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Abstract 

In this paper, an optimal jerk stiffness controller is proposed to produce stable gait pattern generation for bipedal 
robots in rough terrain. The optimal jerk controller is different from the point-to-point and via-Point conventional 
approaches as trajectories are planned in the Cartesian space system whereas control laws are expressed in the joint 
space. Its major contribution resides in the generation of stable semi elliptic Cartesian trajectories during the swing 
phase that do combine benefits of trigonometric and polynomial functions. The stiffness controller is designed with-
out gravity compensation and ensures for the robotic system elastic and stable contact forces with the ground during 
the impact and the double support phases. Not only, the control strategy proposed needs very few sensors to be 
implemented but also it ensures robustness to sensory noise and safety with rough terrain. Simulation performed on 
a 12 DOF bipedal robot shows the performances of the control laws combined to produce a 3D stable walking cycles 
without shaking in uneven terrain.

Keywords:  Robot control, Humanoid robots, Legged locomotion, Gait pattern generation, Robot motion

© 2016 Aloulou and Boubaker. This article is distributed under the terms of the Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any 
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
license, and indicate if changes were made.

Background
Prospective gait pattern generation is one of the main 
challenges of research dedicated to bipedal and human-
oid robots. A typical walking cycle includes three main 
stages: the single support phase (SSP), the impact phase 
(IP) and the double support phase (DSP). The SSP occurs 
when one limb is pivoted to the ground while the other is 
swinging from the rear to the front. The IP occurs when 
the toe of the forward foot starts touching the ground. 
The impact between the toe of the swing leg and the 
ground takes place during an infinitesimal length of time. 
Finally, the DSP occurs when both limbs remain in con-
tact with the ground. During the SSP, the robotic system 
is described by a free dynamic model while IP and DSP 
phases represent the constrained dynamic model.

In the last decades, many control techniques have been 
investigated to produce human-like walking gaits mainly 
based on the inverted pendulum principle [1]. Dur-
ing the SSP, several optimal control laws have been also 
proposed. Criteria to be optimized are often the energy 

consumption [2], the falling measure [3], the ZMP [4] 
and the jerk [5]. Focusing on the jerk criterion, the corre-
spondent optimal control law has many benefits. Its main 
involvement resides in the generation of smooth motion 
trajectories in order to avoid sudden movements [6]. 
The optimal jerk based control techniques have affected 
many industrial areas such as machine tools, manufac-
turing, and robotics [7–11]. However, for the selection 
of mathematical function to describe desired trajecto-
ries to be tracked, there are divided opinions between 
researches selecting polynomial functions [12] and, oth-
ers using trigonometric functions [13, 14]. For the first 
case, it is proved that polynomial trajectory references 
are easily followed by the actuators involved. However, 
such approaches have certain disadvantages like the long 
execution time which seriously jeopardizes the possibil-
ity of real time implementation. For the second case, it 
is proved that the involved joints in the movement are 
less oscillatory when trigonometric functions are consid-
ered. Another issue raised has also divided researchers in 
opinion: the space on which reference trajectories must 
be planed (Cartesian or joint space). For example, it is 
showed in [15] that if the minimization problem and its 
solution are formulated in the joint space, only physical 
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limitations of the joint actuators will be included in the 
constraint statements. However, in a realistic environ-
ment, obstacles exist and cause changes in the trajec-
tory direction. Actually, generating reference trajectories 
may be done whether in the joint or Cartesian space. The 
space’s choice should only be determined according to 
the constraints and the shape of the desired trajectory.

On the other hand, to produce stable and safe contact 
with the ground during the IP and DSP, a number of 
control techniques can be used to solve the force/posi-
tion control problem [16]. The active stiffness approach, 
originally proposed by Salisbury in [17], can be adopted. 
Its goal is to establish a dynamic relation between the 
end-effector position and the contact force. Such control 
approach has the advantage to provide elastic contact 
with the constrained environment while requiring very 
little sensors. Unfortunately, it generally suffers of lack 
of precision and robustness. Recently, several research 
papers have proposed some improvements to overcome 
such problems [18–20].

In this paper, the major contribution lies in the pro-
posal of two control laws combined to produce 3D safe 
walking cycles: An optimal jerk controller during the 
SSP and an active stiffness controller law without gravity 
compensation during the constrained phases. The result-
ing control approach guarantees a stable and safe gait 
pattern generation without vibration and shaking even in 
presence of sensory noise and rough terrain.

This paper is organised as follows: In ‘‘The robotic 
model” section, the robotic model during the SSP, the IP 
and the DSP is described. ‘‘The 3D desired trajectory of 
the swing foot” section presents the 3D desired trajectory 
of the swing foot during the SSP. Jerk optimal control 
and Stiffness control laws are designed in ‘‘Jerk optimal 
control” section and ‘‘Active stiffness controller” section, 
respectively. Finally, simulation results performed on a 
12 DOF bipedal robot are given in ‘‘Simulation results” 
section.

The robotic model
During the SSP, the bipedal model of the robot is 
described by:

where Φ , Φ̇ , Φ̈ ∈ Rn are the joint position vector, the joint 
velocity vector and the joint acceleration vector, respec-
tively.M(Φ) is the inertia matrix, H

(

Φ , Φ̇
)

 is the vector of 
the Coriolis and centripetal forces and G(Φ) is the gravity 
vector. The matrix D is a nonsingular input map matrix 
whereas U is the control input vector. Moreover, we 
assume that the input matrix is always nonsingular when 
the supporting foot makes flat contact with the ground 
and that the contact force is always feasible.

(1)M(Φ)Φ̈ +H(Φ , Φ̇)+ G(Φ) = DU

The kinematic and the differential kinematic models of 
the bipedal robot are given by:

where X , Ẋ ∈ R3 are the swing foot Cartesian position 
and velocity vectors, respectively, f(Φ) is a vector of non-
linear functions obtained using Euler’s transformation 
principle of the Cartesian position of the swing foot of 
the bipedal robot from the body coordinate system to the 
inertial coordinate one and J is the Jacobian matrix.

Using (3), the inverse differential kinematic model is 
given by:

whereas the inverse kinematic model is approximately 
deduced as:

where J+ is the pseudo-inverse of the Jacobian matrix, 
Φd and Xd ∈ R3 are the desired joint position vector and 
the desired Cartesian position vector for the swing foot, 
respectively. Using (3) and (4), we can write that:

where J̇  is defined as:

During the IP and DSP phases, the bipedal model is 
described by:

where F is the contact force with the ground. It is also 
assumed that the IP takes place in an infinitesimal time 
interval.

The 3D desired trajectory of the swing foot
In order to emulate the model of human walking, we will 
impose to the swing foot of the bipedal robot to follow 
a path similar to the one generated by the human foot 
when performing a walking step. We propose a semi-
elliptical trajectory in the sagittal plane as the desired 
Cartesian position Xd = [xd yd zd]

T of the toe of the 
swing foot is described by:

Φa ∈ R is the joint position of the swing foot ankle. 
Parameter a represents a half step length whereas b rep-
resents the maximum height of the step. The parameter 

(2)X = f (Φ)

(3)Ẋ = JΦ̇

(4)Φ̇ = J+Ẋ

(5)Φ ≈ J+(X − Xd)+Φd

(6)Φ̈ = J+
(

Ẍ− J̇Φ̇
)

(7)J̇ =
dJ

dt

(8)M(Φ)Φ̈ +H
(

Φ , Φ̇
)

+ G(Φ) = DU + JT F

(9)







xd = u+ a cos (dΦa + π)

yd = c
zd = v + b sin(dΦa + π)
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c defines the distance between the two legs. Parameter 
d is a multiplier used in order to increase the variation 
range of the variable Φa. The pair (u, v) represents the ini-
tial coordinates of the center of the ellipse in the sagittal 
plane. The desired velocities of the ankle joint in the Car-
tesian space are then deduce:

whereas the desired Cartesian accelerations of the ankle 
joint are deduced as:

Jerk optimal control
Minimum jerk principle
Hogan developed the minimum jerk concept based on 
the finding that the degree of smoothing of a curve can be 
quantified by a function counting the number of shocks 
performed. For an angular trajectory Φ, he defined the 
jerk variable as its third time derivative [6]:

For a starting time t0 and an ending time tf, the smooth-
ing degree of the path curve can be estimated by calculat-
ing the jerk cost function as:

Indeed, the minimum jerk cost criterion is given by:

For polynomial functions depending on the variable Φ 
for which a very little constant variation e and a variation 
function η are associated between t0 and tf  such that:

we can prove that:

(10)







ẋd = −adΦ̇a sin (dΦa + π)

ẏd = 0

żd = bdΦ̇acos(dΦa + π)

(11)







ẍd = −a
�

dΦ̇a

�2
cos (dΦa + π)− adΦ̈a sin (dΦa + π)

ÿd = 0

z̈d = −b
�

dΦ̇a

�2
sin(dΦa + π)+ bdΦ̈acos(dΦa + π)

(12)
...
Φ =

d3Φ(t)

dt3

(13)B(Φ) =

∫ tf

t=t0

...
Φ

2
dt

(14)CJ = min
1

2

∫ tf

t=t0

...
Φ

2
dt

(15)B(Φ + eη) =
1

2

∫ tf

t=t0

(
...
Φ + e

...
η)2dt

(16)
dB(Φ + eη)

de

∣

∣

∣

∣

e=0

= −

∫ tf

t=t0

ηΦ(6)dt

Then, there exists a function Φ, able to minimize the 
jerk function, having a sixth derivative with respect to 
time equal to zero and given by:

Most research works use for the previous differential 
equation the following solution [21]:

where a0… a5 are constants to be determined for each 
angular variable Φ involved in the description of the con-
sidered system. In this stage, it is easy to deduce that the 
corresponding velocity and acceleration functions are 
given, respectively, by:

To compute the parameters a0… a5, two main methods 
are used in the literature: The Point-to-point method [22] 
and the Via-point one [23]. The first methodology only 
requires the expression of the function to be minimized 
and the values of position, velocity and acceleration of the 
initial and final time of the movement. The corresponding 
control algorithm only needs to run once. For each joint, 
the following relation is used [22]:

where Φ0, Φ̇0 and Φ̈0 are the position, velocity and accel-
eration, respectively, at t0. Φf , Φ̇f  and Φ̈f  are the position, 
velocity and acceleration, respectively, at tf.

The via-point method is recommended to avoid obsta-
cles in the space where the robotic system evolves. Not 
only must the initial and final positions be specified but 
also a number of desired intermediate positions. This 
method implies that the algorithm is executed several 
times. In the case where only one desired intermediate 
position is specified, the solution is given by [23]:

(17)Φ(6) = 0

(18)Φ(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t + a0

(19)Φ̇(t) = 5a5t
4 + 4a4t

3 + 3a3t
2 + 2a2t + a1

(20)Φ̈(t) = 20a5t
3 + 12a4t

2 + 6a3t + 2a2

(21)




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
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
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







a5
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






















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






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


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



t5
0

t4
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t3
0

t2
0
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t5f t4f t3f t2f tf 1

5t4
0

4t3
0

3t2
0

2t0 1 0

5t4f 4t3f 3t2f 2tf 1 0

2Ot3
0
12t2

0
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20t3f 12t2f 6tf 2 0 0
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where td is an intermediate instant satisfying t0 < td < tf . 
Φd , Φ̇dand Φ̈d are the position, velocity and acceleration, 
respectively, at td.

The control law
Let impose to the bipedal robotic described by (1) to fol-
low the following stable second order linear input–out-
put behavior:

where KP,1 ∈ Rn×n and Kv,1 ∈ Rn×n are two positive defi-
nite diagonal matrices chosen to guarantee global stabil-
ity, desired performances and decoupling proprieties for 
the controlled system. For a desired bandwidth λ and a 
critically damped closed-loop performance, we must 
select:

As the dynamic modeling of the bipedal robot is 
known, Kp,1and Kv,1 are computed offline to satisfy global 
stability conditions.

Using (1) and (23), the control law of the bipedal robot 
during the SSP is deduced as: 

The jerk optimal algorithm
In this section, we propose a new algorithm for the jerk 
optimal control different from those of the point-to-
point and via-Point conventional approaches. The differ-
ent steps composing the proposed algorithm for the case 
study of the bipedal robot for which the swing foot must 
follow the semi elliptic trajectory are described below:

(22)








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
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
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5t4
0

4t3
0
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0
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5t4d 4t3d 3t2d 2td 1 0
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20t3
0
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0
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(23)
(

Φ̈ − Φ̈d

)

+ Kv,1

(

Φ̇ − Φ̇d

)

+ KP,1(Φ −Φd) = 0

(24)Kp,1 = diag
[

�
2
]

(25)Kv,1 = diag[2�]

(26)

U = D−1M(Φ)
[

Φ̈d − Kv,1

(

Φ̇ − Φ̇d

)

− KP,1(Φ −Φd)
]

+ D−1H
(

Φ , Φ̇
)

+ D−1G(Φ)

i.	 For desired initial and final Cartesian positions of the 
toe of the swing foot, compute the initial joint posi-
tion vector фin and the final joint position vector фf 
using the inverse kinematic model (5).

ii.	 Generate the polynomial trajectories φa, φ̇a and 
φ̈a described by (18–20) using the Point-to-Point 
method according to the relation (11).

iii.	Generate the semi-ellipsoidal Cartesian trajectories, 
according to relations (9–11).

iv.	Generate the desired joint trajectories φd, φ̇d and φ̈d 
using (4–6).

v.	 Compute the jerk optimal control law U(t) using (26).
vi.	Implement the control law U(t) for the free robotic 

system described by the dynamical model (1).
vii.	�Generate the Cartesian trajectories Xt) and Ẋ(t) by 

applying the direct kinematic model (2) and the dif-
ferential kinematic model (3). ф(t) and φ̇(t) are sup-
posed to be measured via online sensors.

Steps iii to vii must be applied at every time iteration. 
Figure 1 explains necessary steps for the achievement of 
the jerk control approach.

The differences between the proposed approach and 
the conventional ones can be summarised as follows: first, 
the reference trajectory of the swing foot is planned in the 
Cartesian space with constraints on positions, velocities 
and accelerations at every time iteration whereas for the 
point-to-point method constraints are to be found only 
at the boundary conditions and for the via-point method 
these constraints must also include intermediary posi-
tions, their velocities and their accelerations. Moreover, 
the proposed approach uses a trigonometric expression of 
desired trajectories that depends on a fifth order polyno-
mial instead of just having recourse to a fifth order poly-
nomial as done for the conventional approaches.

The proposed method of optimal jerk control is 
designed in order to reduce significantly the time of 
implementation. As trajectories are planned in the Car-
tesian space system whereas control laws are expressed 
in the joint space, it does combine benefits of trigono-
metric and polynomial functions. Indeed, trigonometric 
functions require fewer resources for real time imple-
mentation whereas polynomial functions give smoother 
dynamics and fewer vibrations.

Active stiffness controller
The instability and the high shaking during a walking 
cycle are central issues when dealing with bipedal robots 
especially when the impact with the ground occurs. Both 
instability and high shaking are largely the result of the 
reproduction of impact-contact forces during the IP and 
DSP. The impedance and the stiffness control laws can 
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give a solution for such force/position control problem 
and ensure a stable motion of the bipedal robot. Using an 
impedance controller to generate a walking cycle, as pro-
posed in [24], imposes for the implementation of the con-
trol law the availability of force, acceleration and gravity 
sensors. However, it is well known that this type of sen-
sors can cause many problems related to precision and 
sensibility to noise measurements. To overcome these 
locks, we propose in this section an alternative solu-
tion: A stiffness controller without gravity compensation 
requiring only position and velocity sensors. To ensure 
an elastic and robust contact with the ground by elimi-
nating the gravity term from the control law, we impose 
the following virtual model for the contact force:

where Kd ∈ R3×3 is the stiffness matrix and 
(

JT
)+ is the 

pseudo-inverse of the transpose Jacobian matrix of the 
bipedal robotic system at the contact point. Expressing F 
in the joint space, we get:

(27)F = Kd(Xd − X)+
(

JT
)+

G(Φ)

(28)F = KdJ (Φd −Φ)+

(

JT
)+

G(Φ)

Let impose, now, to the constrained bipedal robotic 
model (8) to follow the following stable second order lin-
ear input–output behaviour:

where Kp,2 ∈ Rn×n and Kv,2 ∈ Rn×n are two positive defi-
nite diagonal matrices chosen to guarantee global stabil-
ity, desired performances and decoupling proprieties for 
the controlled constrained system (8). Using (28) in (8), 
we get:

The control law of the bipedal robot during the con-
strained phases is deduced as:

The control law (31) is then designed such that the 
common gravity compensation term found in many 
research works in the literature is eliminated thanks to 
the contact force virtual model proposed in (28). This fur-
ther gives more robustness to the control law. The control 
law (31) has also the advantage to reduce the number of 

(29)
(

Φ̈ − Φ̈d

)

+ Kv,2

(

Φ̇ − Φ̇d

)

+ KP,2(Φ −Φd) = 0

(30)M(Φ)Φ̈ +H
(

Φ , Φ̇
)

= DU − JTKdJ (Φ −Φd)

(31)
U = D−1(JTKdJ −M(Φ)Kp,2)(Φ −Φd)

− D−1M(Φ)Kv,2.Φ̇ + D−1H
(

Φ , Φ̇
)

Fig. 1  The minimum jerk based control approach during the swing phase
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sensors. To be implemented, it is clear that only position 
and velocity sensors are needed.

Finally, to achieve a walking cycle and produce alter-
nate footsteps, the minimum jerk controller (26) and the 
active stiffness controller (31) are combined to switch 
successively between the SSP described by the robotic 
model (1), and the IP and DSP described by the con-
strained robotic model (8).

Simulation results
Simulation results are carried out using the three dimen-
sional model of a 12 DOF bipedal robot described by the 
robotic dynamical models established in [25], the kin-
ematic model described in [26] for the physical param-
eters given in Table 1. The initial and the final Cartesian 
positions are chosen, respectively, as follows:

The initial posture of the bipedal robot is shown in the 
3D space by Fig.  2. The bipedal robot evolves in rough 
terrain characterized by the nonlinear stiffness parameter 
described by:

where kd  =  2000. Furthermore, we consider a Gauss-
ian noise of 0.01° mean and 0.01° standard deviation for 
the joint position measurements and 0.02° s−1 mean and 
0.02°  s−1 standard deviation for the joint velocity meas-
urements. To generate a semi-elliptical trajectory in the 
sagittal plane similar to a walking step of 0.5 s duration, 
parameters involved in the 3D Cartesian desired trajec-
tory (9) take the values given in Table 2.

Xin = [0 0.53 0]T , Xd = [0.35 0.53 0]
T

Kd = [1+ 500 sin (t)] diag [ kd kd kd ]
Position and velocity gain matrices related to the global 

stability conditions of the desired dynamics (23) and (29) 
are, respectively satisfied by choosing:

where I12 is the identity matrix of twelve order.
Due to very small changes of the Cartesian compo-

nent along the y-axis, only the evolution of variables in 

Kp,1 = 625I12, Kv,1 = 50I12

Kp,2 = 104I12, Kv,2 = 200I12

Table 1  Physical parameters of the robot

Link ki (m) li (m) mi (Kg) Inertia about center of mass (Kg m−2)

iix iix iix

Right foot 0.034 0.034 1.015 0.001 0.001 0.001

Right leg 0.184 0.241 3.255 0.051 0.051 0.051

Right thigh 0.184 0.240 7.000 0.113 0.113 0.113

Pelvis 0.021 0.178 9.940 0.112 0.112 0.112

Left thigh 0.240 0.184 7.000 0.113 0.113 0.113

Left leg 0.241 0.184 3.255 0.051 0.051 0.051

Left foot 0.034 0.034 1.015 0.001 0.001 0.001

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.4

-0.2
0

0.2
0.4

0.6
0.8

0

0.2

0.4

0.6

0.8

1

1.2

 Y

X

Z

Fig. 2  Initial posture of the bipedal robot in the 3D space

Table 2  Parameters of the cartesian desired trajectory

a (m) b (m) c (m) d (m) (u, v) (m)

0.15 0.53 0.1 16.5 (0.15, 0)
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the x and z axis are presented. The Cartesian components 
along x and z axis of the swing foot during a walking step 
are emphasized by Fig. 3 whereas Fig. 4 shows the evolu-
tion of the ground reaction force. Figure 5 shows involved 
control laws during the same walking step where U11 
and U12 are defined as the output of ankle joints. Finally, 
Fig.  6 presents a gait pattern generation composed by 
three steps.

Simulation results emphasize the efficiency of the 
control laws as perturbations and rough terrain have 
no effect on the bipedal robot trajectory. Compared 
to previous work found in [24], not only fewer sensors 
are needed in the implementation of the control laws 
but the semi-elliptical trajectory duration has been 
also improved to 0.5 s. It corresponds to an enhanced 
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velocity of the bipedal robot of 0.75  m  s−1. Also, an 
elastic and robust contact with the ground is ensured. 
This was not guaranteed with the impedance control 
law.

Conclusion
To produce a path similar to the one generated by a human 
foot when performing a walking cycle by a bipedal robot, 
we have proposed, in this paper, a specific walking control 
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strategy using an optimal jerk and an active stiffness con-
trollers based only on position and velocity sensors. 
Simulation results performed on a 12 DOF bipedal robot 
emphasized the efficiency of the control strategy even in 
presence of sensory noise and rough terrain and prove the 
superiority of the new algorithm regarding the step dura-
tion and the bipedal velocity compared to previous works.
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