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Position and inclination control of a 
passive disk based on cyclic motion generation
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Abstract 

We propose a position and inclination controlling method for a passive object using an active plate. Previously, we 
proposed a novel manipulation scheme that can control a passive object’s orientation using an active plate. In the 
work, stable plate cyclic motion is designed and inclination control of the object is realized. However, the object’s 
position is not considered, so there is a possibility that the object could move. Using our plate trajectory design we 
can control not only the passive object’s inclination but also its position. We verify that the designed plate motion can 
control both the object’s inclination and its position through dynamics simulation. A stability analysis around a fixed 
point is conducted using a Poincaré return map, demonstrating that fixed points are asymptotically stable.
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Background
Rhythmic motion control has been an important 
research topic studied for many years in robotics and 
mechatronics [1–18]. Legged locomotion is one type of 
rhythmic motion that requires cyclic stability. A simple 
hopping robot using a leg composed of a double-acting 
air cylinder was built, and completely dynamic, stable 
hopping locomotion was realized [1]. The designed con-
troller can handle hopping motion, forward speed, and 
body upright attitude. Koditschek et al. theoretically ana-
lyzed the motion of Raibert’s hopping robot [1] by using 
simplified models of the hopping robot [2]; it has been 
confirmed that the modeled properties match those of 
Raibert’s physical data. A three-dimensional (3-D) biped 
walking controller that ensures cyclic stability based on 
passive dynamic autonomous control (PDAC) [19] was 
proposed, and 3-D biped walking using an actual robot 
was realized [3]. Moreover, the adaptability of the cyclic 
motion to terrain has been analyzed, and 3-D biped walk-
ing on nonflat terrain was realized experimentally [4].

Juggling is also a task that requires cyclic stability with 
dynamic dexterity. Koditschek’s group has been studying 

robotic juggling for many years [5–8]. Bühler et al. pro-
posed a mirror algorithm from their successful experi-
ments that can determine the trajectory of a robot paddle 
as mirrored [5]. A robot that can juggle up to two pucks 
was realized by using the feedback strategy of the mirror 
law. In addition, the proposed algorithm was developed 
further and juggling and catching of two objects has been 
experimentally realized [6]. The mirror law was modi-
fied for spatial two-object juggling and the algorithm was 
verified through experiment using a three-degrees-of-
freedom robotic arm along with a real-time stereo cam-
era system [7].

Some research groups have proposed nongrasping 
manipulation schemes using an active plate, which also 
require cyclic stability [9–17]. Senforless positioning and 
orientation adjustment have been realized using a flexible 
vibrating plate [9]. The vibrating plate is able to create a 
two-dimensional programmable force field and generated 
sequences of force fields. A vibratory transport mecha-
nism using an active plate was proposed by Umbanhowar 
and Lynch, and the transportation behavior was verified 
through experiments using a vibrating plate [10]. Vose 
et al. analyzed the bang-bang motion of a rigid plate and 
derived the generation of nodal lines; the analysis results 
were verified through comparison between numeri-
cal simulation results and experimental results obtained 
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from an experimental active plate system with six degrees 
of freedom [11]. In addition, a mechanism to predict the 
relationship between the small-amplitude cyclic motion 
of a six-degrees-of-freedom rigid plate and its velocity 
field, called asymptotic velocity theory, has been devel-
oped [12]. The importance of the asymptotic velocity 
for characterizing plate motion was verified through 
simulations and experiments. Ronsse et al. proposed and 
experimentally verified sensorless stabilization of bounce 
juggling based on a stabilization analysis in rhythmic 
tasks using a wedge billiard [13]. Furthermore, a robust 
closed-loop control scheme for periodic patterns in a pla-
nar juggler, which needs only impact times as the feed-
back state, was proposed by Ronsse et  al. [14]. Inspired 
by the handling mechanism of a pizza chef, Higashimori 
et  al. [15, 16] developed a manipulation device using a 
plate that can control an object on it to a desired posi-
tion and orientation through visual feedback. Reist and 
D’Andrea [17] designed Blind Juggler, which can juggle a 
ball at a height of 2 m without feedback, and analyzed the 
local stability of the ball trajectory. Although non-grasp 
manipulation can generally result in efficient manipula-
tion for all the aforementioned manipulation schemes 
using plates, the controlled objects are represented by a 
mass point or a two-dimensional rigid body. Moreover, 
an object’s motion in the direction of the gravitational 
force has not been considered. We worked towards devel-
oping an efficient non-grasp manipulation scheme using 
an active plate. This paper contributes to our final goal of 
non-grasp manipulation by working on unrealized issues 
regarding non-grasp manipulation when using plates.

We previously proposed a novel manipulation scheme 
that can control a passive object’s orientation in the 
direction of the gravitational force using an active plate 
and realized hitherto unrealized object motion [18]. In 
that work, stable plate cyclic motion was designed and 
the inclination control of the object was realized. How-
ever, the object’s position was not considered in that 
work so that the problem establishment is set simple. 
Therefore, there was a possibility that the object could 
move. In addition, while the stability analysis in [18] 
was based on linearization around fixed points, its accu-
racy was not sufficient. Thus, in this study, we propose a 
manipulation method using a plate to control not only 
the passive object’s inclination, but also its position. In 
addition, the stability analysis is conducted with a high 
degree of accuracy by deriving the Poincare return map, 
which is not an approximate approach. In this work we 
consider a planar rigid tumble doll as a controlled object 
and the cyclic plate trajectory is designed to achieve both 
inclination and position control. Then, we verify that 
the designed plate motion can control both the object’s 

inclination and its position through dynamics simulation. 
A stability analysis around a fixed point is conducted 
using a Poincaré return map, demonstrating that fixed 
points are asymptotically stable.

Methods
Cyclic motion
In this study, we define the object as a tumble doll that is 
a planar, rigid sphere, as shown in Fig. 1. θ is the angle of 
inclination from the stable posture. This rigid model gen-
erates a restorative force τ = mgr′ sin θ when the object 
is inclined by θ from the stable point, where, m, g, and r′ 
denote the object’s mass, gravitational acceleration, and 
the distance from the center of the sphere to the center of 
mass (CoM), respectively. The rigid model tumble doll is 
inherently stable without any input owing to the restora-
tive force.

A system composed of a passive object and an active 
plate is defined as the discrete dynamical system used 
herein. The motion of this system is designed to be cyclic, 
with one cycle of the designed motion divided into four 
phases, as shown in Fig. 2: (i) a rolling phase, (ii) a hop 
phase, (iii) a flight phase, and (iv) a collision phase. The 
plate is moved to maintain the desired orientation of the 
object in appearance by designing the motion of each 
phase to be of a short duration.

Plate trajectory and dynamics
To this end, it is assumed that slip does not occur dur-
ing any phase. To describe the position of the object, the 
local coordinate system {1} is set at the plate.

Rolling phase
The objective of the rolling phase is to incline the object 
(Fig.  3). The plate trajectory of the rolling phase in the 
world coordinate system is generated as follows:

(1)Xs = p(t,�t1,�x1),

(2)Ys = y1,

r’
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O

θ

τ

Fig. 1  Object model
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where Xs and Ys denote the position of the stage in the 
world coordinate system {w}, �x1 is the moving distance 
of the plate in the rolling phase, �t1 is the moving time 
of the plate in the rolling phase, p(t,�t1,�x1) is a fifth-
order polynomial trajectory function of t that connects 
moving distance �x1 at moving time �t1, and y1 is a con-
stant value.

The dynamics around the object center of the rolling 
phase in coordinate {1} is derived as follows:

where xo and yo denote the position of the object in the 
local coordinate system {1}, fr is the friction force of 
the rolling phase, Nr is the normal force, I is the object’s 
moment of inertia around the CoM, and r is the object’s 
radius. If slip does not occur, the position of the object 
can be described as

(3)mẍo = −mẌs − fr ,

(4)mÿo = Nr −mg ,

(5)I θ̈ = −mgr′ sin θ +mẌsr
′
cos θ − rfr ,

(6)xo = rθ + xini(r)o ,
where xini(r)o  is the initial position of the rolling phase. 
From Eqs. (3), (5), and (6), θ can be expressed as

esahp poH )ii(esahp gnilloR )i(

(iii) Flight phase(iv) Collision phase

θ

θ

θ

θ

Fig. 2  Phases of cyclic motion
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Fig. 3  Sketch of slide phase
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where C11 and C12 are integral constants.
Finally, the object position Xo of the rolling phase in the 

world coordinate system is expressed as follows:

Hop phase
The objective of the hop phase is to toss the object up in 
the air (Fig. 4). The plate trajectory of the hop phase in 
the world coordinate system is generated as follows:

where �x2 is the moving distance of the plate in the roll-
ing phase, �t2 is the moving time of the plate in the roll-
ing phase, and  p(*, *, *) is the same fifth-order polynomial 
trajectory function used in the rolling phase.

The dynamics around the object center in the hop 
phase in coordinate {1} is derived as follows:

(7)
θ̈ =

1

I +mr2

(

−mgr′ sin θ +
(

r′ cos θ − r
)

mẌs

)

:= f1(θ , Ẍs),

(8)θ̇ =

∫

f1(θ , Ẍs)dt + C11,

(9)θ =

∫ ∫

f1(θ , Ẍs)dt + C11t + C12,

(10):= g1(Ẍs)

(11)Xo = Xs + rθ + xini(r)o

(12)= Xs + rg1(Ẍs)+ xini(r)o

(13)Xs = p(t,�t2,�x2),

(14)Ys = p(t,�t2,�y2),

(15)mẍo = −m

√

Ẍs
2
+ Ÿs

2
cosφ − fh,

where fh is the friction force of the hop phase, Nh is the 
normal force, and φ is the angle that specifies the moving 
direction of the plate. If slip does not occur, the position of 
the object is described by xo = rθ + x

ini(h)
o  using the initial 

position of the hop phase, which is the same as for the rolling 
phase. Thus, from Eqs. (15) and (17), θ can be expressed as

where C21 and C22 are integral constants.
Finally, the object position Xo of the rolling phase in the 

world coordinate system is expressed as follows:

Flight phase
The motion in the flight phase is a simple free-fall motion 
(Fig. 5). In the flight phase, the plate motion is generated 
in order to adjust the position of the controlled object. 
The dynamics around the object center in the flight phase 
is expressed as follows:

θ can be expressed as

(16)mÿo = Nh −mg −m

√

Ẍs
2
+ Ÿs

2
sin φ,

(17)

I θ̈ = −mgr′ sin θ

+m

√

Ẍs
2
+ Ÿs

2
r′ cos (θ + φ)− rfh,

(18)

θ̈ = −
mgr′ sin θ

I +mr2

+
m

√

Ẍs
2
+ Ÿs

2

I +mr2

(

r′ cos (θ + φ)− r cosφ
)

(19):= f2(θ , a2),

(20)θ̇ =

∫

f2(θ ,

√

Ẍs
2
+ Ÿs

2
,φ)dt + C21,

(21)θ =

∫ ∫

f2(θ ,

√

Ẍs
2
+ Ÿs

2
,φ)dt + C21t + C22

(22):= g2

(√

Ẍs
2
+ Ÿs

2

)

,

(23)Xo = Xs + rθ + xini(h)o

(24)= Xs + rg2

(√

Ẍs
2
+ Ÿs

2

)

+ xini(h)o .

(25)mẍo = 0,

(26)mÿo = −mg ,

(27)I θ̈ = 0.

(28)θ̈ = 0,

θ

Plate

x

y {1}

{w}

X

Y

(X  , Y )0 0

(X  , Y )S S

(x  ,y )o o

φ

Fig. 4  Sketch of hop phase
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where C31 and C32 are integral constants.
The position of the object is described as follows:

We can obtain the position of the object from Eq. (31). 
The plate position is adjusted according to the position 
of the object during the flight phase. The plate trajectory 
of the hop phase in the world coordinate system is gen-
erated according to the position of the object during the 
flight phase, so

where �x3 and �t3 are the moving distance and time, 
respectively, of the plate in the rolling phase.
�t3 and �x3 are determined as follows:

(29)θ̇ = C31,

(30)θ = C31t + C32,

(31)xo = C33t + C34.

(32)Xs = p(t,�t3,�x3),

(33)Ys = p(t,�t3,�y3),

(34)�t3 =
ẏinio +

√

(ẏinio )2 + 2g�y2

g
,

(35)�x3 = ẋinio �t3 + α,

where xini(f )o  and yini(f )o  the initial position of the flight 
phase, α is a constant value.

Finally, the object position Xo of the rolling phase in the 
world coordinate system is expressed as follows:

Collision phase
By assuming a completely inelastic collision at landing 
(Fig. 6), the object’s angle and its angular velocity in the 
horizontal direction are conserved during the collision, 
and the angular velocity in the vertical direction dissi-
pates. The non-elastic collision model is used in previous 
plate manipulation works (e.g. [13, 14, 17, 18]). Then, the 
following velocity exchange takes place:

where θ+, θ̇+, θ−, and θ̇− denote the angle just before the 
collision, the angular velocity just before the collision, the 
angle just after the collision, and the angular velocity just 
after the collision, respectively.

Results and discussion
Dynamics simulation
In this section, we confirm whether the designed plate 
cyclic motion can control not only orientation of the con-
trolled object but also its position. In this simulation, the 
calculations were performed using the derived dynam-
ics in this paper, and the object and plate were drawn in 

(36)Xo = Xs + xo.

(37)

[

θ+

θ̇+

]

=

[

θ−

θ̇− cos2 θ−

]

(38):= �(v−),

g

θ
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Fig. 5  Sketch of flight phase
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an OpenGL environment. The simulation model and 
environment is same as our previous work [18], thereby 
matching the experimental results. For analysis, because 
the objective of this study is to maintain the states in 
which the object is inclined at a specified position, the 
state vector is composed of the object angle and position 
v = [θ ,Xo]. In addition, the discrete state vector is defined 
as vk = [θ [k],Xo[k]]

T, which is just after the kth collision 
of the state vector. The fixed points of the state vector are 
searched by trial and error through parameter adjustment 
in this research. The parameters of the object and active 
plate were set to m = 0.3 kg, r = 0.05 m, r′ = 0.03 m, �t1 = 
0.1 s, �x1 = 0.03 m, �t2 = 0.03 [s], �x2 = 0.005 m, �y2 = 
0.0495 m, α = 0.0002 m, and φ = 85°. The initial conditions 
of the controlled object were set to θ = 0.0° and θ̇ = 0.0°, 
and the stage’s initial position (Xs,Ys) was set to (0.0, 0.7).

Figures  7 and 8 show each component of 
vk = [θ [k],Xo[k]]

T, respectively. Figures  7 and 8 con-
firm that the object’s angle θ and position Xo converged 
to a fixed value. Furthermore, the results indicate that 
the object motion had cyclic stability and that the object 
angle and position were controlled. Figure 9 shows snap-
shots of the simulation after convergence. Each snapshot 
shows the state immediately after collision. It is visually 
confirmed that the inclination angle and position of the 
controlled object are stably converged. In this simulation, 
the stage produced the cyclic motion trajectory shown in 
Fig. 10. It is confirmed that the stage trajectory settles to 
a unique trajectory.

The objective of this dynamic simulation is to confirm 
whether the proposed control scheme can simultane-
ously control the inclination and position of a passive 
object. The controllable range of the controlled object 
depends on the type of hardware system used. Thus, this 
issue is left for a future experimental study, where a hard-
ware system will be specified and implemented.

Orbital stability analysis
In this section we investigate the orbital stability of the 
designed cyclic motion. First, we evaluate the conver-
gence. Figures 11 and 12 show the phase portrait of θ and 
Xo when a disturbance is added. As shown in Fig. 11, if 
the value of θ is either higher or lower than the desired 
value, θ converges to the desired state. Similarly, if the 
value of Xo is either higher or lower than the desired 
value, Xo converges to the desired state, as shown in 
Fig. 12.

Next, the stability of a fixed point is investigated by 
using a Poincaré map. By defining the vector function ξ 
according to Eqs. (10), (12), (22), (24), (30), (36), and (38), 
the Poincaré map is ginven as

Let v∗ = [θ∗,X∗
o ]

T be a fixed point of the discrete system 
described by Eq. (39); then, the discrete system converges 
as follows:

Figures 13 and 14 show the Poincaré map of θ and Xo , 
respectively. Since both slopes on the Poincaré map are 
less than 1, it is confirmed that the fixed point θ∗ and X∗

o  
generated by the designed cyclic plate motion is asymp-
totically stable.

Conclusions
We proposed and tested an active-plate-based method 
for manipulating the posture angle and position of a rigid 
object. The active-plate motion was designed to be cyclic 
and can control both position and inclination angle of 
the controlled object. A test object was subjected to the 
designed cyclic motion, and the proposed approach was 
then verified through dynamics simulation. Finally, the 

(39)vk+1 = ξ(vk ,�t1,�x1,�t2,�x2,�y2,φ).

(40)v
∗ = ξ(v∗,�t1,�x1,�t2,�x2,�y2,φ).
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stability of a fixed point was analyzed on a Poincaré map, 
confirming the asymptotic stability of the system.

(a) (b) (c) (d) (e)
Fig. 9  Snapshots of the simulation
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