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B‑PaDY: robot co‑worker in a bumper 
assembly line
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Abstract 

In an automobile assembly line, many processes require control and human intervention. A human’s dexterity and 
ability to react to unpredictable changes in production volume and product specifications are necessary for these 
processes. Thus, it remains difficult to rely on robots or other automated systems. Conversely, some tasks, such as 
moving to a tool rack and delivering parts, do not require human skill. In the bumper assembly process of automobile 
assembly, a worker must move to pick up the bumper twice in one procedure. This task may strain the worker and 
increase work time for each bumper. To address this situation, we developed a new co-worker robot, named B-PaDY, 
to work in cooperation with human workers on the automobile bumper assembly line. This co-worker robot is not 
directly involved in the assembly processes, but performs tasks to support human workers. The robot delivers the 
bumper to the worker on the production line at the right time. We propose hardware concepts and designs to ensure 
worker’s safety and allow for handling of all bumpers types. This robot uses a suspended rail system and handles the 
bumper, attaching to its reverse side. Additionally, we propose a method to determine the proper delivery timing 
based on a logistic regression model and confirm its effectiveness by performing experiments. We statistically model 
the worker’s state upon completion of the assembly task and stochastically determine the proper timing. By recog-
nizing the worker’s behavior and supporting the worker with appropriate timing, our system effectively supplies the 
bumper to the worker and improves work efficiency.
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Background
Industrial robots have been used extensively in manufac-
turing industries to enhance productivity and ensure the 
quality of products. While industrial robots have been 
extended to various fields such as electronics, food man-
ufacture, and automobile assembly, many processes are 
still performed manually by humans. The final assembly 
line in automobile production is a process that still faces 
challenges in applying existing industrial robots. These 
processes may require human dexterity and adaptability 
because they may change in an unpredictable manner 
according to the amount of production and the specifi-
cation of each product. Although autonomous dual-arm 
robots, including YuMi (ABB) [1] and Baxter (rethink 

robotics) [2], have been developed to realize flexible 
automation processes, it is difficult to completely replace 
humans with robots in these processes.

To address this situation, we propose the use of a co-
worker robot called PaDY (in-time Parts/tools Delivery 
to You robot [3]). The co-worker robot is not directly 
involved in the assembly processes but rather performs 
nonessential tasks to support human workers. This robot 
supports the human worker in attaching parts to an auto-
mobile in the assembly line by delivering the required 
parts and tools to the worker. Because this reduces the 
time spent on walking to the workbench and selecting 
parts and tools, this system improves the work efficiency 
and reduces unnecessary labor. Hoffman et al. [4, 5] also 
proposed a cooperative robot system that selects the 
next task by itself based on the validity and risk of each 
action. Hayakawa et al. [6] proposed an assembly system 
whereby the robot works with the human by determining 
the work state based on a self-organizing map. Tan et al. 
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[7] proposed a collaborative working system in a cell pro-
duction system.

Although PaDY targeted processes can deal with small 
parts, there are many processes that require handling of 
large parts and tools. In these processes, the worker must 
handle heavy parts and move through a large workspace. 
Thus, there is room for substantial improvement in the 
workload. Peshkin et al. proposed the worker assistance 
system “Cobots”, whose mechanism conforms with the 
nonholonomic constraint. It assists with the detaching 
task in the door assembly process [8]. Yamada et  al. [9] 
proposed a power-assisted precise positioning support 
system for the window mounting process. Both of these 
studies proposed efficient systems for reducing the physi-
cal burden on human workers.

In this study, we apply the concept of PaDY to the 
bumper assembly process-one of the automobile assem-
bly processes dealing with large-sized parts and tools. In 
the current state of this process, the worker picks up the 
bumper delivered by an automatic guided vehicle (AGV) 
and attaches the bumper to the vehicle body manually. 
Although the bumpers are automatically supplied from 
outside of the factory using the AGV, human still install the 
bumpers in the assembly process. Figure 1 shows the work-
er’s movement path while working in the assembly pro-
cess. In the current practice of the bumper assembly, the 
worker must move to the AGV twice to pick up the bumper 
on the AGV in one procedure. As a result, work time is 
increased and the worker must focus on carefully picking 
up the bumper to avoid damaging it. Therefore, a system 
that picks up the bumper and delivers it to the worker auto-
matically would be highly beneficial. The installation of an 
automatic bumper delivery system using B-PaDY (Bumper 
PaDY) may be expected to decrease the physical burden on 
the worker and improve work efficiency.

To decrease the work time, it is necessary to reduce the 
worker’s wait-time as much as possible. A robot that is 

always present beside the worker can disturb not only 
the worker who is performing regular assembly tasks, but 
also humans who need to pass through this workspace. 
Here, we examine a system that decides the proper deliv-
ery timing based on the worker’s current state. By deliv-
ering the bumper with proper timing, the robot avoids 
disturbing assembly tasks while minimizing work time. 
In our previous study, we proposed a method that pre-
dicts the worker’s arrival time at the next position based 
on a Markov model of the worker’s trajectory [10]. How-
ever, this considers only the worker’s position informa-
tion and is difficult to apply to a process with limited 
motion, such as bumper assembly. Tamura et al. [11] pro-
posed a method to communicate the worker’s intention 
to the robot by hand signals in a cell production system. 
Although this is an effective way to reduce wasted time, it 
results in an increased workload.

In this study, we discuss a method to determine the 
proper delivery timing without explicit signs from the 
worker. Instead, we consider the worker’s current state 
besides the position information. This decision system is 
expected to improve work efficiency by stably supplying 
the bumper without adding to the worker’s task. We use 
a logistic regression model to decide the proper delivery 
timing. We model the worker’s state at the time when the 
bumper supply is needed such that our system stochasti-
cally determines whether the current time is appropriate 
for bumper delivery.

The remainder of this paper is organized as follows. 
In “Concept and hardware design” section, we describe 
the proposed system concept and the hardware design 
for collaborating with human workers. In “Determining 
proper delivery timing” section, we present the details 
of the system components. In “Experiment” section, 
we describe the experiments conducted to evaluate the 
validity of the system. Finally, “Conclusion” section con-
cludes this paper.

AGV AGVa b

Fig. 1  Worker trajectory in bumper assembly process. a The current procedure: the worker must move to the AGV two times. b The improved 
procedure with the B-PaDY system: the worker does not need to move to the AGV to pick up the bumper by hand
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Concept and hardware design
In this study, we apply the concept of PaDY-whose valid-
ity in processes dealing with small-sized parts has already 
been confirmed-to the bumper assembly process. By 
having the bumper delivered by the robot instead of the 
worker, our proposed system eliminates the task of mov-
ing to the AGV and reduces the worker’s physical burden.
Figure  2 shows how B-PaDY is installed in the actual 
bumper assembly process. B-PaDY hangs on the rail at 
the upper part of the production line and provides cov-
erage for a substantial work space in the bumper assem-
bly process. The worker is on the production line at all 
working times and B-PaDY supports the worker flex-
ibly depending on the work progress. The numbers in 
the right subfigure of Fig. 2 describe the sequence of the 
bumper assembly process after the B-PaDY system is 
installed. First, B-PaDY picks the bumper up from the 
AGV and waits at the edge of the work space while syn-
chronizing the flow of the production line to avoid dis-
turbing the workers. Then, observing the worker’s state 
using its external sensor and checking the work progress, 
B-PaDY delivers the bumper to the worker on the pro-
duction line. Proper delivery timing is decided based 
on the statistical model. After bumper delivery, B-PaDY 
moves to the AGV and picks up the next bumper.

Hardware configuration
A prototype of B-PaDY is shown in Fig. 3. This robot has 
six degrees of freedom and consists of three major parts: 
the rails (including the running and transverse rails), 
the arm (including components for rotation and vertical 
movement), and the gripper. In the following sections, we 
summarize each component and its functions and focus 
on the details of the arm and gripper.

Rail design
The rail, includes running and transverse rails that allow 
movement within a plane. Because the worker and the 
vehicle body move long distances in the production 

line, B-PaDY must operate over a wide workspace. To 
address this situation, we adopt a suspended system that 
moves along rails. Although a robot moving on the floor 
can have a greater working range, it can be affected by a 
rough floor surfaces or obstacles, and has difficultly in 
managing stairs in the work space. The bumper assembly 
process has a wide workspace and its corresponding floor 
space synchronizes with the production line. Considering 
these features, we selected a suspended system.

The rail consists of the two rails (running and trans-
verse) and a robot base. In the actual assembly process, 
the length of rail is approximately 4 m in the running 
direction and approximately 1 m in the transverse direc-
tion. Movement along the running rail is parallel to the 
production line direction. It serves to deliver the bumper 
and synchronize with the movement of the production 
line. Movement along the transverse rail runs perpendic-
ular to the production line. This facilitates motion to the 
AGV and approach to the worker on the production line. 
We use a rack and pinion mechanism for driving on the 
rails. The robot base moves along each rail by meshing 
the rack with the driven part, which connects to a servo 
motor, a reducer, and a pinion.

Arm design
The arm can rotate and move a gripper, attached to 
the robot base, along the vertical axis. The rotation of 
the gripper occurs around the vertical axis. We adopt a 
multi-step vertical movement mechanism. Fig. 4a shows 
an overview of the multi-step up–down mechanism. By 
connecting the five-step slide rails with the chains and 
the sprockets, all of the slide rails are driven relative to 
the movement of the top rail. The rotary motion of the 
servo motor is transformed to linear motion by the ball 
screw allowing the top slide rail to move up and down in 
the vertical direction. This mechanism is based on the 
extension mechanism of a ladder truck. Fig.  4b, c show 
the installation of the multi-step up–down mechanism 
in the actual process. When the vertical component is 

Worker

B-PaDY

Bumper
Bumper

B-PaDY
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Line Direction

AGV

3 2

1

a b

Fig. 2  Installation image of B-PaDY. a The installation position of B-PaDY in the bumper assembly process. b The bumper assembly process from 
the top view. The arrows and numbers indicate the sequence of work performed by B-PaDY
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contracted, all parts are held above the worker, which 
prevents collisions with the worker and ensures the 
worker’s safety.

Gripper design
The gripper serves to hold the bumper and control its 
orientation. The gripper has two degrees of freedom: the 
rotation around the tilt axis and the rotation around the 
roll axis. Because the automobile assembly line handles 

many types of vehicle bodies, B-PaDY must flexibly 
and firmly hold several types of bumpers with differ-
ent shapes and mass characteristics. To achieve this, we 
adopt a vacuum grasping system. By vacuuming the back 
side of the bumper using the suction pads attached to the 
gripper, we achieve this flexibility regardless of the type 
of bumper and simultaneously improve the grasping suc-
cess rate. The diameter D and the number n of the suc-
tion pads are determined by using the following equation.

Gripper

Rail
Arm

Lift Rotation

Tilt Rotation

Running Direction

Transverse Direction
Rotation

Vertical

Fig. 3  Hardware design of B-PaDY. The robot has six degrees of freedom and consists of three parts (rail, arm, and gripper)
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Bumper Bumper

Worker

Contracted State

2nd Slide Rail
3rd Slide Rail
4th Slide Rail

1st Slide Rail

Rack GearPinion Gear

Chain
Sprocket

Top Slide Rail

cba

Extended State
Fig. 4  Hardware design of arm part. a The multi-step up–down mechanism. b The contracted state of the arm part. c The state when grasping a 
bumper
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where, m is the mass of the bumper and P is the vacuum 
pressure. S is the safety factor and is generally equal to 
eight in the case of vertical hanging. Considering the 
mass of the actual grasped bumper, four suction pads 
with diameters of 60 mm are attached to the gripper. The 
arrangement of the suction pads are determined consid-
ering the shape of all the bumpers treated in the actual 
assembly process.

Figure 5 shows an experiment on bumper grasping by 
B-PaDY. This experiment targeted six types of bump-
ers consisting of the front and rear bumpers of three 
car types. We confirm that our mechanism succeeds in 
grasping all bumpers without changing the diameter and 
the arrangement of the suction pads.

Determining proper delivery timing
In this section, we explain the method for deciding the 
proper delivery timing. By delivering the bumper with 
the proper timing, our system reduces worker wait-time 
and improves work efficiency without disturbing assem-
bly tasks. Pattern recognition with a statistical model 
based on prior information has been used for mod-
eling such decision making. In particular, this problem 
is regarded as binary classification. Solving such a clas-
sification problem typically entails machine learning 
techniques such as neural network [12, 13] or support 
vector machine [14, 15]. In this study, we instead empha-
size the generalization of the worker model. We analyze 

(1)D = 2

√

mgS

πnP

the worker information based on the logistic regression 
model and determine the significant model parameters to 
avoid the over-fitting problem.

Definition of model variables
Many studies have addressed the handover between 
human and robot. Strabala et al. [16] grouped the hando-
ver task into the three processes: delivery process, signal 
process, and handover process. They analyzed the hand-
over motion between humans. Then they applied the 
desired handover timing, robot configuration, and the 
approach based on the analysis results to the handover 
task between the worker and the robot. Basili et al. [17] 
focused on the transfer part in the handover between 
the humans. They performed a numerical analysis of the 
handover including the distance and velocity. Cakmak 
et al. [18] focused on the changes in the robot arm con-
figuration at the start of the handover. They discussed the 
effect of the ambiguity of the robot configuration during 
the handover task and summarized the design process for 
a feasible robot configuration.

These studies used the following information to decide 
the handover timing.

a.	 Direction of the human’s gaze.
b.	 Orientation of the human’s body.
c.	 Relative position between the human and the robot 

(end-effector).
d.	 Elapsed time.
e.	 Configuration of the robot while holding the object.
f.	 Actions and signals by the human.

Fig. 5  Grasping several types of bumpers. In this experiment, we test the front (left column) and rear (right column) bumpers of three car types for a 
total of six types of bumpers
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In this system, we use (a), (b), and (c) to determine the 
handover timing. We do not use (d) because of the vari-
ance in the work completion time among the workers. 
We also do not use (e) because it requires a priori consid-
eration of the feasible handover configurations. Though 
(f ) provides valuable information to directly under-
stand the worker’s intentions, we do not use it because 
it increases unnecessary work. Consequently, we use the 
following input variables for this system.

• • Worker’s position (Mx,My)

• • Worker’s velocity (Vx,Vy)

• • Worker’s body orientation (Ox,Oy,Oz)

• • Worker’s face orientation (Fx, Fy, Fz)

To measure these variables, we use the Kinect v2, which 
is one of the most popular RGB-D sensors because of its 
usability and versatility. It can be used to capture details 
of the human face and body with high precision. In this 
system, worker’s mass position (Mx,My), orientation 
(Ox,Oy,Oz) and face orientation (Fx, Fy, Fz) are obtained 
from Kinect. The worker’s velocity (Vx,Vy) is calculated 
from the worker’s mass position.

Logistic regression model
The logistic regression model is widely used in various 
fields because of its ability to represent two-state occur-
rence probability using continuous values. This makes 
it suitable for numerical decision modeling [19]. Mirav-
itlles et al. [20] used logistic regression model to analyze 
risk factors of hospital admission and exacerbation for 
chronic obstructive pulmonary disease patients. Merlo 
et  al. [21] analyzed social epidemiology with logistic 
regression model. In this system, we apply logistic regres-
sion analysis to statistical decision making of the robot to 
determine the proper delivery timing.

Here we describe the general case of the logistic regres-
sion model. Let x = (x1, . . . , xr) be the variables for 
describing an occurrence of a two-state phenomenon and 
y be the dependent variable for describing the result of an 
occurrence, where y = 1 signifies occurrence and y = 0 
signifies non-occurrence. The vector of n-th sample data 
(n = 1, . . . ,N ) used in the logistic regression model is 
defined as

where N is the total number of samples. Using the logis-
tic function, the conditional probability p(y = 1|x) is 
expressed as follows.

(2)(yn, x1n, . . . , xrn)

(3)p(y = 1|x) =
exp(Z)

1+ exp(Z)

where Z is the linear multiple regression equation repre-
senting the influence of r variables and is given by

where βi is the i-th partial regression coefficient. The 
logistic regression model is generated by estimating the 
partial regression coefficients β = (β0, . . . ,βr) from 
the sample data. The maximum likelihood estimation 
method is generally used to calculate these coefficients. 
The likelihood function is as follows:

Obtaining the maximum value of this likelihood func-
tion requires partial differentiation of the log likelihood 
L(β) = log(like(β)) by β and solving the following simul-
taneous equations.

The logistic regression model is generated by calculating 
the coefficients β from the above equations.

Variable selection
When multiple regression models such as logistic regres-
sion model are used, the over-fitting problem should be 
considered. In multiple regression analysis, the predic-
tion performance tends to improve as the number of the 
input parameters increases. However, with too many 
degrees of freedom, the model will lose its ability to deal 
with newly observed data. Avoiding this over-fitting 
problem requires decreasing the number of parameters 
included in the model and simplifying it without com-
promising its prediction accuracy. The Akaike informa-
tion criterion (AIC [22]) is often used to select the input 
parameters effectively. AIC is defined as

where M is the target model, Y  is the observed data, θ̃ are 
estimated as the most probable parameters for the target 
model M, and K is the number of input variables. AIC is 
used when comparing several models and it is conveni-
ent because of its simple calculation and clear interpreta-
tion. A model with a smaller AIC is regarded as the better 
model for explaining a phenomenon.

We use the stepwise procedure to select the significant 
variables. The stepwise procedure is a common approach 
for selecting explanatory variables based on criteria such 
as the AIC in multiple regression analysis. The next most 

(4)Z = β0 + β1x1 + · · · + βrxr

(5)like(β) =

N
∏

n=1

p(xn)
yn(1− p(xn))

1−yn

(6)
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(7)AIC = −2 log p(Y |θ̃ ,M)+ 2K
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significant variable is added to the target model until the 
AIC stops decreasing. Forming the model to explain the 
worker’s state just before the handover with only these 
significant variables improves the generalization perfor-
mance of the model.

Experiment
Experimental setup
Once we implemented the system described above, we 
performed an experiment to verify its validity. Figure  6 
shows the experimental environment from the top view. 
First, the worker waits for the starting signal of the exper-
iment while holding a bumper in the work area (green 
area in Fig. 6). After the starting signal of the experiment, 
the worker mounts the bumper on the front vehicle body 
(upper part in Fig.  6) and closes the hatch. Then, the 
worker moves to the handover area (blue area in Fig. 6) 
and receives the bumper from B-PaDY. This bumper is 
mounted on the next vehicle body (lower part in Fig. 6). 
The coordinate frame used for this experiment is shown 
in the right side of Fig. 6. We use the following two meth-
ods to decide the delivery timing for this experiment.

Exp.1	 Delivery timing determined based on the work-
er’s current position.

Exp.2	 Delivery timing determined based on the logistic 
regression model.

For Exp.1, B-PaDY starts the delivery movement at the 
moment that the worker enters the handover area. For 
Exp.2, the delivery timing is decided based on the logistic 
regression model constructed for each worker.

In this experimental bumper assembly process, we 
define proper delivery timing as the moment when the 

worker starts to move to the handover area after closing 
the hatch. We use 100 data samples, including 50 samples 
of the worker’s state just before and after the moment 
of proper timing and 50 other samples, to generate the 
logistic regression model. We obtained the data for each 
of the four subjects and constructed four unique models.

Table 1 shows the selected variables and AIC calculated 
from the each model. Although the models of all of the 
subjects consist of similar variables, they do exhibit slight 
differences. For example, the same two variables Vy and 
Fz are selected for all of the models. However, the third 
variable differs between most of the models and thus the 
calculated AIC is also different for each subject.

When deciding the proper timing based on the logistic 
regression model in a real-life situation, the dependent 
variable must be decided from the observed explanatory 
variables. We set the threshold probability pT and calcu-
late the dependent variable y as follows.

In this experiment, we used pT = 0.9 for the threshold. 
To avoid erroneous decisions caused by unexpected out-
liers in the sensor data, the delivery is started when the 
calculated occurrence probability p(y = 1|x) exceeds 
the threshold pT for three consecutive frames. B-PaDY 
moves along the predetermined trajectory in 2.0 s. When 
Kinect sensor failed to track the worker, the number of 
failures was recorded and the experiment was conducted 
again.

Experimental result
Each subject performed ten trials of two experiments for 
a total of 80 experiments. We define the waiting time as 
the difference between the arrival time of the worker and 
the robot at the handover area. We used the waiting time 
to evaluate the proposed method. In this experiment, we 
define the arrival time of the robot as the time when the 
worker has just entered the handover area (a circle with a 
diameter of 0.6 m) and the worker’s velocity has become 
less than 0.2 m/s.
Figure  7 shows the experiment performed by subject 
B using the proposed system. It is confirmed that the 

(8)y =

{

1, p(y = 1|x) ≥ pT
0, p(y = 1|x) < pT
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Fig. 6  Experimental environment

Table 1  Model variables selected for each subject by using 
the stepwise method based on AIC

Selected variables AIC

Subject A (Vy ,Oz , Fz) 16.310

Subject B (Mx , Vy , Fz) 16.292

Subject C (My , Vy , Fz) 20.171

Subject D (My , Vy , Fz) 18.983
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bumper delivery is performed at the proper timing after 
closing the hatch. Figure 8 shows the mean and variance 
of the experimental result of the waiting time for each 
subject. We confirmed that the waiting time of all sub-
jects was reduced in Exp.2 using the method based on 
the logistic regression model. Therefore, work efficiency 
is enhanced by implementing the proposed system.

Discussion
We use a statistical test to verify if there is a significant 
difference between the result of Exp.1 and Exp.2. Table 2 
summarizes the results of the statistical test for each 
subject. First, we used the Kolmogorov–Smirnov test 

to check the normality of these results. In Table 2, the p 
value of the Kolmogorov–Smirnov test exceeds the sig-
nificance level 0.05 for all of the experiments, signifying 
that these results are likely to follow the normal distri-
bution. Thus, we conducted the statistical test under the 
assumption of normality. Then, we checked whether 
there is a significant difference between the mean of the 
results using the paired t test. In Table 2, the p values of 
the paired t test for all subjects are below the significance 
level 0.05, signifying that there is a significant difference 
between the result of the two experiments. Therefore, we 
consider that the proposed system effectively decreases 
the waiting time.

a

c d

b

Worker

B-PaDY

Bumper

Hatch

Fig. 7  Example of experiment procedure (subject B). After assembling the bumper to the front vehicle body, the worker closes the hatch (a). Then, 
the worker moves to the handover area and B-PaDY starts moving depending on the result of the timing decision (b, c). After moving, the handover 
is performed in the handover area (d)
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current position. The green bars show the mean of waiting times for Exp.2 whereby the delivering timing is decided based on the logistic regression 
model. The black line indicates the variance of each result
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However, the variance of the waiting time in Exp.2 is 
high, especially for subjects B and D. The main reason 
for this is because the current system only determines 
the delivery timing and the trajectory of the robot is not 
considered. Consequently, the variance in the delivery 
start timing between each trial is affected by factors such 
as the worker’s velocity and work time. Because these 
variations can increase the mental load on workers, it is 
important to reduce the variance and accomplish stable 
bumper delivery timing.

From Table 1, we confirmed that selected model vari-
ables are different among the subjects. In this timing 
decision system, we adopt a worker-dependent decision 
model which is tuned for each subject based on the AIC. 
While it is time-consuming to construct the model for 
each subject, it has the advantage of considering the indi-
vidual differences and can enhance the precision of tim-
ing decision. Since the worker and the work environment 
are frequently changed in the actual assembly process, 
the worker-dependent model could be suitable.

In this experiment, there were three tracking failures 
by the Kinect sensor. Our system cannot operate when 
the Kinect system fails to track the worker. Therefore, a 
redundancy mechanism is required for this system by 
adding a new sensor for measuring the worker’s state. In 
addition, this experimental process simplifies the actual 
assembly process. When using only a simple model such 
as logistic regression within a complex real-life process, 
the occurrence of erroneous decisions may increase. 
Thus, delivery timing should be decided by estimating 
the worker progress based on the worker’s state.

Conclusion
In this paper, we propose a robot co-worker system 
B-PaDY for use on an automobile assembly line to deliver 
bumpers for workers to install. We summarize the func-
tions used to implement and explain the hardware design, 
and describe how these functions related to the current 
bumper assembly process. We detail the concepts and 
design related to the components of B-PaDY including 
its rail, arm, and gripper. We confirm that our proposed 
grasping system can hold several types bumpers.

Additionally, we propose a method to determine 
proper delivery timing using a statistical approach. This 

system decides a suitable delivery timing by modeling 
the decision making using the logistic regression model 
based on the current worker’s state. We performed a 
verification experiment to confirm the validity of the pro-
posed method.

In future work, we aim to prepare the system for instal-
lation in an actual assembly line. In the actual process, 
the target work area on a production line moves at a 
constant speed with the worker and vehicle body. Thus, 
we must develop a system that considers the movement 
within the work area.

Furthermore, we must implement safety measures to 
ensure the feasibility of the system in a real work envi-
ronment. When a robot works with a human in the same 
space, it is essential to ensure the safety of workers. We 
must implement functions that detect potential collisions 
with the human and abnormal actions of the worker to 
cooperate harmoniously with human workers.

Abbreviations
PaDY: in-time parts/tools delivery to you robot; B-PaDY: bumper PaDY; AGV: 
automatic guided vehicle.
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