Via posture means the preparatory posture 
of the end-effector just before reaching the grasping pos-
ture. In order to obtain an appropriate combination of 

Fig. 2  The basic procedure and structured data for grasping a folded cloth product
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these two postures, we take an approach to selecting the 
posture parameters from advance experiments that per-
form actual grasping a folded cloth product with various 
posture parameters.

Grasping position detection
Extraction of the area where a cloth product exists
A color image and a depth image are captured for a cloth 
product placed on a table. A three-dimensional point 
cloud is generated from the depth image, and a plane 
equation of the table top is calculated by plane detec-
tion. Here, by estimating the plane parameters to which 
RANSAC [13] is applied, a plane coincident with the 
table top is detected without being affected by the exist-
ence of the cloth product.

After that, only the three-dimensional points on the 
sensor side than that plane are selected, and they are 
projected on a two-dimensional plane. This two-dimen-
sional plane virtually constitutes an image obtained by 
observing the top plate of the table from vertically above. 
As a result, we obtain a projected image of the point 
cloud belonging to the cloth product when looking from 
directly above.

Orientation estimation of cloth products
In order to find a border including a point to be grasped, 
the thickest folded hem is detected. For this purpose, a 
color image taken from obliquely above the cloth prod-
uct is used. When comparing the thickest folded hem 
with other hems, a clear difference appears depending 
on whether there is a gap due to overlapping of cloths. 
Therefore, edge detection is applied to the obtained color 
image. Then, a processing focusing on the fact that the 
number of edges appearing depends on the type of hem 
is performed.
First, the Canny operator [14] is applied to the color 
image, and as shown in the top right panel in Fig. 3, gaps 
between the cloth parts are obtained as edges. On the 
other hand, as shown in the lower left panel, the contour 
of the cloth product is obtained. Then the folded cloth 
product is approximated to a quadrangle as shown in the 
lower right panel. From this shape, the edge positioned 
on the camera side is selected, and processing of state 
estimation of folded parts is performed.

Let uc = (uc, vc) be image coordinates that belong 
to quadrangle line segments shown in Fig. 3 (4). L, the 
number of edge, is calculated as follows.

where l is the number of pixels in the horizontal direction 
(u direction) in the area where a hem exists. fuc (vc) is the 

(1)L =
1

l

l∑
c=1

fuc (vc),

number of edges detected when operating in the vertical 
direction in the column of the coordinate uc. That is

where I represents the resulted image of canny edge 
detection, and I(v) is the pixel values on the coordi-
nates (uc, vc + v). vmin is a negative integer whereas vmax 
is positive, and δ is Kronecker’s delta. In Eq. (2), a col-
umn of pixels passing through the hem is selected in 
order. A pixel in the column is compared with another 
pixel immediately before that, 0 is added if it is the 
same value, and 1 is added if it is different value. That 
is, the number of times of crossing the white line is cal-
culated. This process is applied throughout one border, 
after which the average is calculated by Eq. (1). Fig.  4 
visually shows this process. By looking at the number of 
edges obtained, it is possible to judge whether the bor-
der of interest is the thickest folded hem or not. Also, by 
looking at the average of the number of edges in adja-
cent hems, it is possible to specify the orientation of 
the cloth product. These are described in “Experiment” 
section.

Fine adjustment of position and orientation
Due to the above-mentioned processing, the rough 
2-dimensional position of the thickest folded hem is 
known. Next, in order to accurately obtain the grasp-
ing position, additional processing is performed. In this 
study, as we assume that cloth is folded in a rectangular 
shape, geometorical fitting of rectangular shape might be 
one convenient way. However, the depth data from the 
surface of cloth is affected by the location of the cloth or 
the existence of wrinkle, and some data might be missing. 
When geometrical shape fitting is performed on such 
data, we empirically confirmed that errors were remained 
particularly in the angular direction. Therefore, pose 
adjustment by particle filter [15] was adopted. The proce-
dure is as follows.

First, one learning data whose placed direction was 
similar to the current cloth product is identified and used 
as reference data. In this identification, each learning data 
and input data are converted into an image on a view-
point looked down from vertically above. Next, a process 
of collating the reference data with the shape of the input 
data is performed. If the matching degree between the 
two data is high, it is assumed that the grasping position 
recorded in the reference data is mapped on the input 
data, and the grasping position can be determined.

The reason for preparing dozens of learning data for 
the cloth is as follows. As the orientation of the cloth 
changes, the depth data for the cloth will also change. 

(2)fuc (vc) =
1

2

vmax∑
v=vmin+1

{1− δI(v)I(v−1)},
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In particular, since the measurement result around hem 
changes, it directly affects the error of the gripping posi-
tion. Therefore, we added the selection process to pick up 
the data that resembled the current placement.

An issue in the pose adjustment procedure is that the 
shape and inclination of the cloth product in the refer-
ence data is not completely the same as the input data. 
Therefore, in order to overlap the input data well, the 
reference data is aligned by means of a particle filter. 
Originally, there are six variables in the posture align-
ment. However, as described above, if the transformation 
for directly above viewpoint has been added, the posture 
variables can be thought of as a total of three degrees of 
freedom; two parallel movement parameters (x, y) and a 
rotation parameter θ on the plane.

In the particle filter, a posture of a target object xt is 
estimated from measurements zt by external sensors 
according to the following two equations:

where zt indicates a sensor measurement, that is, the 
perspected transformed image in our case. Zt is a group 
of zti (i = 1, . . . , n) at time t. In Eq. (3), it is a depth value 
obtained for each coordinate (u, v) on a depth image. The 
former equation is a prior probability which is calculated 
before image processing at time t, and the latter is a pos-
terior probability which includes the estimation result. 
In our approach, a likelihood p(zt |xt) is calculated by 

(3)p(xt |Zt−1) =

∫
p(xt |xt−1)p(xt−1|Zt−1)dxt−1,

p(xt |Zt) ∝ p(zt |xt)p(xt |Zt−1),

Fig. 3  The procedure of contour extraction
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comparing 3D points derived from a cloth product. The 
evaluation equation is as follows:

where (u,  v) and (u′, v′) are image coordinates. (u′, v′) 
are a result of transformation using posture parameters 
(x, y, θ).d∗(u, v) is the depth value on (u, v). ref indicates 
a training data for comparizon, and input indicates the 
input data. The subscript d of the symbol indicates all the 
depth values deemd to belong to the fabric product in the 
depth image. C is a constant.

In this equation, the difference from the input data is 
taken for all three dimensional points after posture con-
version of the reference data. The more the many points 
overlap with small differences, the better the evaluation 
is obtained.

Grasping motion determination
Concept of determining grasping motion
Since cloth products are a flexible material, deforma-
tion of cloth might occur by touching it. That is, even in 
a grasping operation, it is possible to assume operations 
such as sliding a finger under the cloth or letting a part 
of the cloth between fingertips. Thereby there is a pos-
sibility that the success rate of grasping can be improved. 
From the above, it is desirable to take into consideration 
not only the hand posture of grasping but also posture 
change in sequential order up to grasping.

Therefore, we take a policy of looking for suitable pos-
ture sequence in advance. Instead of manually giving 

(4)p(zt |xt) = �d
1

{dref (u′, v′))− dinput(u, v)}2 + C
,

a grasping posture in a descending manner, we take an 
approach to repeating trial and error according to vari-
ous grasping methods. However, there is a big problem 
with this approach: As the number of target postures 
increases, the dimension of the parameter space to be 
searched becomes larger, so that it is not realistic to 
obtain an appropriate solution. Therefore, we decided to 
find an appropriate grasping method by limiting the end-
effector postures to be searched to two kinds; a via pos-
ture and a grasping posture.

A proper grasping motion seems to have a part depend-
ing on the shape of end effector. Therefore, in the course 
of trying grasping, we try to clarify two aspects: elements 
generally common with two fingered hands and ele-
ments dependent on end-effector. If we grasp the former, 
it can be expected to find appropriate grasping motions 
through realistic number of trials even when using differ-
ent end-effectors.

Search for an posture pair
A posture of an end-effector is represented by six param-
eters (x, y, z,φ, θ ,ψ). Therefore, it is necessary to con-
sider a combination of a total of 12 variables in order 
to decide an appropriate grasping motion. However, 
even if it is simplified so far, the search space is still 
high-dimensional.

We select grasping postures according to the policy as 
follows. First, the grasping position (xg , yg , zg ), which is 
fixed by the method in “Fine adjustment of position and 
orientation” section , is set as the center part of the thick-
est folded hem. Then nine posture variables are defined 

Fig. 4  Counting the number of edges from the result of canny edge detection
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as (xv , yv , zv ,φv , θv ,ψv) for a via posture and (φg , θg ,ψg ) 
for a grasping posture, Next, they are randomly changed 
within a pre-defined spatial range to grasp the cloth 
product. Both the combination of variables at the time 
of success and the combination of variables at the time 
of failure are recorded, respectively. From the results, 
we identify the area where successful grasps are con-
centrated in the posture parameter space, and specify 
the posture parameters with high importance for stable 
grasping. Then, by selecting appropriate ranges of values 
for the posture parameters, set of parameters which are 
the center of the ranges are set to the via posture/grasp-
ing posture.

By this procedure, the number of posture variables 
to be noticed can be reduced. It is considered that 
posture variables defined by such procedure are also 
effective for hands having similar mechanical structure 
but another fingertip shape. Therefore, when using 
another two fingered hand, it is sufficient to search 
for two hand postures in the reduced low dimensional 
search space.

Experiments
Experimental settings
NEKONOTE 6 DOF for Academic manufactured 
by RT CORPORATION was used as an experimen-
tal robot. As a three-dimensional range image sensor, 
Xtion PRO LIVE manufactured by ASUS was used, and 
a web camera (BSW32KM04WH) made by Buffalo Co., 
Ltd. was also used. A color image and a depth image 
of the size of 640× 480 [pixel] can be acquired from 
the three-dimensional range image sensor, and a color 
image of the same size can be acquired from the cam-
era. As shown in Fig. 5, the manipulator was fixed on a 

table, and the 3D range image sensor was installed at 
the point of view where a cloth product and the manip-
ulator can be seen from above. Also, the camera was 
installed in a position where hems on the near side of 
the cloth product was easy to see. For cloth products, a 
rectangular cloth towel, which is 340× 340 (mm) size, 
35.7 (g) weight, and 1.23 (mm) thickness, was used. In 
doing grabbing task, we folded this towel in four and 
put it on the table.

Orientation estimation of cloth products
When the folded cloth product is shot with a camera, the 
number of hems that can be observed from the camera 
is one or two. As shown in Fig. 6, the types of observable 
hem can be classified as follows.

1.	 The thickest folded hem
2.	 There is one gap between overlapped cloths.
3.	 There are two or more gaps between overlapped 

cloths.

When these images were obtained, it was examined 
whether the position of the hem to be grasped can be 
specified by using the number of edges detected from the 
border.

Figure  7 shows the relationship between the type 
of hems, the position and the number of edges when 
only one hem is visible from the camera. Each numeri-
cal value is after rounding off. In the table, “position of 
the hem” shows the rough position of the hem when 
viewed from the sensor. From this table, when the aver-
age number of edges detected from the hem on the 
near side is about two, there is a high possibility that 
the hem is the thickest folded hem. This is because the 
average number of edges will be greater than three if 
it is another hem. Likewise, even if a hem exists in the 
front or the lower right corner and the average number 
of edges is about three, it can also be identified as the 
thickest folded hem.

On the other hand, Fig.  8 shows the relationship 
between the type and position of the hem when two 
edges are visible on the near side. In this case, the posi-
tion of the visible hem is divided on the right side or 
the left side from the sensor. Naturally, it does not hap-
pen when the thickest folded hems appear on both sides. 
The same is true for cases that hems only with one gap 
appears on both sides. From these results, it was found 
that when the thickest folded hem is visible on the left 
side, the average number of edges becomes one or two, 
and when it is visible on the right side, the average num-
ber of edges becomes three.

These trends basically depend on the number of 
gaps due to overlapping of cloths. However, although Fig. 5  The experimental environment
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the ratio of the number to edges of this experiment 
has some degree of invariance, the number itself is 
due to cloth hardness, lighting conditions, etc. It is 
necessary to clarify these experimentally. Another 
important point is that if only one side is visible and 
the hem type is (2) or (3) shown in Fig.  6, the thick-
est folded hem cannot be specified. Also, when two 
sides are visible, ambiguity remains between left (3)–
right (2) and left (3)–right (3). In such a case, addi-
tional method such as actively moving the cloth and 
observing it again are necessary. However, in cases 
other than the above, it is possible to specify even if 
the position of the thickest border is not visible if we 
use the relationship in Fig. 8.

Figures 9 and 10 show examples of recognition results 
of hem on the basis of the above. Fig.  9 shows a case 
where one hem is visible on the near side, and Fig.  10 
shows two cases. The right side is the output image of 
the recognition result, green line is the result of contour 
extraction, blue line is the result of specifying the hem, 

the area painted white is an area used to calculate the 
number of edges. Results that a hem with red line was 
recognized as the thickest folded hem.

Fig. 6  Three types of hem

Fig. 7  The relationship between the type of hems, the position and 
the number of edges when only one hem is visible from the camera. 
The number (1)–(3) means three types of hem explained in “Orienta-
tion estimation of cloth products” section

Fig. 8  The relationship between the type and position of the hem 
when two edges are visible on the near side

Fig. 9  Results of the thickest hem detection in a case where one 
hem is visible on the near side

Fig. 10  Results of the thickest hem detection in a case where two 
hems are visible on the near side



Page 9 of 12Moriya et al. Robomech J  (2018) 5:1 

Fine adjustment of reference data with input data
By the processing mentioned in the previous section, the 
position of the thickest folded hem is specified. Next, 
a process of determining the grasping position is per-
formed using particle filter. In this section, the procedure 
is explained. First, 30 pieces of learning data for grasping 
position determination were prepared. In collecting this 
data, a folded cloth product was randomly placed in a 
region where length 300mm× width 500 mm in front of 
the manipulator. With respect to the direction of the cloth, 
it was also randomly placed in the range of -90° < θ < 90°, 
assuming θ = 0◦ when the direction of the thickest folded 
hem is perpendicular to the axis in the front direction 
of the robot. The number of particles of the particle fil-
ter used in the alignment process was set to 250. The 
standard deviation of particles on prediction process was 
empirically set to (x, y, θ) = (10mm, 10mm, 5◦).

Examples of alignment using particle filter are shown 
in the Fig. 11. The red part is input data, the green part 
is learning data, and the part where the two data over-
lap is represented by yellow. The orange points repre-
sent grasping position candidates. Points without filling 
are the original grasping position linked to the learning 
data and another point with filling is the grasping posi-
tion with respect to the input data newly obtained by the 
alignment process. As can be seen, the original grasping 
position was moved near the midpoint of the edge. This 
result shows that it was possible to determine an appro-
priate grasping position.

In the positioning process according to the Eq. (3), 
if processing was performed at all the existing points 
(10,000–15,000), it takes a long processing time. There-
fore, we decided to thin out the points to be compared. 
We sampled points every n pixels while doing raster 
scanning, and examined the accuracy of alignment in 

each sampling. As a result of reducing the sampling to 
1/20, the accuracy of alignment was almost the same as 
before the thinning. On the other hand, the processing 
time was greatly reduced from about 11 seconds to about 
0.6 seconds.

Parameter search for via posture and grasping posture
In this sub-section, we report experiments that deter-
mine the appropriate via posture and grasping posture 
through actual grasping trials. First, as shown in Fig. 5, a 
cloth product was placed in a predetermined position in 
front of a robot. The position of the thickest folded hem 
was made to be the farthest from the installation position 
of the robot. That is, in the case where the x axis is for-
ward, the y axis is on the horizontal plane perpendicular 
to the x axis, and the z axis is upward, the orientation of 
the hem was parallel to the y axis.

Let (dx, dy, dz) be the via position of the end-effector 
as seen from the coordinate system of the grasping posi-
tion, and let (αv ,βv , γv) be roll-pitch-yaw angles of the 
via posture and (αg ,βg , γg ) be roll-pitch-yaw angles of 
the grasing posture, respectively. αg = βg = γg = 0◦ 
when grasping position is grasped from just above 
cloth product and the direction of fingertips are par-
allel to the thickect folded hem. The ranges are lim-
ited as follows: −π/4 ≤ {αv ,βv ,αg ,βg } ≤ π/4, and 
−30 ≤ {dx, dy, dz} ≤ 30mm for the position of via pos-
ture. On the other hand, as for γ, it was clarified by prior 
examination that the success rate of grasping drops 
greatly unless the value is set to a value close to 0. There-
fore, γ = 0 was fixed.

Within the above range, posture parameters of the end-
effector were randomly selected according to a uniform 
distribution, and 100 grasping trials were performed. 
The method of determining whether or not grasping was 

Fig. 11  Examples of fine adjustment for grasp point detection
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successful was as described in “Successful grasp defini-
tion and issues” section. That is, if the robot grasped the 
thickest folded hem and lifted it without collapsing the 
shape of the cloth, the worker visually recognized and 
judged it to be successful. Otherwise, it was judged as a 
failure. The result was that the number of times of grasp-
ing succeeded was 50 times and that of failures was 50 
times. The purpose of this experiment was to find the 
range of via/grasping posture that was easy to succeed.

Figure  12 shows two graphs plotting success/fail-
ure with the wrist roll angle α as the horizontal axis. 
The blue dot indicates that the grasping was success-
ful, and the red dot indicates that it failed. From this 
result, since there is no noticeable trend in the value 
of α, we decided to always set α = 0 in “Experiment” 
of the next subsection. On the other hand, Figs. 13 and 
14 shows the result of plotting four posture param-
eters: two positional parameters (dx, dz) and pitch 
angles (βv ,βg ) that were considered to have a large 
influence on successful grasping. Figure  13 plots the 
samples when βv < βg. A blue color means a success, 
a red color means a failure sample, a circle mark indi-
cates a via posture, and a triangle mark connected by 
a line indicates a grasping posture shifted from the via 
posture. From these graphs, it turns out that successful 
grasps are concentrated when via posture was started 
from the area surrounded by green square. This means 
a movement that puts the fingertip between the cloth 
product and the desk. On the other hand, Fig. 14 plots 
samples for βv > βg. There were many successes in the 
square part of the figure. This was a grasping method 
in which the cloth product was pressed down with the 
fingertip and then the other fingertip was hooked on a 
hem. From the above results, it is appropriate to shift 

the posture so that the cloth product is pressed down 
by a fingertip through the back side as viewed from the 
robot (βv > βg and dx > 0).

Experiment with integrated system
Based on the experiments introduced in “Orientation 
estimation of cloth products”, “Fine adjustment of refer-
ence data with input data”, “Parameter search for via pos-
ture and grasping posture” sections, a robot system that 
performs from detection of cloth products to grasping 
had conducted. With the same placement method as the 
learning data collection described in “Fine adjustment of 
reference data with input data” section, a folded fabric 
products was randomly placed in front of the robot, and 
it was investigated whether grasping can be done con-
sistently. It included the detection of the thickest holded 
hem, determination of the grasping position, and deter-
mination of via/grasping posture.

As described in “Parameter search for via pos-
ture and grasping posture” section, end-effector pose 
where grasping is successful with a high success rate 
had already been investigated. For a proof experiment 
explained here, the average value of pose parameters of 
via/grasping postures (dx, dz ,βv and βg) in the light blue 
area shown in Fig. 13 were used. That is, the relative via/
grasping posture with respect to the cloth product was 
determined from the average value, and grasping opera-
tion was performed based on the inverse kinematics cal-
culation according to the posture estimation result of 
the cloth product. The cloth product was in a quadrant 
state as shown in Fig. 1. The result was 46 successes and 
4 failures out of 50 trials. All of the cause of the failure 
was that inverse kinematics of the robot arm could not 
be solved.

Fig. 12  Tendency of success/failure to the difference of angle α
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Conclusion
In this paper, we described a method to pick up a folded 
cloth product by a single-armed robot. We focused on a 
problem on picking up a folded cloth, and organize tasks 
to attack it. Then, we proposed methods of grasp posi-
tion estimation composed of two stages: detection of 
the thickest folded hem and pose estimation of the cloth 
product. In addition, we attempted to search for appro-
priate grasping postures, and found that there are regions 
where the success rate of grasp was high. In experiments 
using a real robot, we achieved a picking task with 92% 
success rate.

As future work, we apply the proposed methods to 
other types of folded cloth products. It is also needed to 
perform the same experiment with another single arm 

robot. Furthermore, it is desired to improve the proposed 
method so tha robots grasp even if there are multiple 
overlapped cloth products.
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