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Vision and force/torque integration 
for realtime estimation of fast‑moving object 
under intermittent contacts
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Abstract 

This paper considers the fast and accurate estimation of motion variables of a rigid body object whose movement 
occurs from intermittent contacts with coordinating manipulators in nonprehensile manipulation tasks. The estimator 
operates under multiple sensory data including visual, joint torque, joint position and/or tactile measurements which 
are combined at the lower level to compensate for the latency and the slow sampling of the visual data. The estima-
tor is real-time in the sense that it provides the motion data of the target object at the same fast sample rate of the 
servo controller without delay. The basic formulation is the multi-rate Kalman filter with the contact force vector as its 
process input, and the visual observation as its measurement output signal which is the down-sampled and delayed 
version of the configuration of the target object. Experimental tests are conducted for the case of planar object 
manipulation as well as the non-centroidal rotation under gravity using a robotic hand, and their results are presented 
to demonstrate the validity of the proposed estimation scheme.
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Background
Coordinating multiple manipulators for handling an 
object has potential to substantially enhance dexterity 
and versatility, the level of which is not possible by tra-
ditional stand-alone manipulators [1–3]. Although we 
expect that this will bring us numerous benefits, there 
are a number of technical issues to be resolved before we 
demonstrate the practical use of coordinated manipula-
tion with human-like dexterity. From a hardware per-
spective, there has been much progress in recent years 
in new designs of complex manipulation systems such 
as anthropomorphic robotic hands that are capable of 
highly coordinated manipulation tasks with a large num-
ber of degrees of freedom [4–7]. On the other hand, 
there is a consensus (see, for example, A Roadmap for US 
Robotics [1]) that we are still far behind in some key tech-
nology areas such as perception, robust high fidelity sens-
ing and planning and control to achieve highly dexterous 

object manipulation capabilities. As for the sensing in 
particular, it is recognized that processing sensory data 
with multiple modalities (e.g. vision, joint angle, tactile 
and force) will play a key role in synthesizing dexter-
ous manipulation skills [1], which is clearly the case for 
human dexterity as we have ample evidence from neuro-
science [8, 9].

This paper considers the situation where we want to 
keep track of the movement of the object in realtime, 
while the object is being manipulated by intermittent 
contact forces from the coordinating manipulators. Such 
scenarios occur when we attempt to manipulate a rigid 
body object through, so called nonprehensile manipula-
tion [10] which refers to a class of dexterous manipula-
tion tasks that make an explicit use of the dynamic forces 
(e.g. inertial, gravitational, or centrifugal) to allow extra 
motion freedoms to the object. Typical examples of non-
prehensile manipulation include pushing, throwing, cag-
ing, flipping, twirling, etc. In conventional approaches to 
coordinated (or dexterous) manipulation [11], the object 
is being held stably through force-closure condition dur-
ing manipulation. The force closure condition ensures 

Open Access

*Correspondence:  soojeon@uwaterloo.ca 
Department of Mechanical and Mechatronics Engineering, University 
of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada

http://orcid.org/0000-0002-3148-1658
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40648-016-0054-2&domain=pdf


Page 2 of 13Bae et al. Robomech J  (2016) 3:15 

that the object and manipulating bodies are kinematically 
related throughout the manipulation process, and thus 
we can easily keep track of the movement of the object 
using the associated kinematic relations. On the con-
trary, in the nonprehensile situations, the movement of 
the target object cannot be inferred from the kinematic 
relation because the object frequently loses its contact 
with some or all of its manipulating bodies, making the 
contact force applied in an intermittent way. Therefore, 
an additional sensor such as a vision camera is often 
necessary to provide the information of object motions 
in nonprehensile cases. The visual data, however, may 
not be enough to provide all the information in a timely 
manner. The vision may be blocked from a certain direc-
tion (occlusion) [12]. Also, the movement data obtained 
from visual images are often slow and delayed (latency) 
[13, 14], thereby restricting the speed and the accuracy of 
achievable object manipulation tasks, especially when the 
object is moving relatively fast, as is often the case with 
nonprehensile tasks mentioned above.

The main idea of this paper is to design a real-time 
rigid body estimator by augmenting the visual data with 
other sensory inputs available from manipulating bod-
ies including the joint force/torque sensor or the tactile 
sensor mounted at the surface of the end-effector. The 
estimator is termed “real-time” in the sense that the 
visual feedback and other sensory data are updated and 
utilized to guide the manipulators at the same rate of 
their motion controller (or the servo controller), which 
is usually much faster than the update rate of the vision 
data. Therefore, the information fusion occurs at the 
very low level of the sensory data processing. Such a 
technical issue has been addressed either by some algo-
rithmic approach (see, for example, [13] and references 
therein) or by sensor-based approach [14]. In this paper, 
we try to combine different types of sensors but make 
explicit use of the physical model for the rigid body 
dynamics requiring the determination of contact forces 
in detail as a necessary step to achieve a good estima-
tion performance.

Combining the vision with force/torque or tactile data 
has been tried by many researchers in recent years [15–
19], mainly for task-orientated (i.e. high-level) opera-
tions of robotic manipulators such as opening doors 
[18] or grasping a stationary object [15, 19]. Because 
the time scale of these tasks is much larger than that 
of the controller, the timing issue (i.e. the latency of 
the visual data) is not critical in these applications. On 
the other hand, the nonprehensile manipulations men-
tioned above often involve much faster time scale asso-
ciated with the object motion. Thus the compensation 
of the visual latency will be important for accurate and 
fast estimation of the object motion, especially when we 

use the estimated variables for real-time control pur-
pose. In fact, some pioneering works on nonprehensile 
manipulation share the motivation with our study in 
this respect. Specifically, the work in [20] considered 
a concept called the dynamics matching to close the 
visual feedback loop at the same rate (i.e. 1 ms) as the 
other sensory inputs using a specially-designed high-
speed vision system.

The remainder of this paper is organized as follows. 
“Preliminaries” section presents the mathematical 
description of general rigid body motion and the deter-
mination of contact forces using the contact kinemat-
ics. The main formulation of the multirate rigid body 
estimator is described in “Estimator design” section and 
their experimental results are presented in “Experimental 
results” section followed by the summary of the results in 
“Conclusions and discussions” section.

Preliminaries
Description of rigid body motion
Figure 1 shows the schematic diagram of a rigid body in 
3D space under contact forces and the gravitational force. 
S and B denote the spatial and the body coordinate frame, 
respectively. The total mass and the inertia tensor of the 
object, evaluated at the center of mass, are denoted by 
m and I , respectively, where I  is a diagonal matrix with 
moments of inertia J1, J2 and J3, i.e. I0 = diag(J1, J2, J3) 
when its bases lie along the principal axes. Then, the gen-
eral form of rigid body dynamics can be written as [11]

where the superscript b indicates that the correspond-
ing quantities are written with respect to the body coor-
dinate frame attached to the object mass center (shown 
as B in Fig. 1). M = diag(mI3, I0) ∈ R6×6 is the general-
ized inertia matrix (with I3 ∈ R3×3 denoting the identity 
matrix). The notation [•×] ∈ R3×3 is the skew-symmetric 
matrix form of the cross product, i.e. [a×]b = a× b . The 
vector Vb = col

(

vb, ωb
)

∈ R6 is the twist form for the 
generalized body velocity where v ∈ R3 is the transla-
tional velocity, and ω ∈ R3 is the angular velocity. Fb ∈ R6 
is the resultant wrench applied at the center of mass, 
which can further be written with respect to those of 
each manipulator. Namely, denoting by np the total num-

ber of end-effectors, Fb =
∑np

i=1 F
b
i =

∑np
i=1 col

(

f bi , τ
b
i

)

 

where f bi ∈ R3 and τ bi ∈ R3 (i = 1, 2, ...np) are the force 
and the torque vectors, respectively, for the ith con-
tact point (denoted by pci in Fig. 1). Note that fi can be 
either a contact force or the gravitational force. The 
point of application, pci, of the gravitational force will be 
located at the center of mass (see Fig. 1). We consider the 
situation where the object is freely moving without any 

(1)MV̇ b + diag([ωb×], [ωb×])MVb = Fb
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environmental or disturbance forces (such as friction) 
except for the gravity.

If we describe v of Eq. (1) in the spatial coordinate 
frame (indicated by the superscript ’s’) and separate the 
dynamics into a translational part and a rotational one, 
we have 

where R ∈ SO(3) denotes the rotation matrix for the con-
figuration of the body coordinate frame. Recall that the 
rigid body kinematics is given by 

where ps is the position of the mass center (with respect 
to the spatial frame).

To use the state-space approach, we convert Eq. (3b) 
into a vector form. Euler angles can be used to repre-
sent Eq. (3b) in the state space form but will introduce 
singularity. One singularity-free coordination is the unit 
quaternion; q =

[

q0 eT
]T

∈ R4 where q0 ∈ R is the sca-
lar part and e = [q1 q2 q3]

T ∈ R3 is the vector part with 
�q�2 = 1. At the cost of increased dimension, the quater-
nion can be used to replace Eq. (3b) with

The rotation matrix can be retrieved from the quaternion 
as R = (q20 − eT e)I3 + 2eeT + 2q0[e×] [22]. Equations 

(2a)mv̇s =
∑

f si = R

np
∑

i=1

f bi

(2b)I0ω̇
b + ωb × I0ω

b =
∑

τ bi .

(3a)ṗs = vs = Rvb

(3b)Ṙ = R[ωb×]

(4)q̇ = Hq(ω
b)q =

1
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.

(2), (3a) and (4) realize the state space representation of 
rigid body motion in general 3D which includes 13 state 
variables in total for general 3D motion. For the planar 
motion (i.e. 2D), the formulation can be simplified such 
that the number of state variables is reduced to 6 (see 
“Experimental results” section).

In general, the dynamics of the object may behave in 
a little different way if the contact forces are applied in 
a non-smooth or impactive way [25]. However, in prac-
tice, we may not encounter such an ideal impact because 
of the softness (or the flexibility) of finger tips and the 
end-effectors.

Determination of contact force
Often times, the contact force fi in Fig.  1 cannot be 
directly measured but rather needs to be estimated using 
proprioceptive sensory data (e.g. joint angles, torques 
and/or tactile sensors) available from each manipulator. 
To explain specific ways of doing this, we briefly review 
the contact kinematics and coordinate transformation of 
generalized forces in this subsection. More detailed treat-
ment for mathematical formulations of grasping and con-
tact forces can be found in well-known textbooks such as 
[11] and [21].

To keep our analysis general, we consider the 3D case. 
Figure 2 shows the schematic diagram of the i-th manip-
ulator (finger) contacting the object at the point pci. 
Di denotes the coordinate frame for the base of the i-th 
manipulator that is fixed relative to S. Ei is the coordinate 
frame for the reference end-effector that is attached to 
the terminal link. We will use mi to denote the number of 
joints in the ith manipulator. The joint space vector for the 
manipulator is denoted by θi =

[

θi,1, . . . θi,mi

]T which is in 

Fig. 1  Coordinate frames for rigid body motion and forces

Fig. 2  Coordinate frames and variables for rolling contact kinematics
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mi-torus Tmi = S1 × · · · × S1. For the sake of illustration, 
we depicted the robotic finger as a 3 DOF (degrees-of-
freedom) elbow manipulator, i.e. mi = 3, in Fig. 2.

At first, the contact point pci can be computed from 
the joint angles of the manipulator and the tactile sen-
sor. Associated with the contact point pci are two mani-
folds that describe the surface geometry of the object and 
the end-effector, the local coordinate charts of which are 
denoted by cc and ct, respectively (see Fig.  3). The local 
coordinate chart (e.g. cc) takes a point on the surface (e.g. 
(uc, vc) ∈ Uc ⊂ R2) and maps it to a point on the mani-
fold (which is embedded in R3). For a given contact point 
and associated coordinate charts, the contact force can 
be described with respect to the contact frame which 
we denote by Ci here. Ci is an instantaneous coordinate 
system constituted by two tangent vectors (∂cc

∂uc
 and ∂cc

∂vc
) 

and their outward normal (nc) at pci with respect to the 
object. See Fig.  3 for the components of Ci, which are 
illustrated by arrows with black triangular heads. We can 
also define the end-effector counterpart for the contact 
frame (denoted by Ti) with associated coordinates, ∂ct

∂ut
, ∂ct
∂vt

 
and nt which are illustrated by arrows with white trian-
gular heads in Fig. 3. Note that Ci and Ti are opposite in 
normal direction and their tangential pairs are rotated by 
the contact angle ψ. Namely, f cii ∈ R3 ( fi written about 
Ci ) is related to f tii ∈ R3 ( fi written about Ti) as

Our objective here is to represent the body wrench 
Fb
i := col

(

f bi , τ
b
i

)

 with respect to the joint torque vector 

denoted by ϒi =
[

ϒi,1 · · · ϒi,mi

]T
∈ Rmi (e.g. ϒi,2 is the 

(5)f
ci
i = −Rciti f

ti
i , Rciti =





cosψ sinψ 0
sinψ − cosψ 0
0 0 −1



 .

joint torque for θi,2). Note that Fb
i  is related to f cii  and its 

wrench form Fci
i  as

where AdT
g−1
bci

∈ R6×6 is the transpose of the adjoint trans-

formation associated with the g−1
bci

 and � = [I3 03×3]
T 

is the wrench basis which encodes the force vector for 
frictional point contact (which is in R3) into the corre-
sponding wrench form of the contact coordinate frame 
Ci (which is in R6). The adjoint transformation denoted 
by Ad• ∈ R6×6 (where • ∈ SE(3)) is a linear mapping that 
operates the coordinate transformation of a wrench vec-
tor between two different coordinates (from Ci to B in 
this case). Also, g−1

bci
 is the inverse of the homogeneous 

transformation gbci ∈ R4×4 which belongs to SE(3) and 
maps a vector in Ci coordinate into that in B coordinate. 
(see [11] for more information about the homogeneous 
transformation and the adjoint transformation.)

Similarly, f tii  and its wrench form Fti
i = �f

ti
i  can be 

written with respect to the base frame Di as

where the last equality follows from the composition rule 
of the adjoint transformation. Finally, from the standard 
result of kinematic chain manipulators [11],

where J sditi : R
mi → R6 is the spatial manipulator Jaco-

bian for the ith manipulator evaluated with Ti as the ter-
minal frame and Di as the base frame. Combining Eqs. (7) 
and (8), we have

where Jhi ∈ Rmi×3 is called the hand Jacobian for the i-
th manipulator [11] and the notation •† stands for the 
pseudo-inverse of •. The body wrench Fb

i  is then related 
to ϒi by Eqs. (5), (6) and (9). For mi ≥ 3, Jhi is either a 
square or a tall matrix and thus its pseudo-inverse exists 
uniquely as long as it is full rank. If Jhi is not full rank, 
the manipulator may be in a singular configuration and 
needs a special treatment, which is beyond the scope of 
this paper.

From Eq. (9), it is clear that we need at least three joint 
torque sensors to fully determine f tii  in 3D. If the tac-
tile sensing is available to provide the contact pressure, 
f
ti
i,3 can be directly obtained from the tactile sensor. This 

(6)Fb
i = AdT

g−1
bci

�f
ci
i = AdT

g−1
bci

F
ci
i

(7)F
di
i = AdTgtidi

F
ti
i = AdT

g−1
diti

�f
ti
i = AdT

g−1
diei

AdT
g−1
eiti

�f
ti
i

(8)ϒi =
(

J sditi

)T
F
di
i

(9)

f
ti
i = J †hi(θi, pci)ϒi

=

(

(

J sdiei(θi)
)T

AdT
g−1
diei

(θi)Ad
T
g−1
eiti

(pci)�

)†

ϒi

Fig. 3  Definition of coordinate frames at the contact point. (Note 
that ∂cc

∂vc
 and ∂ct

∂vt
 are omitted here for the brevity of illustration)
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allows us to use only two joint torque sensors to figure 
out the remaining components for tangential direction, 
i.e. f tii,1 and f tii,2. If the manipulator is deficient in sensing, 
the contact force may not be fully determined in general. 
However, in some special cases, the contact force may 
be identified reasonably well even with fewer number of 
sensors. Manipulation by an impactive force is one exam-
ple where the direction of the contact force is related to 
the pre-impact velocity. If the direction of the contact 
force vector can be known (for example by the vision sen-
sor), we only need to find its magnitude which we may 
infer with just one joint torque sensor. An example of 
such cases is considered in the experimental tests.

Estimator design
In this section, we derive the rigid body estimator for the 
general 3D case, using the rigid body dynamics and the 
contact force measurement equations presented in the 
previous subsections. Multimodal sensory integration will 
also be put into perspective through the formulation of 
a new state estimator combining signals from the visual 
image with the joint torque sensor and/or the tactile data.

State space description
Denoting the state vectors for the transla-
tion and the rotation by ξ and η, respectively, (i.e. 
ξ = col(ps, vs) ∈ R6, η = col

(

q, ωb
)

∈ R7), we can 
write Eqs. (2), (3a) and (4) in the state equation as 

 where the subscripts t and r denote the translation and 
rotation, respectively, u(t) = col

(

f b1 (t), ..., f
b
np
(t)

)

∈ R
3np 

is the force input and w(t) ∈ R
3np represents the corre-

sponding process noise. The system matrices are given by

If the i-th end-effector is not in contact with the object, 
both pbci(t) and f bi  can simply be set to zero.

Note that the translational dynamics depends on the 
rotation matrix R(t) to be estimated using the attitude 

(10a)ξ̇ = Ftξ + Gt

(

u(t)+ w(t)
)

(10b)η̇ = Fr(t)η + Gr(t)
(

u(t)+ w(t)
)

(11)

Ft =

[

03×3 I3
03×3 03×3

]

, Gt =
1

m

[

03×3np

R
[

I3 · · · I3
]

]

Fr(t) =

[

Hq(ω
b(t)) 04×3

03×4 − I
−1

0

[

ωb(t)×
]

I0

]

,

Gr(t) =

[

04×3np

I
−1

0

[

[

pbc1(t)×
]

· · ·
[

pbcnp (t)×
]

]

]

.

dynamics. Similarly, the system matrix for the attitude 
dynamics, Fr(t), is a function of the state variable ωb 
and the attitude input matrix Gr is a function of 

[

pbc (t)×
]

 
which needs to be estimated from the translational 
motion. The state dependency of these system matrices 
can be handled by the pseudo-linear formulation [23, 24] 
which simply replaces the actual state variables (i.e. ωb, 
R, and 

[

ωb(t)×
]

 ) in the system matrices by the estimated 
ones.

Representing the time instant t = tk := kTs by the inte-
ger k, the discretetized form of Eq. (10) is 

 where the system matrices �• and Ŵ• are computed from 
F• and G•, respectively, by the zero-order-hold (ZOH) 
assuming that signal values are almost constant within 
the base sample time, Ts.

The input signal u(t) is available from joint torque sen-
sors and/or tactile sensors with a fast sample rate Ts. On 
the other hand, the position and orientation of the rigid 
body can be measured through a stereo vision system 
at much slower sample rate and with latency due to the 
vision processing time. The corresponding output equa-
tions can be described as 

 for k = Nvℓ (ℓ = 0, 1, 2, ...) and zero otherwise, where 
Nv is the integer multiple of Ts that relates the vision time 
step Tv with the base sample time such that Tv = NvTs. 
Equations (12) and (13) complete the formulation of the 
system dynamics and the associated sensory data in the 
state space form.

Due to the multi-rate nature of the system equations 
given in Eqs. (12) and (13), the estimation process con-
sists of two parts: the prediction step at every fast sam-
ple time Ts, and the correction step at every vision sample 
time Tv. The key point is that the correction is operated 
in a retrospective way to fully recover the measurement 
delay coming from the delayed vision data, thereby 
ensuring that the estimates reflect the current (real-time) 
state information. In the remaining part of the paper, the 

(12a)ξ(k + 1) = �tξ(k)+ Ŵt(k)
(

u(k)+ w(k)
)

(12b)η(k + 1) = �r(k)η(k)+ Ŵr(k)
(

u(k)+ w(k)
)

(13a)

yt(k) = ps(k − Nv) = Ctξ(k − Nv)+ vt(k − Nv)

(13b)=
[

I3 0
]

ξ(k − Nv)+ vt(k − Nv)

(13c)

yr(k) = q(k − Nv) = Crη(k − Nv)+ vr(k − Nv)

(13d)=
[

I4 04×3

]

η(k − Nv)+ vr(k − Nv)
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bar notation, •̄ will be used to denote the values meas-
ured by the sensors while the hat notation, •̂, will be used 
to denote the estimated values.

Multirate estimation combining vision and contact force
As will be shown later, the measurement delay can be 
handled in the last stage. So we first derive the estimator 
without considering the output measurement delay here. 
Assume that we have the best estimates of ξ and η at the 
discrete-time step k based on the vision data at the same 
time step, which we denote as ξ̂ (k|k) and η̂(k|k) , respec-
tively. Then, until the next vision data become available at 
the time step k + Nv, the state variables are predicted by 
propagating Eq. (12) using the contact force vector as an 
input signal 

where i = 0, 1, ...,Nv − 1. k is the discrete-time index for 
the moment at which the last correction was made by 
the vision data. ū(k) = u(k)+ w(k) is the forces applied 
at the contact point(s) which can be measured by the 
force-torque and/or tactile sensors on fingers using the 
kinematic relation provided in the previous section. 
The sensor noise w(k) ∈ R

3np is assumed independent, 
Gaussian distributed, and stationary with its covari-
ance denoted by E

[

w(k)w(k)T
]

= W ∈ R
3np×3np. Note 

that the state-dependent system matrices Ŵt, �r and Ŵr 
are updated by the vision sample rate Tv in Eq. (14) (i.e. 
they are updated at the time step k and kept constant for 
i = 0, 1, ...,Nv − 1). However, it is also possible to update 
them by the base sample rate Ts using the predicted state 
variables.

During the prediction step given in Eq. (14), the esti-
mation error will be accumulated. Denote Z(k|k) as the 
estimation error covariance at time k right after updat-
ing by the kth image. Then, Z(k|k) propagates through the 
prediction process in Eq. (14) as

where the subscript • indicates either t or r in the remain-
der of the paper. When the new image is obtained at time 
k + Nv, the Kalman filter gains can be computed for the 
translational and rotational motions as

(14a)

ξ̂ (k + i + 1|k) = �t ξ̂ (k + i|k)+ Ŵt(k)ū(k + i)

(14b)
η̂(k + i + 1|k) = �r(k)η̂(k + i|k)

+ Ŵr(k)ū(k + i)

(15)

Z•(k + i + 1|k) = �•(k + i)Z•(k + i|k)�•(k + i)T

+ Ŵ•(k + i)WŴ•(k + i)T

(16)

L•(k + Nv) = Z•(k + Nv|k)C
T
•

×
[

C•Z•(k + Nv|k)C
T
• + V•

]−1

where V• is the error covariance matrix for the output 
noise signal v• (vt or vr), i.e. E

[

v•(k)v•(k)
T
]

= V•. The 
measurement noise v• is assumed to be stationary, inde-
pendent and Gaussian distributed. Then the update equa-
tions can be written as 

 Note that the estimated quaternion variables in  
η̂(k|k) needs an additional step for normalization (see 
“Description of rigid body motion” section). Finally, the 
covariance of the estimation error Z(k + Nv|k) is cor-
rected for the next recursive step:

Until now, we assumed the output signal is measured 
without any delay. However, the measurement of the 
vision sensor at the time step k is, in fact, obtained from 
the camera image taken at the time step k − Nv. There-
fore, the prediction step Eq. (14) needs to be changed to 

 Likewise, the propagation of the estimation error covari-
ance given by Eq. (15) changes to

and the filter gain in Eq. (16) also changes to

By the time we arrive at the time step k + Nv and com-
pute Eq. (21), we now know what values of ps(k) 
(= yt(k + Nv) ), and q(k) (= yr(k + Nv)) should have 
been. This means that we can make the correction 
for the Nv time step prior to the current time step and 
compute ξ̂ (k|k) and η̂(k|k) in retrospect. As soon as we 

(17a)

ξ̂ (k + Nv|k + Nv)

= ξ̂ (k + Nv|k)+ Lt(k + Nv)

×
(

yt(k + Nv)− Ct ξ̂ (k + Nv|k)
)

(17b)

η̂(k + Nv|k + Nv)

= η̂(k + Nv|k)+ Lr(k + Nv)

×
(

yr(k + Nv)− Cr η̂(k + Nv|k)
)

.

(18)

Z•(k + Nv|k + Nv) = Z•(k + Nv|k)

− L•(k + Nv)C•Z•(k + Nv|k).

(19a)

ξ̂ (k + i + 1|k − Nv) = �t ξ̂ (k + i|k − Nv)

+ Ŵt(k − Nv)ū(k + i)

(19b)

η̂(k + i + 1|k − Nv) = �r η̂(k + i|k − Nv)

+ Ŵr(k − Nv)ū(k + i).

(20)
Z•(k + i + 1|k − Nv)

= �•(k + i)Z•(k + i|k − Nv)�•(k + i)T

+Ŵ•(k − Nv)WŴ•(k − Nv)
T

(21)

L•(k + Nv) = Z•(k + Nv|k − Nv)C
T
•

×
[

C•Z•(k + Nv|k − Nv)C
T
• + V•

]−1
.
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compute ξ̂ (k|k) and η̂(k|k), we also know what values of 
ξ̂ (k + i + 1|k) and η̂(k + i + 1|k) should have been for 
i = 0, 1, ..., Nv − 1, and can compute them all at once. All 
these estimates are for the past and thus useless except 
for the last pair, i.e. ξ̂ (k + Nv|k) and η̂(k + Nv|k). So we 
should take them as the estimate for the current time 
step, k + Nv. This process repeats for the next batch of 
the prediction steps. In summary, the correction step 
shown in the previous subsection should be modified 
into the following set of procedures. It applies to both 
translation and rotation in the same way so we explain 
here with the translational motion only.

1.	 As soon as we arrive at the time step k + Nv, com-
pute the Kalman filter gain for the time step k, i.e. 
Lt(k) using Eq. (21). Then, using the delayed vision 
data yt(k + Nv) = ps(k), make a correction for the 

time step k, i.e. ξ̂ (k|k), by Eq. (17a). At the same time, 
make a correction to the estimation error covariance 
in a similar way as Eq. (18) but with the twice of the 
vision step as the update interval, i.e. 

 The reason for doubling the update interval will 
become clear at the end of step 3).

2.	 Compute ξ̂ (k + 1|k), ..., ξ̂ (k + Nv|k) using the 
prediction equation Eq. (14a), after which we 
take only ξ̂ (k + Nv|k) as the estimate for the cur-
rent time step k + Nv. Similarly, compute the 
propagation of the estimation error covariance 
Zt(k + 1|k), ..., Zt(k + Nv|k) in the same way as Eq. 
(15). This completes the retrospective correction for 
the time step k + Nv.

3.	 Next, we progress for the subsequent time steps 
k + Nv + 1, ..., k + 2Nv in a similar way as Eq. (19a). 
At the same time, we continue computing the propa-
gation of the estimation error covariance using Eq. 
(20), after which we have Zt(k + Nv|k − Nv). As a 
result, the update process operates by the estimation 
error accumulated during 2Nv time steps.

4.	 When we arrive at the next vision time step k + 2Nv , 
now we have yt(k + 2Nv) = ps(k + Nv) and can 
compute the Kalman filter gain for the time step 
k + Nv, i.e. Lt(k + Nv) using Eq. (21). Now, we are 
back to step 1) so can repeat the process.

One important point to be made here is that the integrity 
of the proposed estimator strongly relies on the accuracy 
of the contact force vector as well as the contact location. 
As discussed in “Determination of contact force” sec-
tion, the accuracy of the contact force can be improved 

(22)
Zt(k|k) = Zt(k|k − 2Nv)

− Lt(k)CtZt(k|k − 2Nv).

by redundant sensing. Similarly, the information on the 
contact point may be refined by the use of high-speed, 
high-fidelity tactile sensor arrays.

Experimental results
Testbed configuration
We conducted two experimental tests for the proof-of-
concept of the rigid body estimation explained in the 
previous section. In the first experiment, the setup is 
configured as shown in Fig.  4 considering the planar 
2-D motion of a target object. A square object is made 
of aluminum blocks and is placed on the air table such 
that it moves on the horizontal plane without any grav-
ity and friction. A robot hand (BHand), manufactured 
by Barrett Technologies Inc., is mounted to the side of 
the table so that the robotic fingers can manipulate the 
object for its planar motion. A vision camera is mounted 
above to take images of the object while it is moving. 
Figure 5 shows the sample view from the camera, which 
indicates, with added labels, the index number for each 
finger and the locations of some reference frames that 
we defined in “Determination of contact force” section. 
The body coordinate frame B is located at the center of 
the square object. The spatial (inertial) frame is attached 
to the center of the palm of the BHand and D1 (the base 
frame for finger 1) is placed at the inner joint (first joint) 
of the finger 1.

The specifications of vision sensor is shown in 
Table 1. The acquisition timing of the image is precisely 

Fig. 4  Configuration of testbed for the case with the object moving 
on the horizontal plane
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controlled by the external trigger signal coming from the 
real-time machine. The image processing is based on the 
simple pattern matching which provides the location of 
the object center about the spatial frame (i.e. ps) as well 
as the rotation angle (denoted by φ in this section) of the 
body frame with respect to the spatial one.

During the experiment, the BHand is manipulated by 
an operator who controls a set of potentiometers each 
of which corresponds to the desired position of the first 
joint of each finger. Each finger takes this desired position 
as a reference command and runs the PID controller. The 
square object is then manipulated through contacts with 
the fingers. As shown in Fig. 5, each finger of the BHand 
has its configuration of a two link manipulator. However, 
the second (or the outer) joint is kinematically linked to 
the first one so only one reference signal is used to con-
trol the whole finger. In the remaining part of the paper, 
F1, F2 and F3 will denote the finger 1, the finger 2 and the 
finger 3, respectively.

In order to demonstrate the performance of the pro-
posed estimator under the effect of gravitational force, we 
conducted another experiment as shown in Fig. 6 where 
the gravitational force is denoted by the downward arrow 
labeled with mg. The BHand (and the camera) is arranged 

in 90o rotation from to the previous configuration. So the 
back plane of the wrist of the BHand is mounted on the 
horizontal table. Initially, the object is stably supported 
by the F3 and one of its corners against gravity as shown 
in Fig.  6. Then, the object is moved by the action of F3 
making a non-centroidal rotation about its corner at the 
bottom until it gets caught by the F1 (and F2).

Estimator for 2D motion
The movement of the object is constrained to the 2D 
plane in both configurations of the experimental tests 
mentioned above. In such 2-D motions, the rota-
tion has only one degree of freedom with no distinc-
tion between the spatial frame and the body frame (i.e. 
ωb = ωs = ω ∈ R) and thus Eq. (2b) is simplified to a lin-
ear form:

The dimension of the state space equation in Eq. (10) also 
reduces down to 6 from 13.

The surface of the finger has a geometric shape as 
shown in Fig.  7a. We took F1 as an example here but 
other fingers have the exact same geometry. The allowed 
contact area is indicated by the grey line on the surface 
of the finger. The grey-colored section of the finger con-
sists of two arcs which have different radii and center 
points. The first section has a radius 105  mm with its 
centre point located at (0, −95.5) written with respect to 
the end-effector frame E1 shown in Fig. 7a. On the other 
hand, the second section has a radius 8 mm with its cen-
tre point located at 

(

97 sin π
18 , 0

)

 written about E1. (Note 
that 97 sin π

18 ≈ 95.5 tan π
18 ≈ 16.84). Therefore, the coor-

dinate chart ct : Ut ∈ R → R2 for the grey-colored sec-
tion of the finger can be written as

I0ω̇ =
∑

τi.

Fig. 5  A view from the vision camera for the case with the object 
moving on the horizontal plane free from gravity

Table 1  Specifications of vision

Specification Values Units

Communication CameraLink™

Exposure time 10 [ms]

Bit depth 8 Bits

Pixel size 2048 × 1088 Pixels

Resolution 284 μm/pixel

Fig. 6  A view from the vision camera for the case with the object 
moving under gravity
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where the (x, y) coordinate values are written in [mm] 
with respect to the end effector frame E1. Note that ct 
parameterizes the regular surface geometry including 
the point ut = 10o = π

18. Defining ct as in Eq. (23) also 
implies that T1, i.e. the contact frame for the finger can be 
configured as shown in Fig. 7a.

Since the surface of the object aligns with x and y axes 
of the body coordinate frame, the coordinate chart for 
the object cc can simply be taken as a mapping from one 
of these axes to the contact point represented by the body 
coordinate frame. Similarly, the contact frame C1 for the 
object is configured such that its y-axis is the same as the 
x-axis of B for the situation shown in Fig. 7b. Figure 7b 
also illustrates how the contact force f1 is represented 
with respect to the contact frame T1 for the finger. More 
specifically, f t11,1 denotes the component of f1 along the 
x-axis (or, equivalently, the direction of ∂ct

∂ut
) of T1 and f t11,2 

corresponds to its normal component.
Using the coordinate frames shown in Fig.  7, we can 

compute the spatial manipulator Jacobian J sd1e1 as

where ℓ1 denotes the length of the inner link, c1 := cos θ1,1 
and s1 := sin θ1,1. After going through some tedious but 
straightforward computation of associated adjoint matri-
ces, we can compute the hand Jacobian for F1 as

(23)
ct =

{

(105 sin ut , 105 cosut − 95.5), 0 ≤ ut <
π
18

(

8 sin ut + 97 sin
π
18
, 8 cosut

)

,
π
18

≤ ut <
π
2

(24)J sd1e1(θ1) =

[

0 0 0 0 0 1
ℓ1s1 −ℓ1c1 0 0 0 1

]T

(25)

Jh1 =
�

J sd1e1(θ1)
�T

· AdT
g−1
e1t1

(ut) · Ad
T
g−1
d1e1

(θ1)�

=









ℓ1s2−ut − cut ct,2
− sut

�

ℓ2 + ct,1
�

ℓ1c2−ut − sut ct,2
+ cut

�

ℓ2 + ct,1
�

−sut
�

ℓ2 + ct,1
�

− cut ct,2

cut
�

ℓ2 + ct,1
�

− sut ct,2









where ℓ2 is the length from the outer link joint axis to the 
centre of E1. ct,1 and ct,2 denote the first and the second 
element of ct in Eq. (23), respectively. Similarly to the 
notation we used in Eq. (24), “c” and “s” denote the cosine 
and the sine functions, respectively, for the angles indi-
cated by their subscripts, e.g. sut := sin ut.

In order to use Eqs. (25) and (9) for the contact force 
determination, we need at least two joint torque sensors, 
one at the inner link and the other at the outer link. How-
ever, each finger of the BHand is equipped with a strain 
gauge to measure the joint torque only at the outer link, 
i.e. ϒ1,2 (see Fig.  7b). To get around this issue, we con-
ducted the experiment by applying the contact force in 
an impactive way rather than by a continuous rolling con-
tact. If the force is applied as an impact and if the object 
motion is mostly translational, then the force direction 
can be approximated by the relative velocity between 
the object centre and the finger contact point (due to the 
principle of impulse and momentum [25]). In fact, the 
contact force is likely to be an impact in our experimental 
setup since the object block can move freely without fric-
tion on the horizontal plane and the finger is controlled 
with a position mode PID servo with high gain for fast 
response. Following our notational convention, let us 
denote vt1t1 the velocity of the (imminent) contact point 
pc1 at the finger 1 surface right before the impact, writ-
ten with respect to the contact frame T1. Likewise, denote 
vt1 as the velocity of the mass centre of the object written 
with respect to T1 frame. Also denote �v

t1
1 = v

t1
t1
− vt1 . 

Then the contact force for finger 1 can be approximated 

as f t11 ≈ ρ�v
t1
1 = ρ

(

v
t1
t1
− vt1

)

∈ R2 with some unknown 

scale factor ρ ∈ R. From Eq. (9), we have

where e2 = [0 1]T. Consequently, we can obtain f t11  as

Experimental results and evaluation
The data acquisition and the real-time control have been 
implemented using a real-time desktop PC running 
under a real-time operating system provided by National 
Instruments Inc. The real-time loop consists of two dual-
rate parallel processes; one for the fast loop (Ts) and the 
other for the vision loop (Tv). The sensor signals from the 
BHand can only be communicated through high speed 
CAN protocol, which made us to choose Ts = 2.5 ms as 
the fastest possible sample rate for acquiring the joint 
encoder position values and the strain gauge values. The 
reference command for the joint PID controller is also 

(26)

[

ϒ1,1

ϒ1,2

]

= ρJh1�v
t1
1 =⇒ ρ =

ϒ1,2

eT2 Jh1�v
t1
1

(27)f
t1
1 =

ϒ1,2

eT2 Jh1�v
t1
1

·�v
t1
1 .

a b
Fig. 7  Contact geometry and coordinate frames for contact force. a 
Geometry of contact area, b  contact force configuration
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updated by the Ts. Through the timing test of the vision 
camera, it has been identified that the total latency of the 
vision data is around 25 ms. To evaluate the performance 
of the estimated state variables, we need a monitor-
ing signal (i.e. the true position and orientation data for 
the target object) for comparison. For this, the original 
vision data has been acquired every 25 ms and processed 
offline to remove the latency and to be interpolated into 
2.5 ms data which is then stored as the monitoring sig-
nal. The original vision data sampled at 25 ms is further 
down-sampled to create Tv = 50  ms of the observation 
data with latency (i.e. yt(k) and yr(k) in Eq. (13)). In the 
experiments, we used the original vision data (i.e. delayed 
and down-sampled position measurement of the object) 
to identify the contact point, which worked reasonably 
well despite some errors due to the visual latency. It may 
be attributed to the fact that position variable does not 
change abruptly in contrast to the force which can be 
applied in a discontinuous (or an impactive) way.

Table 2 lists the parameters used for the experimental 
test. The first experimental results, i.e. the 2D motion 
free from gravity, are presented with time plots in Figs. 8, 
9 and 10. During the time period shown in these plots, 
the object is first struck by the Finger 1 and then subse-
quently by the Finger 3. Figure 8 shows the joint torques 
measured by the strain gauges at the outer link joints 
during this period. Figure  8 reveals that the time dura-
tion of force application is less than 100 ms for both fin-
gers, which conforms to our earlier discussion on the use 
of impactive forces for experimental tests. During the 
time period shown in Fig. 8, the fingers are held station-
ary, i.e. vt1t1 = v

t3
t3
= 0 and the object was simply bounc-

ing between two fingers. In this case, �v
t1
1 = −vt1 and 

�v
t1
3 = −vt3. The resulting directions of �v

t1
1  and �v

t1
3  

(right before the impact) are drawn in Fig. 8 with corre-
sponding directional angles. The contact force for each 
finger is then determined using Eq. (27).

Figure 9 shows the experimental results for the position 
variables; the position of the mass center ps = [x y]T 
and the orientation angle φ. The thick solid line is the 

Table 2  Parameter values of the experiment

Parameter Value Unit

Object size 10 × 10 cm

Object mass (m) 3.165 kg

Object inertia (I0) 9.72 · 10−3 kg m2

Base sample rate (Ts) 2.5 ms

Vision sample rate (Tv) 50 ms

Force noise covariance (W) 0.04I2 N2

Vision noise covariance (V) 0.01 mm2

8.8 8.9 9 9.1 9.2 9.3 9.4 9.5
0

0.2

0.4

0.6

0.8

8.8 8.9 9 9.1 9.2 9.3 9.4 9.5
0

0.2

0.4

0.6

0.8

Fig. 8  Outer link joint torques measured by the strain gauges for the 
case with the object moving on the horizontal plane free from gravity

a

b
Fig. 9  Comparison of rigid body motion data—position. a Transla-
tion, b orientation
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monitoring signal obtained by offline processing of the 
original vision data sampled at 25 ms rate and is regarded 
as the true position of the object. The thin solid line is 
the real-time vision data with Tv = 50 ms latency, which 
we used as the real-time observation signal for the esti-
mator. The thin dotted line is the motion data obtained 
from the real-time rigid body estimator. It shows that the 
latency and inter-sample values are compensated so that 
the estimated motion variables are close to the monitor-
ing signal.

Figure 10 compares the velocities from the rigid body 
estimator with those of other signals. Again, the thick 
solid line is the reference (or the true) velocity which is 
obtained by numerical differential of the monitoring sig-
nal. The thin solid line is the velocity computed using the 
delayed vision data. Remember that we need two consec-
utive sample points to compute the velocity by numerical 

differentiation. Therefore, the velocity obtained from the 
observed vision data (i.e. the one with Tv = 50 ms sam-
pling) has additional 50 ms of latency resulting in 100 ms 
of total latency as shown in Fig. 10. In contrast, as we can 
see in the thick dotted line, the rigid body estimator can 
effectively compensate for such latency providing more 
accurate real-time velocity signal.

The experimental results for the second experiment, i.e. 
the case with the object moving under the effect of grav-
ity are shown in Figs. 11 and 12 which are presented in 
the same format as those for the planar motion are pre-
sented in Figs. 9 and 10. The catching action by F1 and 
F2 occurred a little before 3.2 s of time and generated an 
impulse-like force to the object, which can be seen from 
the sharp change in the velocity data of Fig. 10. We can 
clearly see from Fig. 9 that the estimated motion variables 

a  

b  
Fig. 10  Comparison of rigid body motion data—velocity. a Transla-
tion, b orientation

a

b  
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Fig. 11  Comparison of rigid body motion data when the object is 
under gravitational force—position. a Translation, b orientation
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have compensated very well for the latency and missing 
intersample values of the vision, except for small errors 
during the catching period. The velocity profiles shown in 
Fig. 12 also confirm that the proposed rigid body estima-
tor effectively compensates for the vision latency and can 
be used to provide more accurate real-time velocity data.

Conclusions and discussions
Motivated by the dynamic dexterous manipulation tasks 
where the fast and accurate estimation of the target 
object motion is often required, this paper presented a 
new rigid body estimation scheme combining the visual 
data with other sensory inputs for contact force measure-
ment. The main point is the complementary use of the 
fast-sampled force measurement in compensating for the 
slow-sampled visual data with latency. Mathematically, 

the rigid body estimator takes the multi-rate extended 
Kalman filter form with retrospective correction step for 
the delay compensation.

As demonstrated by the experimental results, the esti-
mator is expected to perform very well if the contact 
force can be correctly determined. This will be especially 
so for large values of vision latency since the estimator 
relies on the numerical integration (or the prediction) 
between two consecutive vision samples. Use of high 
fidelity tactile and joint torque sensors is expected to 
enhance the performance as well as the robustness of the 
proposed rigid body estimator.

In this paper, we assumed that we have a prior knowl-
edge on the inertial properties of the object such as the 
mass or the inertia matrix. Such inertial properties may 
also be identified through preliminary manipulation tri-
als and the application of parameter identification tech-
niques. In fact, when we (humans) manipulate an object 
with our hands, in the beginning, we have only a lim-
ited sense of inertial properties but, through a variety 
of manipulation tasks, we gradually get to learn inertial 
properties more accurately and eventually become more 
skillful. Also, in order for the proposed estimator to be 
useful in a wide range of applications, it should be tested 
with more complex dynamic manipulation tasks such as 
throwing and catching an object in 3D space. We plan to 
pursue these research ideas as our future works.
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