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Control of mobile robot by switching 
traveling direction and control gain
Satoko Yamakawa1* and Kenta Ebara2

Abstract 

The control method based on the time-state control form has been proposed to stabilize the chained system, 
which is a canonical-form nonlinear system. In this study, the control method is used for controlling a mobile robot 
in auto-parking situations. The proposed controller includes a parameter that is allowed to switch at arbitrary times 
without loss of the stability of the system. The robot employing the proposed controller reaches the target position by 
switching its traveling direction to avoid collisions with obstacles. However, the shape of the robot gives a problem. 
We resolve this by using the switchable parameter included in the proposed controller, and show the availability of 
switching the parameter. Furthermore, the appropriate switching of the traveling direction and the parameter enables 
the robot to reach the target faster. Thus, we search the appropriate values of the parameter and the switching points 
of the traveling direction using the genetic algorithm. In the auto-parking experiments that incorporate the search 
results, the robot can reach the target position faster.
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Introduction
Rapid technological advances have led the automo-
tive industry into adopting driver-assistance systems for 
safety, such as the collision-avoidance systems. In the 
future, more advanced systems for better driving and 
assistance are expected to be developed. Automatic park-
ing systems are being researched as advanced support 
systems. For example, in some studies, the path plans for 
parking were calculated by using optimization methods 
when the obstacle maps were given [1–3].

Another approach for controlling the vehicle motion is 
the use of controller design methods based on kinematic 
models without pre-calculating the optimal paths for a 
given map. The kinematic models of four-wheeled cars, 
two-wheeled cars, truck trailers and so on can be repre-
sented in a chained form, which is a canonical form of 
nonlinear systems. The chained-form systems cannot be 
stabilized by a time-invariant smooth static controller 
[4]. Therefore, many controllers for chained systems have 
been proposed. Such controllers include time-varying 

functions or non-smooth functions such as a sign func-
tion [5–12]. The control design method based on the 
time-state control form is also one such controller [13]. 
By using the time-state control form, the controller can 
be relatively easily designed based on the linear control 
theory. However, the controller requires the switching 
of the direction of the time axis. Because of the switch-
ing, the conditions for stabilizing the controlled system 
had not been exactly proven for a long time. Generally, 
the stability of the switched system depends on not only 
the characteristics of individual subsystems but also 
the timings for switching. It is known that the switched 
systems may be unstable by switching at inappropriate 
timings even if they are composed of stable linear sub-
systems [14, 15]. Therefore, for the switched systems, the 
stabilization conditions are mostly derived under some 
assumptions, such as the periodic switching, dwell time, 
and state-driven switching. We have already proved the 
stabilization conditions for the time-state control-form 
system with periodic switching [16]. However, if distur-
bances exist, the controller cannot switch its parameters 
periodically. Therefore, we exactly derived the stabiliza-
tion conditions for the time-state control-form system 
with arbitrary switching by using the common Lyapunov 
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function [17, 18]. To demonstrate the control method, 
we proposed a tracking controller for a wheeled inverted 
pendulum robot, which needs to suddenly switch its 
traveling direction for stabilizing the tilt angle of the 
robot [19].

Similarly to automobiles, robotic vehicles cannot move 
laterally. Therefore, the traveling direction of robots 
needs to be switched backward and forward when park-
ing in a narrow space with obstacles. The controller 
based on the time-state control form, which switches 
the direction of the time axis, seems to be adequate to 
control vehicles that have to switch their traveling direc-
tion. Accordingly, we apply the control method to the 
auto-parking problem of a car-like robot. The controller 
proposed in this study involves the switching of not only 
the traveling direction but also a parameter value, which 
is allowed to switch to an arbitrary value at an arbitrary 
time while theoretically maintaining the stability of the 
system. Oyama and Nonaka [20] applied the predictive 
control method to the time-state control-form system to 
determine the switching points of the traveling direction 
under the restriction that the direction is switched only 
once. In this study, the robot measures the distance to 
obstacles and switches its traveling direction to avoid col-
lisions as many times as necessary. Although the switches 
occur aperiodically depending on the shapes of the obsta-
cles and the robot, the robot that employs the proposed 
controller can reach a given target position without pre-
calculating the optimal paths for a given map. However, 
in numerical simulations, a problem arises because of 
the shape of the robot. We use the switchable parameter 
included in the proposed controller to solve this problem. 
Switching the parameter not only provides the solution 
but also enables the robot to reach the target position 
quickly. The time required to reach the target position 
also depends on the timing for switching the traveling 
direction. Consequently, a genetic algorithm is intro-
duced to search the appropriate values of the parameter 
and the switching points of the traveling direction when 
the obstacle map is known. In the auto-parking experi-
ments that incorporate the search results, the robot can 
reach the target position faster.

Switching control law
The model of a wheeled robot considered in this paper 
is shown in Fig. 1. The robot has two independent driv-
ing wheels, and its translational velocity v1 and rotational 
velocity v2 can be controlled. The ground coordinate sys-
tem is defined as shown in Fig. 1. The central position of 
the two wheels is denoted by the (x, y) coordinates, and 
the heading angle with respect to the x-axis is denoted by 
θ. Assuming that the wheels do not slip on the ground, 
the kinematic model of the robot is represented by

 
Consider applying the controller design based on the 

time-state control form to the system (1).

Theorem  Assume that |θ|  <  π/2 in Eq.  (1). Depending 
on the translational velocity v1, the rotational velocity 
input v2is given as

where sgn(v1) is the sign of v1, and a control parameter α is 
allowed to switch to an arbitrary positive value at an arbi-
trary time. Then, y and θ converge to 0 under the arbitrary 
translational velocity v1  ≠  0 if the control gains k1and 
k2are positive.

Proof  Please refer Appendix.□

Remark 1  The theorem guarantees the convergence of 
y and θ as long as the robot continues to move backward 
and forward. In other words, y and θ will not change if 
the time scale x does not change. In practical problems, 
the state x can be controlled so that x approaches 0 and 
stops changing after y and θ become sufficiently small.

Remark 2  The trajectories in the x–y plane are inde-
pendent of the absolute value of the translational velocity 
v1 because y and θ change according to the state equation 
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Fig. 1  Model of the two-wheeled robot
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(A10). Accordingly, the translational velocity v1 can be 
changed to accelerate or decelerate while keeping the tra-
jectories of the robot as long as the switching points are 
not changed.

Remark 3  When α =  1, sgn(v1) does not change, and 
there are not disturbances, the convergence rate at which 
the trajectory of the robot approaches the x-axis is deter-
mined by the roots of a characteristic equation:

Thus, knowledge of the linear control theory can be 
used to decide the control gains k1 and k2.

Experimental setup
We used the robot shown in Fig.  2, which was made 
by Vstone Co. Ltd. The robot had the dimensions of 
483 ×  314 ×  166  mm. Two driving wheels were collo-
cated at the front of the robot and a passive caster was 
attached as a rear wheel. Encoders were attached to both 
driving wheels to measure the angles of the wheels’ rota-
tions. The position (x, y) and the angle θ can be calcu-
lated from the measured data.

Equipment may have modeling errors or disturbances 
that are not included in the kinematic model given by 
Eq. (1), for example, the friction and the delay of motors. 
Thus, a proportional-integral controller (PI controller) 
is used to decrease the difference between the actual 
yaw rate V2 (= θ̇) calculated from the data measured by 
encoders and the control input v2 proposed in “Switch-
ing control law” section. The following control input is 
applied to the equipment instead of v2.

(3)s2 + k2s + k1 = 0.

(4)v′2 = kP(v2 − V2)+ kI

∫

(v2 − V2)dt.

The gains kP and kI are chosen such that the error 
(v2  −  V2) converges sufficiently fast. In this study, the 
gains were determined as kP = 0.8 and kI = 16.0 from the 
results of the step-response experiments. A Windows PC 
connected to the robot by wires calculates the control 
inputs from the sensor data; the PC also controls the two 
driving wheels of the robot.

Obstacles with vertical walls were located based on the 
auto-parking problems. A laser range finder URG-04LX 
made by Hokuyo Automatic Co. Ltd. was mounted on the 
robot and used to measure the distance from the robot 
to the obstacles. The measurable maximum distance of 
the sensor was 4.0  m, the angular resolution was 0.36°, 
and the sampling rate of the measurement was approxi-
mately 100 ms. As shown in Fig. 1, the rectangular area 
that includes the robot is defined. The width of the area 
L1 is 370  mm, and the length L2 is 540  mm. When the 
obstacles enter this area, the robot switches the traveling 
direction to avoid collisions.

The ground coordinate system is fixed so that the 
coordinate of a given target position is (x, y, θ) =  (0, 0, 
0). As mentioned in Remark 1, it is guaranteed that 
y and θ converge to 0 as long as the robot continues to 
move using the controller (2). However, they take infi-
nite time to completely converge. Therefore, the robot 
is stopped by assuming that the state converged, if 
|x| +

√

y2 + tan2 θ < 0.02 is satisfied.

Auto parking with switching
Applying the controller shown in “Switching control 
law” section to the robot described in “Experimental 
setup” section, we performed numerical simulations and 
experiments for auto parking with obstacles. The con-
trol gains were chosen as k1 = 32 and k2 = 8 so that the 
roots of Eq. (3) were assigned to the Butterworth pattern 
− 4 ± 4i. The traveling velocity was set as v1 = 0.05 m/s 
so that the wheels of the robot would not slip on the 
ground.

Switching the parameter α
Consider a parallel-parking problem. An obstacle is 
placed on the shaded portion in Fig. 3. The coordinates 
of the corners of the obstacle are (x, y) = (0.5, 0.2), (0.5, 
− 0.2), (− 0.5, − 0.2), and (− 0.5, 0.2).

Results of numerical simulations
The initial state of the robot is (x0, y0, θ0) = (− 0.4, 0.5 m, 
0°). The initial traveling velocity v1 is positive, that is, the 
robot moves forward at t = 0. When the parameter α is 
set at 1, the trajectory of the robot in the horizontal plane 
is shown as a rigid line (see Fig.  3). At first, the robot 
moved forward. When its right front corner approached 
the obstacle at (x, y) = (0.074, 0.047), the robot switched Fig. 2  The wheeled robot used in the experiments
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its traveling direction to avoid collisions. Next, when 
the robot moved backward, its rear came close to the 
corner of the obstacle. Then, the traveling direction was 
switched again. The thin lines and dotted lines in Fig. 3 
illustrate the area of the robot to avoid collisions when 
its direction was switched. The robot reached the target 
position after aperiodically switching the direction four 
times based on the shape of the robot and the obstacle.

Another example is the simulation result in the case 
that (x0, y0, θ0) =  (0.1, 0.5 m, 0°) and v1 < 0 at t = 0, as 
shown in Fig. 4. In this case, the robot moved backward, 
and its left rear corner approached the obstacle at a shal-
low angle, that is, a large |θ|. Then, the robot repeatedly 
switched its direction while staying at the same position; 
it could not move any further. This happened because the 
robot turned rapidly the moment the traveling direction 
was changed. As shown in Fig.  5, the distance between 
the body of the robot and the obstacles is different based 
on the heading angle. Thus, the robot repeatedly switched 
its traveling direction because of rapid turnings before it 
moved a sufficient distance away from the obstacles. This 
problem may occur if the vehicle is not circular in shape.

Therefore, we pay attention to the parameter α included 
in the controller (2). The parameter α is allowed to 
change its value arbitrarily, but its practical applications 
have hardly been discussed. In this study, the parameter 
α was used for solving the problem based on the shape 
of the robot. For the same initial conditions as in Fig. 4, α 
was switched to a small value (α = 0.5) when the traveling 
direction was switched the first time. The small param-
eter α made the yaw rate θ̇ small; therefore, repeated 
switching did not occur. As a result, the robot reached 
the target position as shown in Fig. 6. However, the small 
α value tended to delay the convergence of θ because θ is 
multiplied by α in Eq. (2). In the simulation result shown 

in Fig.  6, the traveling direction was switched 19 times, 
and it took 115 s for the robot to reach the target posi-
tion. Therefore, we introduced more switches to α. After 
switching v1 a second time, α was switched to 8. Further-
more, α was returned to 1 after switching v1 a third time. 
The trajectory in the x–y plane in this case is shown in 
Fig. 7. The time transitions of the states x, y, and θ, the 
traveling direction sgn(v1), the parameter α and the rota-
tional velocity input v2 are shown in Fig.  8. The control 
gain increased by the large α made the state θ approach 0 
quickly. As a result, the robot reached the target position 
in 44 s.  

Remark 4  Generally, it is not easy to guarantee the sta-
bility of the system that includes the switching of con-
trol gains. However, in the control method in this paper, 
the absolute value of one control gain can be switched 
by switching α arbitrarily at any time while the stability 
of the system is guaranteed. The appropriate switching 
of the parameter α can circumvent the problem associ-
ated with robots not being able to move because of their 
shapes, and enables the robot to reach the target position 
faster.

Remark 5  The poles of both subsystems of the switched 
system (A10), that is, the roots of

are changed by α as shown in Fig. 9. Both poles approach 
the imaginary axis when α decreases, and the states will 
converge slowly. On the other hand, when α increases, 
one root approaches negative infinity and the other root 
approaches 0. If α is too large, not only will the input 
value v2 become large but also the convergence may be 

(5)s2 + αk2s + k1 = 0,
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Fig. 3  Numerical simulation result of parallel parking, (x0, y0, 
θ0) = (− 0.4, 0.5 m, 0°)
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slow. Therefore, it is better to temporarily change α to an 
appropriate value.

Experimental results
The black rigid line in Fig.  10 shows the trajectory in 
the experiments in which the switching conditions of α 
and the initial conditions are the same (as in Fig. 7). The 
trajectory is almost the same as the simulation result 
in “Results of numerical simulations” section, which 
is shown again as a blue line in Fig.  10. The transitions 
of the state and the inputs are shown in Fig.  11. In the 
experiments, to cancel out the influence of inertia, the 
robot was stopped for a second before it started moving 
in the opposite direction after approaching the obstacle. 
In this case, it took a longer time, i.e., 47 s, than the simu-
lation to satisfy the convergence conditions.

The trajectories of simulations and experiments are 
slightly different when the angular velocity is large. In 
the lowest graph of Fig. 11, the black and the red lines 
indicate the control input v2 and the actual yaw rate V2. 
After the control input v2 increases rapidly, V2 delays, 
and the experimental trajectory deviates from the result 
of the simulation. Although the PI controller (4) was 
used in the experimental equipment to approximate V2 
to v2, it could not completely control the angular veloc-
ity so as to change rapidly, and some differences in the 
trajectory were generated. Furthermore, immediately 
after the second switching of the traveling direction, 
the angle θ overshot because of large v2. However, the 
oscillation that resulted from the overshooting was 
restrained soon by the feedback controller (2). Natu-
rally, the fourth switching point was not exactly the 
same as the simulation result because of these slight dif-
ferences in trajectory. Nevertheless, the robot reached 
its target position.

Fig. 5  Repeated collisions by turnings at a fixed position
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Fig. 6  Numerical simulation result when α is switched as 
α = 1 → 0.5
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Fig. 7  Numerical simulation result when α is switched as 
α = 1 → 0.5 → 8 → 1

-0.3
0.0
0.3

0.0
0.3

-1.0
0.0
1.0

-1
0
1

0 10 20 30 40
-1.0
0.0
1.0
2.0

0
5

10

x[
m

]
y[

m
]

[r
ad

]
sg

n(
v 1)

v 2

t [s]

α
θ

Fig. 8  States and inputs in numerical simulation when α is switched 
as α = 1 → 0.5 → 8 → 1



Page 6 of 10Yamakawa and Ebara ﻿Robomech J  (2017) 4:29 

Influences of switching points
Consider a situation in which the robot turns almost 90° 
before parking. An obstacle is set up in the shaded portion 
in Fig. 12. The coordinates of the corners of the obstacle 
are (− 0.5, 0.3), (0.3, 0.3), (0.3, − 0.3), and (− 0.5, − 0.3). 
The initial state of the robot is given as (x0, y0, θ0) = (− 0.9, 
0.6 m, − 85°), and the initial traveling velocity v1 is positive. 
In this example, after switching the traveling direction to 
avoid collisions, the robot has to switch its direction to for-
ward again somewhere to reach the target position x = 0. 
Therefore, the traveling direction is switched at x =  Xs. 
In the experiments, the position of Xs was set at −  0.9, 
− 1.2, and − 1.8 m, and the trajectories were compared. 
In Figs. 12 and 13, the trajectories and the states are shown 
as a rigid purple line, a dotted blue line, and a narrow red 
line. In all the cases, the robot reached the target posi-
tion after switching the traveling direction several times. 
However, the time taken to satisfy the convergence condi-
tions was different in each case. In the case of Xs = − 1.2, 
the required time was 61 s, but it was 86 s in the case of 
Xs = − 1.8. An additional run and extra time were required 
when Xs was very far away from the obstacle. Conversely, if 
Xs had been too close to the obstacle, the number of times 
of switching the traveling direction would have increased. 
In the experiments, the traveling direction was switched 
four times in the case of Xs  =  −  0.9. As shown in the 
simulation results (see Fig.  14), the narrow space causes 
frequent switches and long traveling distance before the 
convergence conditions are satisfied. Furthermore, in prac-
tice, switching frequently may require a longer time than 
the time required for traveling the distance because it is 
time-consuming to accelerate and decelerate to switch the 
traveling direction. From the aforementioned results, like 
the parameter α, the switching point is one of the factors 
that affect the time required to reach the target position.

s

Fig. 9  Roots of the characteristic Eq. (5) when α is changed, (k1, 
k2) = (32, 8)
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Search of the control parameter and switching 
points
As mentioned in “Auto parking with switching” section, 
there is a possibility of fast convergence by appropri-
ately choosing the control parameter α and the switch-
ing points Xs. Thus, we consider searching for α and Xs so 
that the robot can reach the target position in a shorter 
time when the obstacle map is known in advance. The 
time required to reach the target varies discontinuously 
according to the number of times of switching the direc-
tion as shown in Fig.  14; therefore, a genetic algorithm, 
which is one of heuristic approaches, is used to search for 
better solutions.

Application of the genetic algorithm
In this study, a traditional genetic algorithm is used. At 
first, n candidate solutions are prepared in the first gener-
ation population. Each candidate solution is represented 
as a string of 1s and 0s which length is m. The fitness 
function J is evaluated for each solution. Next, based on 
the evaluation results, a new generation population of 
solutions is generated using three genetic operations: 
selection, crossover, and mutation. To search for better 
solutions, this process is repeated until the number of 
generations reaches N [21].

We now reconsider the auto-parking problem 
described in “Influences of switching points” section. 
The parameter α is given as 1 at t = 0. The parameter α is 
switched to α1 and α2 after the first and second switches 
in the traveling direction, respectively. The search range 
of αi, i = 1, 2, is set as 0 < αi ≤ αmax. The switching point 
Xs is searched in the range of Xsmin ≤ Xs ≤ Xsmax. Let the 
number of elements of the candidate solutions m be 24; 
we divide the candidate solution into three 8-bit numbers 
ξ1, ξ2, and ξ3. Then, Xs, α1, and α2 are defined as

For each solution, the trajectory of the robot with a 
given initial condition is simulated numerically. The sim-
ulation is terminated when the convergence conditions 
mentioned in “Experimental setup” section are satisfied 
or when the robot does not reach the target position 
within 200 s. By using the states xe, ye, and θe and the time 
te when the simulation is terminated, the fitness function 
is defined as

A large value of J indicates fast convergence, and the 
genetic algorithm searches the solutions that indicate 
large fitness values. To eliminate the situation that the 
robot stops before reaching the target position (as shown 
in Fig. 4), the searching program assumes that the robot 
cannot move any further and terminates the simulation 
if the number of switching operations exceeds 10. In this 
case, the fitness function for that solution is assigned the 
value 0.

Search results
Let the number of candidate solutions n be 20, and the 
terminal generation number N be 100. We set the search 
ranges at Xsmin = − 1.2, Xsmax = − 0.6, and αmax = 10. The 
parameters were searched for the case in which the initial 
conditions and obstacles were the same as in “Influences 
of switching points” section. As a result, the average fit-
ness of 20 solutions J̄  and the maximum fitness Jmax 
changed with the generation, as shown in Fig.  15. The 
average fitness increased while oscillating. The genetic 
algorithm does not guarantee an optimal solution, but 
it can provide several better solutions. In this case, sev-
eral solutions having high-level fitness were found, for 
example (Xs, α1, α2)  =  (−  1.0, 4.57, 1.25) and (Xs, α1, 
α2) = (− 1.0, 0.82, 3.28).

We also searched the parameters for other ini-
tial conditions in the range of −  85°  <  θ0  < +  85° and 
− 1.50 m < x0 < − 0.70 m. When there was sufficiently 
wide space for the robot to move freely, Xs became large 
enough to minimize the number of switching opera-
tions and α tended to be large in order to fast converge. 
The characteristics of trajectory varied depending on 
which corners of the robot and the obstacles approached 
and how the states of the robot were when the collision 
occurred. Several characteristic trajectories are shown in 
Fig. 16.
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Experimental results with searched parameters
The results of the auto-parking experiment that incor-
porates the searched parameters (Xs, α1, α2)  =  (−  1.0, 
4.57, 1.25) are shown as a rigid line in Fig. 17. The large 
value of α after the first switch rapidly made the head-
ing angle θ close to 0. Then, after the traveling direction 
was switched again at Xs = −  1.0, the parameter α was 
switched to the small value of 1.25, and the robot reached 
the target position by switching only twice. By using the 
parameter searched by the genetic algorithm, the robot 
reached the target position in 48 s, which is less than the 
time taken in the experiments in “Influences of switching 
points” section (see Fig. 13) in which α is fixed as 1.

Remark 6  In this paper, the value of α was switched at 
the same switching points as the traveling direction for 
simplicity. When the parameter α is allowed to switch 
at arbitrary timings, better solutions may be found by 
searching the switching points of α simultaneously 
although the time required for searching may be long.

Conclusions
We applied the control method based on the time-state 
control form to control a mobile robot in auto-parking 
situations. The proposed controller includes the param-
eter α, which is allowed to switch at arbitrary timings 
without loss of the stability of the system. The robot that 
employed the proposed nonlinear controller switched 
its traveling direction automatically to avoid collisions 
with obstacles and reached the target position. How-
ever, the shape of the robot gave problems. We used the 
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switchable parameter α to solve the problem and showed 
the availability of switching the parameter. Furthermore, 
by appropriately switching the parameter α and the trave-
ling direction, the robot could reach the target faster in 
the simulations and experiments. In this method, only 
one parameter is temporarily changed and compli-
cated recalculations such as path optimizations are not 
required. When the obstacle map was known in advance, 
the appropriate values of the parameter and the switch-
ing points of the traveling direction were searched using 
the genetic algorithm. In the auto-parking experiments 
that used the search results, the robot reached the target 
position faster.
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Appendix
In the method based on the time-state control form, a 
chained system is transformed into two linear systems: 
the state-control part, which is an nth order linear sys-
tem, and the time-control part, which is a first-order 
linear system. We generally provided the conditions for 
asymptotically converging the state of the nth order lin-
ear system under arbitrary switching of the time axis 
[18]. The two-wheeled car version of the proof is given 
below.

Under the assumption that |θ| < π/2, we use the non-
linear coordinate transformation

and the input transformation

for Eq.  (1). The state x increases with respect to time 
t when v1  >  0; therefore, the state x can be regarded as 
an alternative time scale. Since the derivative of y with 
respect to x is

the state equation of z with the time scale x is obtained as

The state x is controlled by the input v1.

Eq. (A4) is the controllable canonical form. A state 
feedback controller for stabilizing the system given by 
Eq. (A4) can be easily designed using the linear control 
theory. When z → 0 as x → ∞ by using the stabilizing 
feedback controller, θ also converges to 0 because of the 
assumption.

When v1  <  0, x decreases with respect to the actual 
time t. Therefore, we have to introduce another time 
scale x′ = − x which increases with respect to t for ana-
lyzing the stability of the system. The state equation of z 
with x′ is obtained as

Now, a new time scale τ is defined as

(A1)z = (y, tan θ)T

(A2)µ =
v2

v1 cos3 θ

(A3)
dy

dx
=

dy

dt

dt

dx

= tan θ ,

(A4)
d

dx
z =

[

0 1
0 0

]

z +
[

0
1

]

µ.

(A5)
dx

dt
= v1 cos θ

(A6)
d

dx′
z =

[

0 −1
0 0

]

z +
[

0
−1

]

µ.
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Fig. 17  Results of the experiment with the parameters searched by 
the genetic algorithm
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The time scale τ is the distance traveled along the 
x-axis. The two systems (A4) and (A6) are described as a 
switched system by using the time scale τ [17].

The input function μ in the controller (2) can be rewrit-
ten as

By substituting (A9) into (A8), the closed-loop system 
becomes

where

Now, consider a Lyapunov candidate function as

If k1 and k2 > 0, V > 0 (z ≠ 0). The derivative of V with 
respect to τ for both v1  >  0 and v1  <  0 is calculated as 
follows:

where

From the condition α > 0, we have dV/dt ≤ 0. Further-
more, both (c, Ã) and (c, E2ÃE2) are observable pairs; 
therefore, it is guaranteed that z → 0 as τ → ∞ under 
the arbitrary switching of α and the sign of v1 by Lyapu-
nov’s stability theory.

(A7)τ =
∫ t

0

∣

∣

∣

∣

dx

dt

∣

∣

∣

∣

dt.

(A8)
d

dτ
z =















�

0 1
0 0

�

z +
�

0
1

�

µ (v1 > 0)
�

0 −1
0 0

�

z +
�

0
−1

�

µ (v1 < 0)

(A9)µ =
{

−
[

k1 αk2
]

z (v1 > 0)

−
[

k1 −αk2
]

z (v1 < 0)
.

(A10)
d

dτ
z =

{

Ã z (v1 > 0)

E2Ã E2 z (v1 < 0)
,

(A11)Ã =
[

0 1
−k1 −αk2

]

, E2 =
[

1 0
0 −1

]

.

(A12)V = z
TP z, P =

[

k1k2 0
0 k2

]

.

(A13)

d

dτ
V =







zT
�

ÃTP + PÃ
�

z (v1 > 0)

zT
�

E2Ã
TE2P + PE2ÃE2

�

z (v1 < 0)

= z
T

�

0 0

0 −2αk22

�

z

= −α z
T
c
T
c z ,

(A14)c = [ 0
√
2 k2].
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