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Abstract 

Essential tremor is a disorder that causes involuntary oscillations in patients both while they are engaged in actions 
and when maintaining a posture. Such patients face serious difficulties in performing daily living activities such as 
meal movement. We have been developing an electromyogram (EMG)-controlled exoskeleton to suppress tremors 
to support the movements of these patients. The problem is that the EMG signal of the patients is modulated by the 
tremor signal as multiplicative noise. In this paper, we proposed a novel signal processing method to demodulate 
patients’ EMG signals. We modelled the multiplicative tremor signal with a powered sine wave and the tremor signal 
in the EMG signal was removed by dividing the modelled tremor signal into the EMG signal. To evaluate the effective-
ness of the demodulation, we applied the method to a real patient’s EMG signal, extracted from biceps brachii while 
performing an elbow flexion. We quantified the effect of the demodulation by root mean square error between two 
kinds of muscle torques, an estimated torque from the EMG signal and calculated torque from inverse dynamics 
based on the motion data. The proposed method succeeded in reducing the error by approximately 15–45% com-
pared with using a low-pass filter, typical processing for additive noise, and showed its effectiveness in the demodula-
tion of the patients’ EMG signal.
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Background
Essential tremor
Essential tremor is the most common pathological 
tremor, in which the tremor symptoms occur while the 
patient is performing an action or maintaining a pos-
ture. Researchers have indicated that older people often 
experience essential tremor. Some have reported that 
about 4% of the population above the age of 40 experi-
ence essential tremor [1], while others have reported it in 
5–14% of individuals aged over 65 [2, 3]. Essential tremor 
can result in functional disability and causes social incon-
venience. Approximately 65% of essential tremor patients 
have serious difficulties in performing daily activities 
such as meal movement [4, 5].

Current approaches for the suppression of essential 
tremor in practical use can be divided into two types: 
the use of medication to suppress the overreaction of the 
nerves, and the use of electrical stimulation to a specific 
part of the brain, which is called deep brain stimulation. 
However, both of these approaches have significant limi-
tations, namely, the side effects of the medication, and 
the invasive nature of the implantation of electrodes into 
the brain, respectively. As a result, studies on alternative 
approaches are ongoing. Some researchers have used 
functional electrical stimulation to suppress the tremors 
[6–8]. Others have proposed various methods to sup-
press tremor mechanically. Yano et al. proposed an end-
effector meal-assistant robot with an adaptive filter for 
tremor suppression [9, 10]. Komatsuzaki et al. proposed a 
tremor suppression method using a shock absorber [11].
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Motivation
As an alternative mechanical approach, we have been 
developing an exoskeleton for the upper limbs to sup-
port voluntary movement in essential tremor patients 
(see Fig.  1a) [12–17]. The goal for the exoskeleton is to 
support patients while they have a meal, because meals 
are one of the most important daily activities that are 
affected by tremor. The advantages of using the exoskel-
eton are its ease of use—patients simply need to wear it—
and less invasiveness compared with existing approaches. 
The exoskeleton consists of two frames, a frame for the 
forearm and a frame for the upper arm; and a body, which 
contains a motor, gears, and a potentiometer as shown in 
Fig. 1b, c. Table 1 shows the specification of the exoskel-
eton. The shapes of the frames are very characteristically 
spiral, and this spiral is designed to make the process of 
wearing the exoskeleton easier compared with an exo-
skeleton that is fixed to the wearer’s body via cuffs. The 
spiral frames are made of aluminium alloy A5052 and are 
easy to manually loosen or tighten the spiral according to 
the user’s arm. The spiral frames also have enough stiff-
ness to constrain the wearer’s elbow joint movement. The 
combination of motor and gears mounted on the body 
are selected based on the measurement of a torque pro-
duced by the oscillated upper limb and the measurement 
of the motion speed during drinking movement. The 
specification and required specification of the selected 
combination is also showed in Table  2. The axis of the 
motor is placed parallel to the rotation axis of the frame 
of the forearm, and the motor torque is transmitted to 
the frame via several gears as shown in Fig. 1c. The rota-
tion axis of the frame of the forearm is also connected to 
the potentiometer with other several gears to monitor 
the rotation angle.

The core of the proposed exoskeleton is the control of 
the motor. The motor is controlled by an electromyogram 

(EMG) signal from the patients. EMG signals are often 
used as input signals to control exoskeletons because an 
amplitude of EMG signals are almost relative to the level 
of muscle activation [18–24]. Based on the estimation of 
the voluntary muscle activation from the amplitude of 
EMG signal, the motor drives along with the estimated 
voluntary motion; that is, when the user intends to per-
form an action, the motor follows the intended action, 
and when the user intends to maintain a posture, the 
motor retains its posture and constrains the joint motion. 
The torque of the motor is transmitted to the biological 
arm via one of the frames of the exoskeleton. As a first 
evaluation, we have already reported that the amplitude 
of the oscillation was reduced by about 50–80% using 
the proposed exoskeleton controlled with a toggle switch 
[17]. To reach the aforementioned final goal, as a next 
step, to control this exoskeleton along with the user’s 
intention, the accurate estimation of the voluntary move-
ment from the EMG signal of the patients is the most 
important remaining technical challenge.

Fig. 1  Exoskeleton for essential tremor patients. In a, the appearance of the proposed exoskeleton that is worn by a user is shown, in b, compo-
nents of the exoskeleton are shown, and in c, a picture of the inner structure of the body of the exoskeleton is shown

Table 1  Weight of the proposed exoskeleton

Part Weight (g)

Body 210

Frame 150

Table 2  Specification and required specification of geared 
motor

Parameter Specification Required specification

No load speed (deg/s) 83.9 More than 80.0

Stall torque (Nm) 1.3 More than 1.0



Page 3 of 16Matsumoto et al. Robomech J  (2017) 4:15 

EMG signals of essential tremor patients
The point of estimating the voluntary movements from 
the patients’ EMG signal is to remove the signal caus-
ing the involuntary oscillation in the EMG signal. It is 
well known that EMG signals of patients with tremors 
contain not only voluntary commands but also involun-
tary tremor signals. Figure 2 shows the raw EMG signal 
from an essential tremor patient. In the area empha-
sized with the black dashed circle, there are intermittent 
EMG bursts. This intermittent series of bursts is called a 
“grouped discharge”, and is a typical signal from tremor 
patients. The intermittent bursts alternately cause mus-
cle contraction and relaxation and result in the oscilla-
tion of the body. The frequency of the intermittent bursts 
is patient dependent, but is within a certain range; some 
authors report 4–12 Hz [25], while others report 5–8 Hz 
(Fig.  2) [26]. Additionally, we have observed that the 
characteristic of the shape of these intermittent bursts 
varies depending on the patient’s movement state, i.e., 
whether performing an action or maintaining a posture 
[16]. From the categorization of noise, there are two 
types of noise: additive noise and multiplicative noise. 
Figure 3 shows examples of the signal shape of each noise 
type. In the case of additive noise, noise is added to the 
input signal, and in the case of multiplicative noise, noise 
is multiplied by the input signal. It has been argued that 
tremor signals modulate the EMG of the tremor patients 
as multiplicative noise [27, 28].

Some approaches to tremor signal removal have been 
proposed by previous researchers. Rocon et  al. pro-
posed an adaptive filter with a weighted-frequency Fou-
rier linear combiner for the force and angular velocity 
data that they used for their proposed exoskeleton for 
tremor patients [29]. Yano et  al. developed an adaptive 
filter for force sensor data that was used in admittance 

control for a meal-assistance manipulator [9, 10]. This 
filter estimated the tremor frequency and attenuated 
the signal in the estimated frequency band using a band 
stop filter. Riviere et  al. proposed a filtering algorithm 
for physiological tremors that arise during microsurgery 
[30]. However, these studies aimed to reduce tremor 
noise in motion signals that were measured by sensors 
such as force sensors or position meters. In these signals, 
the effects of the tremors are observed as additive noise. 
Therefore, it is difficult to apply these methods to the 
patients’ EMG signal.

To remove multiplicative noise, the cepstral mean nor-
malization [31] (CMN) and maximum a posteriori esti-
mation CMN (MAP-CMN) methods are widely used in 
the field of speech recognition. However, CMN is not a 
real-time adaptive method, and MAP-CMN requires 
cepstral mean calculations based on a signal of suffi-
cient length to provide superior performance. It is diffi-
cult to use such methods for controlling the exoskeleton, 
because the acceptable estimation delay for controlling 
the exoskeleton is shorter than that of speech recogni-
tion; the exoskeleton must follow the user’s motion as 
fluently as possible. Additionally, to design the removal 
filter for the multiplicative tremor signal during a motion, 
it is essential to adapt the filter for the characteristics of 
the tremor signal during the motion. However, there are 
almost no studies that focus on the characteristics of the 
multiplicative tremor noise during a particular motion 
except for our previous study [15, 16], because the main 
objectives of the related studies on the characteristics of 
the tremor signal in EMG were to use the signal infor-
mation to diagnose the cause of tremor. Therefore, to 
control the exoskeleton accurately based on the EMGs of 
essential tremor patients during a meal movement, it is 
necessary to develop an approach that can treat a signal 

Fig. 2  Features of the EMG signals of essential tremor patients. These signals were measured from biceps brachii of real essential tremor patients 
when they performed elbow flexion. The red line shows the EMG signal and the black line shows the elbow angle
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with multiplicative noise in real time and adapt it to the 
characteristics of the tremor signal during the movement.

Objective
The objective of this paper was to propose a real-time 
processing method to demodulate the EMG signal of 
essential tremor patients, and to evaluate its effectiveness 
with a real patient’s EMG signal. To demodulate the EMG 
signal, we modelled the multiplicative tremor noise with 
a powered sine wave and divided the modelled multipli-
cative noise into the EMG signal. Based on the character-
istics of the tremor signal, to evaluate the effectiveness of 
the proposed method, the following two points must be 
discussed:

• • Whether the proposed method successfully demodu-
lates the real patient’s EMG signal.

• • Whether the proposed method works well for both 
signals extracted while performing an action and 

while maintaining a posture, because essential tremor 
is a postural and an action tremor, and the character-
istics of the signal vary based on the movement state.

Methods
In this section, we describe the detail about the proposed 
demodulation algorithm and describe how to evaluate 
the effect of the proposed method.

Concept of the proposed method
In the first half of “Methods”, we describe the pro-
posed real-time filtering algorithm used to demodu-
late the EMG signals of essential tremor patients. As we 
described in “Background”, the tremor signal in the EMG 
signals is multiplicative noise, and it is difficult to pro-
cess multiplicative noise with methods for additive noise. 
Figure  4 shows a simple example demonstrating that 
typical low-pass filters (LPF) and high-pass filters (HPF) 
do not work for multiplicative noise. In Fig. 4, a second-
order Butterworth filter with a cutoff frequency of 20 Hz 
was used as an LPF and HPF, and was used to process 
both additive and multiplicative noise. From Fig. 4, it is 
clear that the typical LPF and HPF extract the ideal sig-
nal when additive noise is inputted, but that they do not 
work for multiplicative noise. To process the EMG signal 
of the patients in real time, we focused on the fact that 
the tremor signal is multiplied by the voluntary signal. In 
other words, if the strength of the modulation induced by 
the tremor signal can be estimated, then the effects of the 
tremor signal can be removed by dividing the estimated 
modulation strength into the EMG signal of the patients 
as follows:

where sn is the filtered signal, n is the number of samples, 
ND is the estimated modulation strength by the tremor 
signal, and en is the measured EMG signal of the patient.

Model of the tremor signal
First, to estimate the modulation strength in real time, it 
is important that the modulation by the tremor signal is 
expressed with a mathematical model. The mathematical 
model needs to fulfil the following conditions:

• • The model needs to represent the periodic charac-
teristic of the tremor signals, in which the amplitude 
rises and falls alternately.

• • The modulation strength ND must be greater than 
zero because when the modulation strength ND is 
zero, the filtered signal sn goes to infinity in Eq. (1).

(1)sn =
1

ND
· en,

Fig. 3  Examples of two types of noise (f1 = 5 [Hz], f2 = 50 [Hz]). 
a Additive noise (sin2πf1t + sin2πf2t). b Multiplicative noise 
(sin2πf1t * sin2πf2t)
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• • When the EMG signal of the essential tremor 
patients are not modulated, the modulation strength 
ND needs to equal one because the filtered signal 
equals the measured EMG signal.

There are several studies that have constructed such 
a mathematical model [27, 28]. In this study, we con-
structed the model based on a model proposed by Bacher 
et  al. [28] because the effectiveness of their proposed 
method was evaluated by a comparison between a real 
patient’s EMG and a simulated signal that was made 
by multiplying Gaussian white noise by their proposed 
tremor model. In this study, we estimated the modulation 
strength ND of the tremor signal as follows:

where f(CMAX) is a sigmoid function, M is the modula-
tion depth (0 ≤ M < 1), k is the order of the powered 

(2)
ND = 1− f (CMAX ) ·M + 2 · f (CMAX ) ·M · sink θT ,

sine wave, and θT is the phase of the powered sine wave. 
The third term is a powered sine wave, which simulates 
the periodic characteristics of the tremor signal. The 
modulation depth M (0 ≤ M < 1) and the sigmoid func-
tion f(CMAX) work as gains of the simulated tremor sig-
nal because they are included in the gains of the powered 
sine wave. Figure 5 shows an example of the modulation 
strength ND with the proposed mathematical model. 
From Fig. 5, the modulation strength has periodic char-
acteristics, and is always greater than zero. Furthermore, 
if the gain of the simulated tremor signal, the modulation 
depth M, or the sigmoid function f(CMAX) equals zero, 
then the modulation strength equals one. The proposed 
model fulfils all of these conditions.

Compared with previous work by Bacher et al. [28], we 
added a sigmoid function f(CMAX) as a threshold func-
tion to implement the proposed algorithm only when 
the EMG signal is modulated by tremor. Further, we used 
a powered sine wave instead of a sine wave because a 

Fig. 4  Effect of high-pass filter (HPF) and low-pass filter (LPF) for two types of noise. In this example, a second-order Butterworth filter with a cutoff 
frequency of 20 Hz is used as both an HPF and an LPF to process two kinds of noise. In all four graphs, the red dotted line shows the input signal, 
which is made of two frequency component signals, one being additive and the other multiplicative; the green dashed line shows the output signal 
of the filters; and the dark blue line shows the ideal output of the filters (in the case of using an LPF, a low-frequency component is ideal output, and 
in the case of using an HPF, a high-frequency component is ideal output). a Additive noise processed with HPF. b Additive noise processed with LPF. 
c Multiplicative noise processed with HPF. d Multiplicative noise processed with LPF
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powered sine wave worked well for demodulation by trial 
and error.

To use the model for real-time demodulation, we 
needed to define some of parameters in (2). How to 
calculate the parameters is described in the following 
subsections.

Phase detection of powered sine wave
The phase of the powered sine wave θT is one of the 
parameters that needs to be detected. To estimate the 
phase of the tremor signal that was present, the algorithm 
searched for the maximum correlation CMAX between 
the phase of the powered sine wave vector Bm (m = 1, 2, 
…, N) and that of the windowed EMG vector En (Fig. 3). 
The correlation function is expressed as follows, using 
Eqs. (3), (4), (5), (6), and (7).

Here, Δt is the sampling time and is set to 0.001  ms. 
Bm is one period of the powered sine wave, beginning at 
phase (m – N − 1) FΔtπ. En is the present and past 1/F s 
sampled EMG data. F is the tremor frequency. Figure 6 
shows how to search the present phase. Here, the win-
dowed EMG signals were pre-processed with a HPF (cut-
off: 20  Hz) to remove the DC component of the signal, 

(3)C =
En · Bm

|En||Bm|

(4)En = {en−N , en−N+1, . . . , en}

(5)Bm =
{

b(m− N ), b(m− N + 1), . . . , b(m)
}

(6)b(x) = sink (xF�tπ)

(7)N =

∣

∣

∣

∣

1

F�t

∣

∣

∣

∣

followed by rectification and a LPF (cutoff: 30  Hz). The 
HPF and the LPF were Chebyshev II type filters, with 
damping coefficients of 0.7.

Sigmoid function
To implement the demodulation algorithm only for sig-
nals that are affected by tremor signals, we included a 
sigmoid function as a threshold function in the equation 
for the tremor signal estimation, as shown in Eq. (2). The 
sigmoid function is as follows:

The gain a of the sigmoid function was set at 100. The 
offset value was set at 0.8. Figure 7 shows the shape of the 
sigmoid function.

Tremor frequency
The tremor frequency F is one parameter that must be 
defined to demodulate the EMG signal. The tremor fre-
quency of an individual patient varies, depending on the 
movement state of the patient (i.e., whether the patient is 
performing a voluntary movement or maintaining a pos-
ture) [15, 16]; however, the range of the variation is small. 
Therefore, the tremor frequency was set at 5 Hz, which is 
the main tremor frequency of the patient in the experi-
ment. This parameter needs to be set individually.

Modulation depth
As described in “Model of the tremor signal”, the mod-
ulation depth is one of the gains of the powered sine 
wave and represents how strongly the EMG signal is 
modulated. When M is zero, the estimated modula-
tion strength ND becomes 1, according to Eq.  (2) (i.e., 
the EMG signal is not modulated). As M increases, the 

(8)f (CMAX ) =
1

1+ exp
(

−a
(

CMAX − offset
))

Fig. 5  Example of the variation of modulation strength ND against the variation of phase
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amplitude of the estimated modulation strength var-
ies, depending on the phase, as shown in Fig. 8. M has a 
major effect on the modulation, because it is one of the 
gains of (2). Then, the gap between the modulation depth 
of a powered sine wave and that of the tremor signal in 
the EMG leads to severe demodulation errors. Therefore, 
M must be fitted to an appropriate value.

We calculated M by comparing the top and bottom 
amplitudes of the modulation strength, given by the third 
term of Eq. (2), with those of the EMG signal of the real 
ET patients as follows:

where AT and AB refer to the top and bottom amplitudes 
of the tremor signal in the EMG, respectively. Further-
more, the top amplitude of the modulation strength is 

AT

AB
=

1+ f (CMAX ) ·M

1− f (CMAX ) ·M

(9)∴ M =
AT − AB

f (CMAX ) · (AT + AB)
,

1 +  f(CMAX) * M, and the bottom is 1 −  f(CMAX) * M as 
shown in Fig. 5.

Order of the powered sine wave
The order of the powered sine wave k is another param-
eter of the estimated tremor signal. We tested several val-
ues for the preliminary value of the order and found that 
a squared sine wave was the best wave for the demodu-
lation process, and that the effect of changing the order 
was small. Therefore, we used the squared sine wave.

Experimental purpose
In this subsection, we describe the methodology of the 
experiment. In this experiment, we evaluated the effect 
of the proposed demodulation algorithm using EMG sig-
nals from an essential tremor patient. Here, although the 
proposed algorithm was constructed to use them in real 
time, in this experiment, the EMG signals were processed 
in off-line. To evaluate the effect of the proposed algo-
rithm, both the signal that has been demodulated from a 

Fig. 6  Phase estimation algorithm. This algorithm searches for the maximum correlation between the base wave and the windowed EMG

Fig. 7  Sigmoid function included in the proposed algorithm. The sigmoid function prevents implementation of the proposed algorithm for signals 
that have not been modulated by tremor noise
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modulated signal and the original signal prior to modu-
lation are needed. However, the EMG signals of essential 
tremor patients have already been modulated when the 
EMG is measured, because the cause of essential tremor 
is thought to be a central oscillator (Fig. 9) [25]. Therefore, 
it is impossible to evaluate the effect of the algorithm by 
comparing a filtered EMG with the original EMG.

Instead, we focused on the torque produced by a mus-
cle. The muscle torque can be assessed in two ways: by 
measuring the EMG of the patient, and by consider-
ing the posture and the load on the upper limb of the 
patient as a flowchart, as shown in Fig. 10. The first is the 
torque estimated from the EMG signal, and the second 
is the torque calculated by solving an inverse dynamics 
problem using information about the limb’s posture and 
load. Therefore, in this experiment, we defined the mus-
cle torque that was estimated from the EMG signal as the 
estimated data and defined the muscle torque that was 
calculated by inverse dynamics as the ground truth data. 
To evaluate the accuracy of the demodulation process, we 
used the root mean square error (RMSE) as a parameter; 
the RMSE is most commonly used to evaluate the error 
between two signals, and some researchers use the RMSE 
to evaluate the accuracy of estimation from EMG signals, 
e.g., [23, 32–34]. The RMSE can be calculated using the 
estimated data vectors {x1, x2,…, xN} and the ground truth 
data vectors {y1, y2,…, yN} as follows:

We prepared three conditions of the estimated data as 
follows:

1.	 Processed with an LPF only (cutoff = 10 Hz).
2.	 Processed with an LPF (cutoff  =  10  Hz) and the 

demodulation filter with constant parameters.
3.	 Processed with an LPF (cutoff  =  10  Hz) and the 

demodulation filter with the proposed parameter set-
ting.

The estimated data (2) was the control condition of the 
estimated data (3), and was set to evaluate the effect on 
adapting modulation depth, M. Table 3 shows the com-
parison of parameters between the previous method and 
the proposed method.

Test participant
The participant in this experiment was an essential 
tremor patient (male, 70  years old) who had tremor 
symptoms, particularly in forearm rotation and in elbow 
flexion/extension. The tremor signals in the EMG sig-
nal were measured from the biceps brachii and the 

(10)RMSE =

√

√

√

√

1

N

N
∑

i=1

(

yi − xi
)2

Fig. 8  Effects of the variation of the modulation strength ND by the variation of the modulation depth M. The light flesh-coloured line shows the 
rectified white noise, and the deep green line shows the modulated signal with the modulation strength ND
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main signal frequency was approximately 5 Hz. We gave 
the participant a detailed account of our experimental 
objectives, made it clear that he was entitled to stop the 
experiment whenever he desired, and obtained his con-
sent. This experiment was approved by the Institutional 
Review Board of Waseda University (Approval Number: 
2012-196).

Experimental task
The participant performed an elbow flexion movement 
while holding a bottle to simulate the movement during 
the process of drinking water, which is one of the target 
movements of the proposed exoskeleton. There were 
three bottles: an empty bottle, a half-full bottle, and a 
full bottle. The weights of these bottles are described in 
Table 4. The participant had practiced the elbow flexion 
movement in advance of the experiment to get used to 
the movement. At this point, the target movement time 
was set at 1.25 s throughout the practice session. The par-
ticipant performed the experimental movement 10 times 
with each of the three bottles (for a total of 30 times). 
We set a short rest period (of about 3 s) before the start 
of each motion. In this experiment, we measured two 
parameters: the EMG signal of the patient and the angle 
of the elbow joint during the task. The EMG signals were 
obtained using surface electrodes (Biometrics Ltd.) and 

a DataLog unit (Biometrics Ltd.) and were sampled at a 
rate of 1000 Hz. The electrodes were placed on the biceps 
brachii, and the electrode positions were determined by 
an occupational therapist. The angle of the elbow joint 
was measured using the FASTRAK® magnetic posi-
tion sensor (Polhemus) and was also sampled at a rate of 
1000 Hz. We pasted three markers at the acromion P1(x1, 
y1, z1), the olecranon P2(x2, y2, z2), and the styloid process 
P3(x3, y3, z3). The positions of the sensors are shown in 
Fig. 11.

Muscle torque estimated from EMG signal
In this experiment, we estimated the muscle torque from 
the EMG signal as follows:

where TEMG(t, θ) is the estimated muscle torque, K is 
the gain, EMG(t) is the EMG signal processed with 
methods in each conditions [(1)–(3)] at time t, and α(θ) 
is the moment of the arm at an elbow joint angle of θ. 
According to [35], the moment arm α(θ) was calculated 
as follows:

(11)TEMG(t, θ) = K ∗ EMG(t) ∗ α(θ),

(12)
α(θ) = −2.988 · 10−5 · θ3 + 1.805 · 10−3 · θ2

+ 4.532 · 10−1 · θ + 14.66

Fig. 9  Problem of how to evaluate the proposed demodulation algorithm
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Muscle torque calculated by inverse dynamics
To calculate the muscle torque of the biceps brachii, we 
considered the equilibrium of the force around the elbow 
joint as follows:

(13)

I θ̈ = TI (θ)−
(

mf +mh +mo

)

· lCOG · sin (θ + ϕ)− Bθ̇ ,

where I is the moment of inertia, TI (θ) is the calculated 
muscle torque, and mf, mh, and mo are the mass of the 
forearm, the mass of the participant’s hand, and the mass 
of the bottle grasped with the participant’s hand, respec-
tively. lCOG is the distance from the elbow joint to the 
centre of gravity (COG) of the forearm, hand, and bottle. 
B is the coefficient of viscosity. Therefore, the first term 
of Eq. (13) is the torque of the biceps brachii, the second 
term is the gravity term, and the third term is the viscos-
ity term. Here, in most cases, the triceps brachii is taken 
into account for the equilibrium of the force around the 
elbow joint. However, the triceps brachii is rarely acti-
vated in this task, and thus we excluded the torque pro-
duced by the triceps brachii. By transforming Eq.  (13), 
the muscle torque can be calculated as follows:

Fig. 10  Flow to evaluate the proposed demodulation algorithm

Table 3  Parameter values of  the previous and  the pro-
posed methods

Symbol Detail Previous Proposal

f Frequency (Hz) 5.0 5.0

M Modulation depth (a.u.) 0.6 Variable

k Order of the powered sin wave (a.u.) 2 2
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Gravity term
The mass of the forearm mf and the mass of the hand mh 
were calculated as follows:

where λf, and λh are the mass ratios of the forearm and 
the hand, respectively, which were set at constant val-
ues, according to [35], as shown in Table 5. w is the body 
weight of the patient. Table 4 shows the body weight of 
the patient and the mass of the bottle.

The distance from the elbow joint to the COG of the 
forearm, hand, and bottle was calculated as follows:

where lf_COG, lh_COG, and lo_COG refer to the distance from 
the elbow joint to the COG of the forearm, to the COG of 
the hand, and to the COG of the bottle, respectively, and 
were calculated as follows:

(14)

TI (θ) =
(

mf +mh +mo

)

· lCOG · sin (θ + ϕ)+ I θ̈ + Bθ̇

(15)mf = �f · w,

(16)mh = �h · w,

(17)

lCOG =
mf ∗ lf _COG +mh ∗ lh_COG +mo ∗ lo_COG

mf +mh +mo
,

Here, lf and lh are the lengths of the forearm and the 
hand, respectively. COGf and COGh are the proportions 
of the COG of the forearm from elbow joint and of the 
hand from wrist joint, respectively. lf and lh are described 
in Table  6, and, following [35], COGf and COGh are 
described in Table 5.

Inertia term
The moment of inertia was calculated as follows:

where kf and hf are the radius of gyration of the forearm 
and that of the hand, respectively, and were calculated as 
follows:

where af and ah are the ratio of the radius of gyration of 
the forearm and that of the hand, respectively. Following 
[35], these parameters are described in Table 5.

Viscous term
According to research that estimates the muscle torque 
from the EMG signal and estimates the joint angle by 
solving dynamics problems [36], the coefficient of viscos-
ity was set at 0.2.

(18)lf _COG = COGf ∗ lf

(19)lh_COG = lf + COGh ∗ lh

(20)lo_COG = lf + lh

(21)

I = mf ∗

(

k2f + l2f _COG

)

∗ +mh ∗

(

k2h + l2h_COG

)

+mo ∗ l
2
o_COG ,

(22)kf = af · lf ,

(23)kh = ah · lh,

Table 4  Body weight of the patient and weight of the iner-
tial load

Symbol Detail Property

W Body weight of the patient (kg) 77.0

mo Weight of bottle (kg) 0.017 (empty bottle)

0.337 (half full bottle)

0.575 (full bottle)

Fig. 11  Positions of EMG electrode and FASTRAK® markers
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The angle of the elbow joint was calculated by using 
the positions of the acromion P1(x1, y1, z1), the olecra-
non P2(x2, y2, z2), and the styloid process P3(x3, y3, z3), as 
follows:

where the values subscripted with f and u represent 
the parameters of the forearm vector and those of the 
upper arm vector, respectively. These two vectors were 
described as follows:

The angle of shoulder flexion was calculated from the 
angle between the upper arm vector ru and the vertical 
line (0, 0, −1), as follows:

To calculate θ̇ and θ̈, we used a pseudo derivative. The 
transfer function of the pseudo derivative was as follows:

where Td refers to the time constant. In this experiment, 
Td is set to 30  ms. Here, we conducted an s-plane to 
z-plane transform based on the backward difference. The 
equation of this transform was as follows:

(24)θ = cos−1





xuxf + yuyf + zuzf
�

x2u + y2u + z2u

�

x2f + y2f + z2f



,

(25)rf =
(

xf , yf , zf
)

=
(

x2 − x1, y2 − y1, z2 − z1
)

(26)ru =
(

xu, yu, zu
)

=
(

x3 − x2, y3 − y2, z3 − z2
)

,

(27)ϕ = cos−1

(

−zu
√

x2u + y2u + z2u

)

,

(28)
Y

X
=

s

1+ Td · s
,

(29)s =
1− z−1

�T

where ΔT refers to the sampling time, 1  ms. Finally, 
Eq. (29) was substituted into Eq. (28). The calculated dif-
ferential at time t = n was as follows:

where yn refers to the differential at t = n, and xn refers to 
the input signal at t = n.

Results
We evaluated the effects of the proposed demodulation 
algorithm in two movement states: first, while perform-
ing an elbow flexion, and second, while maintaining a 
flexed elbow posture because essential tremor is both 
a postural and an action tremor. Figure  12 shows one 
example of the processed signals. Using the estimated 
data, the blue line shows the muscle torque estimated 
from the EMG of the patient, which was processed only 
using an LPF (condition 1); the red dotted line shows the 
muscle torque that was estimated from the EMG signal 
that was processed by the demodulation algorithm with 
constant parameters and the LPF (condition 2); and the 
green short dashed line shows the muscle torque that 
was estimated from the EMG signal that was processed 
with the proposed demodulation algorithm and the LPF 
(condition 3). Using the ground truth data, the black long 
dashed line shows the muscle torque that was calculated 
from inverse dynamics. As described in the “Experimen-
tal purpose” subsection, the RMSE between the esti-
mated data and the ground truth data was the evaluation 
parameter of the demodulation accuracy. Therefore, if the 
error between the green short dashed line and the black 
line is smaller than both that between the red dotted line 
and the black line and that between the blue line and the 
black line, then this means that the proposed algorithm 
has estimated the original signal accurately.

Figure 13 shows the results of the RMSE between the 
estimated data and the ground truth data. In each graph, 
the blue bars with diagonal patterns on the left show the 
results of the trial without the demodulation algorithm 
(condition 1), the red bars with horizontal dashed stripes 
in the centre show the results of the trial when processed 
with the demodulation algorithm with constant parame-
ters (condition 2), and the green bars with vertical stripes 
on the right show the results of the trial when processed 
with the proposed demodulation algorithm (condi-
tion  3). The differences between the RMSEs among the 
three conditions were statistically evaluated against each 
other using the Bonferroni correction. From the graphs, 
while in the postural state, the RMSEs of both condition 
(2) and condition (3) were significantly decreased from 
the RMSE of condition (1), and, while in flexion, only the 
RMSE of condition (3) was significantly decreased from 

(30)yn =
xn − xn−1 + Td · yn−1

�T + Td

Table 5  Physical properties of forearm and hand

Symbol Detail Property a.u.

COGf Proportion of COG of forearm 0.415

λf Mass ratio of forearm 0.016

af Radius of gyration of forearm 0.115

COGh Proportion of COG of hand 0.891

λh Mass ratio of hand 0.006

ah Radius of gyration of hand 0.314

Table 6  Length of parts of the patient body

Symbol Detail Property

lf Length of forearm (m) 0.250

lh Length of a hand (m) 0.125
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the RMSE of condition (1). Table 7 shows the reduction 
rate of the RMSE from condition (1) to condition (3). The 
reduction rate R is calculated as follows:  

where RMSE1 refers to the RMSE in the trial with condi-
tion (1), and RMSE3 refers to that in the trial with condi-
tion (3). From Table 7, the reduction rate of the proposed 
method varied depending on the state of movement. 
The proposed method succeeded in reducing the RMSE 
by about 15–30% during a flexion movement and about 
30–45% during the maintenance of a posture. Further-
more, the reduction rate varied depending on the weight 
of the bottle grasped during the task. The reduction rate 
of the proposed method was higher in the condition with 
the empty bottle than with the half-full bottle, and higher 
in this case than with the full bottle.

Discussion
Effect of demodulation
In this experiment, using the proposed method, condi-
tion (3), the RMSE between the estimated data and the 
ground truth data was statistically significantly decreased 
in all cases. Compared with the results of the control 
condition, condition (2), by adjusting the modulation 
depth M, the proposed method succeeded in reducing 
errors when the patient performed an elbow flexion in 
all cases. From these results, our proposed demodulation 
algorithm was effective for the modulated EMG signal, 
and the adjustment worked well for the characteristic 
change of the tremor signal between the postural state 
and the flexion.

The reason that the reduction rate varied depending on 
both the state of movement and the weight of the bottle 

(31)R =
RMSE3

RMSE1
∗ 100

is likely the influence of the voluntary signal. The volun-
tary signal modulates the tremor signal. As described 
in Section I, the tremor signal is noise in the voluntary 
movement signal. Conversely, the voluntary signal is 
also noise in the tremor signal; that is, the tremor signal 
is modulated strongly if patients contract their muscles 
strongly. This modulation made it difficult to demodulate 
the EMG signal, because the tremor signal could not be 
simulated accurately when it was modulated. Therefore, 
to promote the proposed demodulation algorithm, we 
need to analyse the characteristic change in the tremor 
signal depending on the voluntary signal in some way, 
such as a time–frequency analysis or the change in the 
shape of the EMG signal, and then revise the processing 
method.

Number of participants
In this experiment, although the number of partici-
pants was only one, the proposed method can be useful 
for other patients if all of the following conditions are 
satisfied:

• • Patient-dependent parameters, such as frequency 
of tremor signal, are measured before the use of the 
proposed algorithm.

• • Patients with essential tremor who have their tremor 
source in their biceps brachii perform actions with 
elbow flexion such as drinking and eating.

In the first condition, although the EMG is noisy and 
varies across individuals, the major characteristics of 
the tremor signal, “grouped discharge”, is typical for the 
patients, and the proposed method can work for the 
tremor signal if patient-dependent parameters are fitted 
to each patient. However, in the second condition, the 

Fig. 12  Comparison between the estimated data and the ground truth data



Page 14 of 16Matsumoto et al. Robomech J  (2017) 4:15 

evaluation did not guarantee the effectiveness of the pro-
posed method in all the conditions because the affected 
muscle is patient-dependent. The proposed method only 
showed its effectiveness for the EMG signal from biceps 
brachii while performing an elbow flexion. Therefore, 
although the guaranteed effect from this experiment was 
limited, as far as the target movement of the exoskeleton, 
this method can be applied for demodulating the EMG 
signal of the patients.

Effects on the control of the exoskeleton
From these discussions, the effects of the proposed 
demodulation algorithm have been validated. However, 
we have not discussed whether the effects are sufficient for 
controlling the exoskeleton. To address this, we have to use 
the proposed method on the exoskeleton and evaluate the 
controlled performances of the exoskeleton while a partic-
ipant is wearing it. The RMSE between the muscle torque 
estimated from the EMG signal and the muscle torque cal-
culated by solving the inverse dynamics problem directs 
the controlled performance, because the movement of the 
exoskeleton is defined based on Eq. (13). We hope that the 
proposed method promotes the controlled performance of 
the exoskeleton. In future work, we will evaluate the pro-
posed demodulation algorithm using the exoskeleton to 
discuss whether the effects are sufficient.

Conclusions
The objectives of this paper were to develop an algo-
rithm to demodulate the EMG signal of essential tremor 
patients whose EMGs combine information about both 
the voluntary movement and the tremor. The EMGs of 
the patients is modulated by the tremor signal as mul-
tiplicative noise. Therefore, to control the exoskeleton 
accurately, it is essential to demodulate the EMG sig-
nal. The proposed algorithm simulates the tremor sig-
nal by approximating the tremor signal with a powered 
sine wave, and then divides the approximated tremor 
signal into the EMG signals of the patients. To simulate 
the tremor signal accurately, parameters of the approxi-
mation were set based on the characteristic of the real 
patient’s EMG. Especially, we set the modulation depth, 
represent the gain of the modulation by tremor, as a vari-
able to treat the characteristic change depending on the 

Fig. 13  Results of calculation of the RMSE between the estimated 
data and the ground truth data. Data were statistically compared 
with one another using Bonferroni correction. The significance levels 
were adjusted based on the number of groups (the three conditions) 
as follows: *p < 0.0167 (=0.05/3), **p < 0.0033 (=0.01/3). a Patient 
holding an empty bottle. b Patient holding a half-full bottle. c Patient 
holding a full bottle

Table 7  Reduction rate of the RMSE

Condition of bottle States of movement

Performing a flexion Maintaining a posture

Empty (%) 26.4 45.7

Half-full (%) 24.3 38.3

Full (%) 14.0 29.6
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movement state. To evaluate the effect of the proposed 
method, we compared the RMSE between the muscle 
torque estimated from the EMG signal of the patient 
and the muscle torque calculated by solving the inverse 
dynamics problem, in three situations: without using the 
demodulation algorithm, using the demodulation algo-
rithm (constant parameters), and using the proposed 
demodulation algorithm (modulation depth was vari-
able). From this evaluation, we confirmed that our pro-
posed method has a large effect on demodulating the 
modulated EMG signal regardless of the patient’s move-
ment state. As far as its application to the exoskeleton, 
the method can be applied on the EMGs of patients. 
However, the effect varies depending on the strength of 
the voluntary movement.

In future work, to improve our algorithm, we need 
to analyse the characteristic changes in the tremor sig-
nal depending on the strength of the voluntary signal in 
some way, such as time–frequency analysis or by evaluat-
ing EMG signal shape changes, and then revise the pro-
cessing method. Following this, we will implement our 
proposed algorithm in the controller of the exoskeleton 
and evaluate whether the proposed algorithm is sufficient 
for controlling the exoskeleton.
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