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“Leg‑grope walk”: strategy for walking 
on fragile irregular slopes as a quadruped robot 
by force distribution
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Abstract 

Problems can often occur when a legged robot attempts to walk on irregular or damaged terrain, such as in search 
and rescue missions during natural and man-made disasters. In some cases, the ground beneath the robot will col-
lapse because of the pressure of its weight, causing the machine to lose its foothold and topple over. This is a point 
to which we as designers must pay careful attention when designing a robot. Thus, in such irregular areas, the robot 
should walk carefully so as not to collapse its footholds. To attempt to solve this problem, we proposed the “leg-grope 
walk” method which allows a quadruped robot to avoid stumbling or causing a large collapse of the surrounding 
area on weak horizontal planes. Specifically, when the robot puts its foot on the ground, it applies some excess force 
on the ground and confirms whether the foothold is likely to collapse, so as to choose a foothold will not collapse. 
In this study, we extended this method to weak and irregular slopes, where slippage needs to be considered. A new 
walking method was designed using a force distribution method. To validate the method, we show simulation results 
from force distribution and robotic experiments in various environments. These results demonstrate that our method 
allows a robot to walk carefully without slipping or stumbling, even when its foothold is lost.
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Background
Search and rescue workers face a dangerous and difficult 
task when they attempt to rescue survivors after a dis-
aster, because they are at risk of getting caught in a sec-
ondary disaster. Despite this, they must search quickly 
because the survival rate drastically drops over time. 
This is why recently many organizations have begun to 
use robots in search and rescue missions to decrease 
the risk to human life. The terrain in rescue scenarios is 
often very rough, giving legged robots an advantage over 
wheeled and tracked vehicles. That advantage comes 
from legged robots’ redundancy; therefore, we focused 
our research on this type of robot.

To walk competently on irregular terrain, stability is 
a key issue for quadruped robots. The first research on 
quadruped robots focused on static walking, where the 

center of the gravity (COG) is always in the supporting 
leg polygon [1]. Hirose et al. [2] built a series of quadru-
ped robots (TITAN) that could stably climb up a set of 
stairs. A stability criterion, the Normalized Energy Sta-
bility Margin, was proposed to evaluate the stability of 
walking  [3]. A walking gait with a large stability margin 
was also proposed [4]. Estremera and Santos proposed a 
free gait, which allows the quadruped robot (SILO4) to 
have a statically stable gait by searching for optimal foot-
holds  [5, 6]. Many researchers have also suggested the 
force distribution method to prevent slippage on irregu-
lar terrains in simulations  [7–10]. Currently, there is a 
real robot that can avoid slippage by distributing contact 
forces optimally using joint torque control [11].

However, to walk on irregular terrain continuously, it 
is also important to generate the path where the robot is 
to walk, as well as footholds based on geometric informa-
tion. Path planning on irregular terrain has been much 
improved through the Learning Locomotion program 
conducted by the Defense Advanced Research Project 
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Agency (DARPA). In that project, several researchers 
showed that a quadruped robot, LittleDog  [12], could 
climb over rough terrain by searching for optimal foot-
holds if the geometrical information about the environ-
ment and the robot position were known  [13–16]. A 
team at the Florida Institute for Human and Machine 
Cognition has proposed many algorithms, such as a fast 
foothold planning method and a new parametrized gait 
generator, which can generate static and dynamic walk-
ing [14]. Similarly, a team from the University of South-
ern California proposed the terrain template concept 
to teach the robot what consists of suitable terrain for 
footholds  [15]. Finally, the Stanford LittleDog has many 
learning algorithms installed, focusing on recovery and 
stabilization methods to combat problems such as unex-
pected slippage [16].

It is important to obtain further information about the 
environment, including the relevant geometric informa-
tion, to achieve stable walking. Some researchers have 
focused on terrain classification based on haptic feed-
back  [17–20]. Hoepfinger et  al.  [17] estimated surface 
friction by applying forces on the foothold. This haptic 
feedback is associated with the foothold shape and can 
be used to estimate the friction of an untouched foot-
hold using geometrical data. Tokuda et al. [19] proposed 
a method to estimate fragile footholds using the foot’s 
center of force and pressure changes. Although their 
quadruped robot could detect when a foothold was col-
lapsing, they did not propose how to make the robot walk 
on fragile terrain without stumbling.

Thus, in this study, we propose a stable walking method 
for fragile irregular terrain. We focus on how to detect 
fragile footholds with haptic information, and how to 
walk stably using this information. We do not focus on 
the path planning algorithm, because this is not one of 
our main aims.

Previously, we proposed a walking method named the 
“leg-grope walk” method, and discussed the validity of 
this strategy based on our experiments on a fragile hori-
zontal plane  [21]. According to this method, when the 
robot puts its foot on the ground, it applies some excess 
force and confirms whether the foothold is stable, and 
then chooses a foothold that does not collapse. In addi-
tion, the robot walks slowly so as not to apply force over 
probed reaction, avoiding foothold collapse. This algo-
rithm allowed the robot to walk safely while avoiding 
stumbling on horizontal planes.

In this paper, the environment is extended to an irregu-
lar slope, where slippage must be considered. Hence, in 
the proposed strategy, tip-point forces in the x-y-z direc-
tions are distributed using a standard Quadratic Pro-
graming method such that the friction and leg-grope 
constraints (explained later) are satisfied. The simulation 

results of the force distribution on various terrains are 
shown to evaluate the validity of the method. We also 
carried out walking experiments with the robot, not only 
on a slope but also on irregular terrain, to evaluate the 
validity of our method. Our results indicate the validity 
of the leg-grope walk method. This paper is the extension 
of our published conference paper [22], and extend our 
previous findings to include: (1) the simulation results of 
the force distribution; (2) walking experiments with the 
robot; and (3) a detailed explanation of the method.

Methods
Quadruped robot and model
The developed robot (Fig.  1a) consists of a body and 
four legs, each of which has three active joints with ser-
vomotors. A three-axis force sensor is installed on each 
toe to sense a resultant force vector. An attitude sensor 
and an accelerometer are equipped on the center of the 
robot body. The parameters of the robot are presented in 
Table 1.

Figure  1b, c shows the leg and the front view of the 
quadruped model of the robot. The body and the links of 
the legs are rigid. We name the legs of the robot L1, L2, 
L3 , and L4, starting clockwise from the left front leg. Each 
leg i has three links and joints, and we name them Links 
i1, i2 and i3 and Joints i1, i2 and i3 starting from the root 
of leg. Joint i1 of Leg i is a yaw joint that allows the leg to 
move from back to front. Joints i2 and i3 are pitch joints 
that allow the leg to be lifted up and down. The coordi-
nate frames and variables of the robot are described as 
follows (see also Fig. 1b, c). 

�G:	� OG − xGyGzG. A base coordinate frame fixed 
at the environment. zG axis: opposite direction 
of gravity.

�R:	� OR − xRyRzR. A robot coordinate frame fixed 
at the center of the robot body. zR axis: vertical 
direction of the robot. xR axis: forward direc-
tion of the robot.

�iS:	� OiS − xiSyiSziS. A contact coordinate frame 
fixed at the contact point of Li. ziS axis: direc-
tion of normal reaction. xiS axis: direction of 
gradient of the contact plane.

M:	� Total mass of the robot
g:	� Gravitational acceleration
θi:	� Angle between zG and ziS axis (i.e. angle of 

gradient of the slope where Li contacts)
rR :	� Position vector of the origin of �R

φr,p,y:	� roll φr, pitch φp and yaw φy angles of the robot
qB :	� = [rBT φr φp φy]T ∈ R6×1

θij:	� Angle of the Joint ij
qLi :	� = [θi1 θi2 θi3]T ∈ R3×1
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τij :	� Torque that is input to the joint j of Li
τ i :	� = [τi1 τi2 τi3]T ∈ R3×1

f i:	� Resultant force vector of Li applied by ground
Ri:	� Normal reaction vector of the leg Li
Pg:	� Position vector of the COG of the robot
Pi:	� Position vector of the contact point of Li
pg ∈ R2:	� Vector projected Pg on OG − xGyG plane
pi ∈ R2:	� Vector projected Pi on OG − xGyG plane 

Unless otherwise noted, the vectors are 
defined in the base coordinate frame �G.

Strategy of leg‑grope walk
In this section, we describe the strategy of the leg-grope 
walk as described in [22]. First, we define the type of frag-
ile irregular terrain used in this study; next, we outline 
the basic strategy of the leg-grope walk; and finally, we 

explain the consequent one-cycle walking movement for 
a leg.

Definition of fragile terrain
For the purpose of this study, we used a fragile and une-
ven environment for the target area in which our legged 
robot walks. This environment is defined as to be like an 
area with scattered debris and collapsed buildings, on 
which surfaces may collapse when put under external 
forces such as the pressure from a robot’s leg. We define 
the threshold of normal reaction as Rbreak ∈ R1(> 0) to 
an area of the environment, and assume that this area 
collapses if the external normal force is over Rbreak . 
When a robot moves on such areas, it is necessary for 
it to find strong footholds so as to avoid stumbling and 
falling. To check for fragile areas, the robot applies some 
excess force to the environment to confirm whether it 
collapses or not. A dangerous foothold for robot loco-
motion is defined as a region that satisfies Rbreak ≤ Rmax , 
where Rmax ∈ R1(> 0) is the maximum value of the nor-
mal reaction that is applied to all legs during one walk-
ing cycle, except for the leg-grope movement, which will 
be explained in the next section  Walking methods. For 
simplicity, we assume that the contact area of any leg is a 
point and that the contact point of any leg is on a smooth 
surface where a normal reaction can be defined. In addi-
tion, we assume that the robot has a geometrical 3D map 
of the environment.

Table 1  The parameters of the robot

Parameters (m) Value Parameters (kg) Value

Body width 0.15 Body mass 4.54

Body length 0.29 Link1 mass 0.03

Link1 length 0.072 Link2 mass 0.35

Link2 length 0.109 Link3 mass 0.25

Link3 length 0.172 Whole mass 7.06

a

c

Leg 1Leg 4

Leg 2Leg 3

Joint 21

Joint 22

Joint 23

Joint i1

Joint i2

Joint i3

Link i1

Link i2

Link i3

Leg i

b

Fig. 1  Quadruped robot: a robot and b, c model
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Walking method
The following two walking strategies are proposed to 
achieve safe locomotion for a legged robot on fragile 
terrain.

(1)	  Examine whether a foothold candidate, which a 
robot will use for its locomotion, can stand up to 
a certain value of external force Rref ∈ R1. In addi-
tion, it must be guaranteed that the robot will not 
fall down even if the foothold collapses.

(2)	  Satisfy the condition that the maximum normal 
reaction for all legs Rmax needed for walking is less 
than Rref set in the walking strategy 1 while the 
robot walks on fragile terrain.

In particular, we call walking strategy 1 a leg-grope 
movement. By using this movement, the robot can distin-
guish a safe region for its locomotion.

The leg-grope movement is an action by which a robot 
checks whether a targeted region will collapse, statically; 
that is, the robot applies force gradually to the targeted 
region until the normal reaction of a groping leg is over a 
given value Rref (“grope-reaction”) when standing on four 
legs. If the targeted region collapses in this movement, 
the robot can remain standing on the other three legs 
without falling down. When the robot is performing the 
leg-grope movement, we let the movement of the COG 
of the robot be negligible for a simple formulation.

The following relation is satisfied if the targeted region 
does not collapse during the leg-grope movement.

In addition, if walking strategy 2 is satisfied, the robot 
can walk without causing those footholds that have been 
already probed to collapse.

Leg‑grope walk
On the basis of the above leg-grope movement, the con-
crete one-leg cycle walking strategy (leg-grope walk) 
of a quadruped robot is explained in four steps (Fig. 2). 
Figure 2a represents the status of the robot in following 
Steps A–D in the case of groping using the right front 
leg. Figure 2b represents the time response of the normal 
reaction of the groping leg in each step.

A	 Move the COG of the robot standing on four legs.
B	 Reduce the force of the groping leg to 0 gradually 

without any movement.
C	 Swing the groping leg to the point of the leg-grope 

and make the leg touch down.

(1)Rref < Rbreak.

D	 Apply the force to the ground with the groping leg 
gradually, up to Rref (leg-grope movement) with a 
movement small enough to ignore the movement of 
the COG. Even if the foothold collapses during this 
step, the robot can still keep its pose stable by stand-
ing on the other three legs. Thus, the robot can repeat 
this procedure from Step C to find a stable foothold.

It is guaranteed that the robot will not slip or apply 
normal force over the grope-reaction Rref to the environ-
ment by using force distribution in all steps.

To execute the leg-grope walk, the admissible region to 
which the COG can be moved in Step A and the admis-
sible region on which the groping leg can be placed in 
Step D should be considered. Furthermore, the way to 
distribute optimal forces of the legs should be formu-
lated. The geometrical regions of the COG’s position and 
the contact point of the groping leg are shown in the next 
subsection, the formulation of force distribution is then 
shown in the following subsection, and the simulation 
and experimental results are shown in the “Results and 
discussion” section.

Geometrical relation of leg‑grope
In this section, an admissible region of the position of 
the COG and that of the contact point of groping leg are 
derived. For easy derivation, we assume that the force vec-
tor f i is parallel to the direction of gravity; in other words, 
the friction force is determined uniquely. We only consider 

Step A D petSB petS Step C

Step A Step B Step C Step D
COG movement Decreace in force Leg swing

0

No movement

Determined 
by force distribution

Normal reaction

Leg grope

a

b

Fig. 2  Process of the leg-grope walk for a right front leg. a stick 
figures of the robot and b time response of normal reaction of the 
right front leg. Step A: the robot moves COG standing on four legs. 
Step B: the robot reduces the force of the groping leg without any 
movement. Step C: the robot swings the groping leg to the point 
of the leg-grope. Step D: the robot applies the force to the ground 
gradually up to Rref
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the static equilibrium because the leg-grope is carried out 
without any movement as in Fig. 2. First, we show the equi-
librium of force and moment of the robot system, and next, 
we show the admissible geometrical regions of the position 
of the COG and the contact point for the groping leg.

Equilibrium of force and moment
Under the above assumptions, in the case where three 
legs Li, Lj , Lk are on the ground (which we represent as 
�(Li, Lj , Lk)), the equilibrium of force and moment of the 
robot is written as

where hn = |f n|/Mg (n = 1, 2, 3, 4). Note that these equa-
tions consist of the projected vectors and hn. The relation-
ship between Rn = |Rn| (magnitude of normal reaction of 
leg Ln) and fn = |f n| (magnitude of force which the robot 
applies) is described as follows, because of the assump-
tion about friction:

Hence, the confirmation of condition (whether the foot-
hold collapsed or not) by applying normal force to the 
targeted area up to Rref, is the same as the confirma-
tion by applying vertical force to the targeted area up to 
f nref ≡ Rref/ cos θn (“grope-force”). We need to select Rref 
to fulfill the inequality Mg/3 ≤ f nref ≤ Mg. When the 
robot stands statically on three legs, the largest magni-
tude of force fi on those three legs is larger than Mg / 3. 
Hence, the lower bound of Rref should be Mg / 3 to sat-
isfy walking strategy 2. The upper bound means that the 
maximum force that a robot can apply statically in the 
leg-grope movement should be Mg.

Admissible region of COG and contact point of groping leg
To employ the walking method, we need to determine 
the position to which the robot moves its COG in Step A 
of Fig. 2, and also determine the position where the grop-
ing leg can apply force to the ground in Step D of Fig. 2.

The admissible region of the position of the COG is 
determined such that the magnitude of the vertical force 
of each leg does not exceed that of the grope-force when 
the robot stands on three legs (Step B of Fig.  2). The 
admissible region of the contact point for the groping 
leg is determined such that the magnitude of the vertical 
force of the groping leg larger than that of the grope-force, 
and the magnitude of the vertical force for the other three 
legs less than that of the grope-force. In fact, the vertical 
force of one of the three legs is assumed to be zero (we call 
this leg the “float leg” ), because the groping leg can apply 
the maximum force when one of the other legs is floating.

(2)
1− hi − hj − hk = 0,

pg − hipi − hjpj − hkpk = 0,

(3)Rn = fn cos θn.

Let us consider the state �(Li, Lj , Lk) in Step A of Fig. 2, 
and the residual leg is described as the groping leg Lgrp. 
Let leg Lk be the float leg in Step C of Fig. 2 without loss 
of generality. With this situation, we calculate the admis-
sible region of the position of the COG and that of the 
contact point for the groping leg on OG − xGyG plane.

Admissible region of COG In the state �(Li, Lj , Lk), the 
admissible region of the position of the COG πg (Li, Lj , Lk) 
is calculated as follows.

The magnitude of the vertical force of each leg fn needs 
to be less than the grope-force f nref and this condition is 
represented as

where hnref ≡ f nref/Mg. Using these constraints (Eq. 4) and 
Eq.  2, the projected position of the COG can be repre-
sented as follows.

By changing the parameters hi and hj under the con-
straints (Eq.  5), an admissible region of the COG 
πg (Li, Lj , Lk) can be calculated based on Eq. 6. The region 
πg (Li, Lj , Lk) is classified into eight geometrical patterns 
(Fig. 3a) under the relations of variables hiref , h

j
ref and hkref 

(see Table 2). We also represent the region πg (Li, Lj , Lk) 
as the gray triangle in Fig.  4a for a specific example 
(hiref = h

j
ref = hkref = 1/2). This example is a special 

case of a-(1) in Table  2, where all conditions satisfy the 
equality.

Admissible region of groping leg for fixed COG with a 
particular float leg The region πgrp,g (Li, Lj , Lgrp), which is 
the admissible region of the contact point of the groping 
leg for a fixed COG, is calculated as follows.

Because the groping leg Lgrp can apply the maximum 
force when one of the legs is floating, we consider leg Lk 
as the float leg in the leg-grope movement. Then, we con-
sider the state �(Li, Lj , Lgrp). From Eq. 2, the equilibrium 
of force and moment is represented as

where the variables of Eq. 7 are distinguished from the 
ones used before by using a hat “ ˆ ”. The conditions 
where the magnitude of the vertical force of the groping 

(4)











0 < hi ≤ hi
ref

0 < hj ≤ h
j
ref

0 < hk ≤ hk
ref
,

(5)











0 < hi ≤ hi
ref

0 < hj ≤ h
j
ref

0 < 1− hi − hj ≤ hk
ref
,

(6)pg = {hipi + (1− hi)pk} + hj(pj − pk).

(7)
1− ĥi − ĥj − hgrp = 0,

pg − ĥipi − ĥjpj − hgrppgrp = 0,
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leg fgrp is larger than that of the grope-force f grpref , and 
the magnitudes of the vertical forces of the other legs 
are less than those of the grope-force f iref and f jref, are 
described as

(8)











h
grp
ref ≤ hgrp < 1

0 < ĥi ≤ hiref

0 < ĥj ≤ h
j
ref ,

where hgrpref = f
grp
ref /Mg. Using Eqs. 7 and 8 yields

The region πgrp,g (Li, Lj , Lgrp), which is represented by 
Eqs. 9 and 10, is classified into four geometrical patterns 
(Fig.  3b) under the relations of the variables hiref , h

j
ref 

and hgrpref  (see Table  2). Based on the specific exam-
ple, as shown in Fig.  4a, we can represent the region 
πgrp,g (Li, Lj , Lgrp) as the dark gray triangle in Fig. 4b for a 
fixed pg represented in Fig. 4b as an example.

Admissible region of the groping leg for all admissible 
COG positions with a particular float leg Since leg Lk is 
the float leg, the admissible region πgrp(Li, Lj , Lgrp) of the 
contact point for the groping leg considering an admis-
sible region of COG is calculated as follows. This region 

(9)

pgrp = pg +
ĥi

1− ĥi − ĥj
(pg − pi)+

ĥj

1− ĥi − ĥj
(pg − pj),

(10)























0 <

ĥi

1− ĥi − ĥj
≤

hiref

h
grp
ref

0 <

ĥj

1− ĥi − ĥj
≤

h
j
ref

h
grp
ref

.

(1) (2) (4)

(5) (6) (7) (8)

(1) (2) (3) (4)

a
(3)

b

Fig. 3  Admissible region patterns. a The region for the COG when 
three legs (position pi,j,k) are on the ground and b The region for the 
groping leg when the COG (position pg) is fixed on OG − xGyG plane. 
Admissible regions are colored gray. These patterns are classified 
depending on the relation of variables hiref, h

j
ref, h

k
ref and hgrpref  as shown 

in Table 2. On figure b, △pgpipj and △pgba are simillar and the rela-
tion is (1− h

grp
ref )

∣

∣pg − pj
∣

∣ = h
grp
ref

∣

∣pg − a
∣

∣

Table 2  The relations of  variables hi
ref

, hj
ref

, hk
ref

 and  hgrp
ref

 
in Fig. 3

Number Conditions

a-(1) hiref + h
j
ref ≤ 1, h

j
ref + hkref ≤ 1, hkref + hiref ≤ 1

a-(2) hiref + h
j
ref > 1, h

j
ref + hkref ≤ 1, hkref + hiref ≤ 1

a-(3) hiref + h
j
ref ≤ 1, h

j
ref + hkref > 1, hkref + hiref ≤ 1

a-(4) hiref + h
j
ref ≤ 1, h

j
ref + hkref ≤ 1, hkref + hiref > 1

a-(5) hiref + h
j
ref > 1, h

j
ref + hkref > 1, hkref + hiref ≤ 1

a-(6) hiref + h
j
ref > 1, h

j
ref + hkref ≤ 1, hkref + hiref > 1

a-(7) hiref + h
j
ref ≤ 1, h

j
ref + hkref > 1, hkref + hiref > 1

a-(8) hiref + h
j
ref > 1, h

j
ref + hkref > 1, hkref + hiref > 1

b-(1) hiref + h
grp
ref < 1, h

j
ref + h

grp
ref < 1

b-(2) hiref + h
grp
ref ≥ 1, h

j
ref + h

grp
ref < 1

b-(3) hiref + h
grp
ref < 1, h

j
ref + h

grp
ref ≥ 1

b-(4) hiref + h
grp
ref ≥ 1, h

j
ref + h

grp
ref ≥ 1

a b

c d

Fig. 4  Process to determine the region where the grop-
ing leg can be set. This figure shows the process in the case 
(hiref = h

j
ref = hkref = h

grp
ref = 1/2) on OG − xGyG plane. In figure 

a, when three legs (position pi,j,k) are on the ground, the admis-
sible region of COG can be calculated as in the gray triangle, where 
each top point of the gray triangle is the middle point of the side 
of △pipjpk. Then, in figure b, the admissible region of the groping 
leg for fixed COG (position pg) and a particular float leg (Lk) can be 
calculated as in the dark gray triangle, where the dark gray triangle 
and △pipjpg are congruent. In figure c, the admissible region of the 
groping leg for all admissible COG positions (grey triangle in figure a 
for a particular float leg (Lk) can be calculated as in the gray trapezoid. 
Finally, in figure d, by repeating the same procedure for the other 
float legs (Li,j), the admissible region of groping leg can be calculated 
as in the gray triangle
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is obtained as the union of the regions πgrp,g (Li, Lj , Lgrp) 
for all pg in πg (Li, Lj , Lk). The region πgrp is represented 
as the gray trapezoid in Fig.  4c for the specific example 
related to Fig. 4a.

Admissible region of groping leg The case where leg Lk 
is assumed to be a float leg in the leg-grope movement 
was explained above. Here, the same process is done 
for legs Li and Lj. The region πgrp,all(Li, Lj , Lk), which is 
the whole admissible region of the contact point for the 
groping leg, is obtained as the union of the regions πgrp of 
the three potential float legs together. The region πgrp,all is 
represented as the gray triangle in Fig. 4d for the specific 
example related to Fig. 4a.

As we explained above, the robot can place the groping 
leg on the region πgrp,all, and the position of the COG in 
πg should be chosen to realize the desired position for the 
groping leg. Practically, we can locate the positions of the 
COG and the groping leg inside of the regions (i.e., apart 
from the boundaries) to tolerate modeling errors and the 
COG shift in the leg-grope movement.

Force distribution problem
The geometrical relations were calculated to conduct 
the leg-grope movement. Here, the force distribution 
method is proposed based on these relations, and guar-
antees slippage avoidance.

Robot dynamics
The respective dynamic equations of the robot body and 
its legs are represented as follows.

q:	� = [qTB qTL1 qTL2 qTL3 qTL4]T ∈ R18×1;
f :	� = [f T1 f T2 f T3 f T4 ]T ∈ R12×1;
τ:	� = [τT1 τ

T
2 τ

T
3 τ

T
4 ]T ∈ R12×1;

MB(q):	� Inertia matrix of the body [6× 18];
ML(q):	� Inertia matrix of the legs [12× 18];
hB(q, q̇):	� vector defining centrifugal and Coriolis effects 

of the body [6 × 1];
hL(q, q̇):	� vector defining centrifugal and Coriolis effects 

of the legs [12 × 1];
gB(q):	� vector of the gravity terms of the body [6× 1];
gL(q):	� vector of the gravity terms of the legs [12× 1];
JB:	� Jacobian matrix of the body [6× 12].;
JL:	� Jacobian matrix of the legs [12× 12]

Unless the leg is in the singular configuration (θi3 = nπ 
(where n is an integer)), JL is a non-singular matrix. 
Let the kinematic motion be designed to avoid the sin-
gular condition and to fulfill the geometrical relation 

(11)MB(q)q̈ + hB(q, q̇)+ gB(q)+ JBf = 0 ∈ R6×1,

(12)ML(q)q̈ + hL(q, q̇)+ gL(q)+ JLf = τ ∈ R12×1.

of leg-grope (that is, the (q, q̇, q̈) are given at each time 
step); the above equations can be represented as follows.

where b ∈ R6×1, A ∈ R6×12 and τ o ∈ R12×1 are calculated 
from (Eqs.11 and 12) with designed (q, q̇, q̈) (see Addi-
tional file 1: Appendix S1 for detail). The vector τ consists 
of 12 components and fulfills six linear equality con-
straints (Eq. 13) (which consist of the equilibrium of force 
and moment). τ has a one-to-one relation with the force 
vector f  as Eq. 14. Hence, at each time step, we need to 
determine the optimal vector τ that fulfils the six equality 
constraints (Eq. 13), avoids slippage, and also fulfills the 
constraints for the leg-grope.

To date, various methods for force distribution prob-
lems have been proposed. For example, methods based 
on a pseudo inverse matrix method [9], a linear program-
ming method (LP method) [7], and a quadratic program-
ming method (QP method)  [23, 24] were proposed. In 
this study, the standard QP method is applied to consider 
inequality constraints and a quadratic evaluation function 
as follows.

Constraints
Slippage avoidance For a leg Li that stands on the ground, 
a normal force must satisfy the following inequality to 
assure definite foot contact:

and horizontal force elements also need to satisfy the fol-
lowing inequality constraints for preventing slippage:

where µ is the coefficient of static friction, and 
(iSfix,

iSfiy,
iSfiz) are the components of f i on the contact 

coordinate frame �iS. To apply the QP method, Eq. 16 is 
changed to linear inequality constraints that are tighter 
than the original one as follows.

where s ≥ 0 is defined as the safety margin on the friction 
constraints, and represents the minimum safety margin 

(13)b = Aτ ,

(14)f = J−1
L (τ − τ o),

(15)iSfiz ≥ 0,

(16)
√

(iSfix)2 + (iSfiy)2 ≤ µ |iSfiz|,

(17)

− µ√
2

iSfiz −
1√
2

iSfix −
1√
2

iSfiy ≤ −s,

− µ√
2

iSfiz +
1√
2

iSfix +
1√
2

iSfiy ≤ −s,

(18)

− µ√
2

iSfiz +
1√
2

iSfix −
1√
2

iSfiy ≤ −s,

− µ√
2

iSfiz −
1√
2

iSfix +
1√
2

iSfiy ≤ −s,
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within the friction constraints pyramid. Hence, by maxi-
mizing s, slippage avoidance may be further enhanced.

Constraints for leg-grope To ensure that the magnitude 
of the normal force is less than Rref, the following ine-
quality must be satisfied for each stance leg Li.

In addition, in Step B of the leg-grope walk, kSfkz for the 
groping leg Lk is constrained to decrease linearly to zero 
as shown in Fig. 2b. In Step D of the leg-grope walk, kSfkz 
for the groping leg Lk is constrained to increase linearly 
to Rref as shown in Fig.  2b. We derive the geometrical 
relations by assuming that the force vector f i is parallel 
to the direction of gravity. Hence, the normal reaction of 
the groping leg can be distributed to be Rref by making 
the force vector f i parallel to the direction of gravity.

Minimization problem
Adding the safety margin s to the primary variable τ, the 
QP formulation is represented as follows for each Step i 
(i =A, B, C and D) of the leg-grope walk.

where Âi and b̂i represent the equality constraints of 
Eq. 13 and the leg-grope, Ĝi and d̂i represent the inequal-
ity constraints (see Additioanl file 1: Appendix S1 for 
detail). These matrixes and vectors are determined by 
designed kinematic motion (q, q̇, q̈) at each time step.

The minimized evaluation function is composed of 
three terms.

where τ b is the vector of the input torque of the previ-
ous time step. C is a weight vector for maximizing the 
safety margin s, Wτ is a weight matrix for minimizing 
the norm of the torque, and WC is a weight matrix for 
evaluating the continuity of the torque. Note that hs < 0,  
hτ1···12 > 0 , hc1···12 > 0. Then, Wτ and WC are positive 
definite.

By solving the QP formulation for each time step, 
the input torque of each joint can be calculated, and by 
using this torque, the optimal force distribution can be 
achieved. The simulation results for the force distribution 
are shown in the next section.

(19)iS fiz ≤ Rref .

(20)τ̂ =
[

τ

s

]

13×1

, b̂i = Âiτ̂ , Ĝiτ̂ ≤ d̂i,

(21)�(τ̂ ) = C τ̂ + 1

2
τ̂
TWτ τ̂ + 1

2
(τ̂ − τ̂ b)

TWc(τ̂ − τ̂ b),

(22)

C = [01×12 | hs]1×13,

Wτ =
[

diag[hτ1, hτ2, ....., hτ12] 012×1

01×12 0

]

13×13

,

Wc =
[

diag[hc1, hc2, ....., hc12] 012×1

01×12 0

]

13×13

,

Results and discussion
Simulation
In this section, the simulation results for the force distri-
bution are shown.

Setting
In the simulation, the robot walks on various slopes in 
various directions using the proposed one-cycle leg-
grope walk. The inclination angle of the slope and the 
angle of walking direction are represented as θ [rad] and 
ψ [rad], respectively, as shown in Fig.  5. We solve the 
force distribution problem for various θ = (−π/2, π/2) 
and ψ = [−π/2, π/2] with the following conditions.

Conditions for the geometrical relations of leg-grope 
The grope-reaction is set as Rref = 1

2Mg cos θ depend-
ing on θ. The robot swings its four legs L2, L1, L3 and L4 
in sequence using the explained leg-grope walk method. 
The contact point of each groping leg (L2, L1, L3 and L4) 
and the COG are represented on OG − xGyG in Fig. 6.

Conditions for the force distribution We designed the 
robot body and leg movement to fulfill the above geo-
metrical relations, while the maximum acceleration and 
velocity of the robot body are set as amax = 0.15 [m/s2] 
and vmax = 0.1 [m/s], respectively. In addition, the 
designed movement keeps the robot body parallel to the 
surface. The detail of this kinematic motion is explained 
in Additional file 1: Appendix S2. Based on this kinematic 
motion, we solve the force distribution problem formu-
lated in the “Methods” section.

The parameters for the evaluation function are set as 
hs = −2, hτ1···12 = 1 and hc1···12 = 80. As −hs and hτ1···12 
become larger, slippage avoidance and energy saving are 
further enhanced, respectively. However, the torque out-
put changes abruptly when a leg touches down or lifts off. 
Additionally, as hc1···12 becomes larger, smooth torque 
output is further enhanced. In this simulation, we use a 
larger value for hc1···12 to ensure a smooth torque output.

The coefficient of static friction and time step of force 
distribution are set as µ = 0.45 and dt = 15 [ms], respec-
tively. We used the MATLAB function “quadprog” with a 

θψ

Walking direction

iS

iS

iS

iS

Fig. 5  Definition of the environment where the robot walks in the 
simulation. The robot walks on a simple slope whose inclination 
angle is θ. The angle between the walking direction and the gradient 
vector of the slope is defined as ψ
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computer (CPU: Core i7 4 GHz; Memory: 16 GB) for the 
calculation.

Results
In simulation, the robot performs the leg-grope walk suc-
cessfully when the magnitude of the inclination angle θ is 
less than around 0.40 [rad]. If the inclination angle is less 
than that critical value, the robot performs well irrespec-
tive of the walking direction ψ. When the magnitude of 
the inclination angle θ is over the critical value, the robot 
cannot avoid slippage and fails in the leg-grope walk.

If a rigid body is static on the slope, the maximum abso-
lute inclination angle to avoid slippage is calculated as 
θ = arctan(µ) = 0.42 [rad]. This value is close to the criti-
cal inclination angle for the leg-grope walk, which means 
that the force distribution method works well. The critical 
inclination angle of the leg-grope walk is slightly smaller 
than that of the rigid body because the robot applies addi-
tional forces to accelerate its body. We also confirmed that 
the computational time to solve this force distribution prob-
lem is less than the period of one walking cycle in all cases.

As an example of one leg-grope walk cycle, Fig. 7 shows 
the time response of the elements of the force vector fi 
on the contact coordinate �iS at (θ , ψ) = (π/12, 0). Dot-
ted horizontal lines represent the value of Rref. As time 
goes by, the robot moves its COG by standing on four 
legs and decreasing the normal reaction of the groping 
leg (Steps A and B), swings the groping leg to the point to 
be probed (Step C), and probes the foothold by applying 
the reference force Rref (Step D). The robot repeats this 
procedure for four groping legs L2, L1, L3 and L4 in order. 
The areas that the robot successfully applies the nor-
mal force Rref in the leg-grope step (Step D) are marked 
with black circles. However, the magnitude of the nor-
mal forces except for Step D are less than Rref. Figure 8 
represents the time response of the safety margin of the 
friction s. This result shows that the safety margin s is 
assured and is never negative, which means that slippage 
does not occur. Figure 9 shows the time response of the 
torque inputs. The torque inputs depend smoothly on 
time, as our design of the minimized evaluation function 
of the QP formulation intended.   
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0.4
a

y 
[m

]

−0.2 0 0.2−0.4
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0
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Leg 2 Leg 2

Leg 2 Leg 2

Leg 1
Leg 1

Leg 1 Leg 1

Leg 3 Leg 3

Leg 3 Leg 3

4geL4geL

Leg 4 Leg 4

b

c d

Fig. 6  Geometrical relations of leg-grope for the simulation and experiments. Each figure shows the relation in the case of the groping leg a L2, b L1,  
c L3 and d L4 on OG − xGyG. For one walking cycle, the robot moves its COG and swings four groping legs L2, L1, L3 and L4 in sequence by follow-
ing these geometrical relations. In each graph (a–d), an arrow and a red rectangle represent the moving direction of the robot and the shape of 
the robot body, respectively. The blue square point is the targeted point of the groping leg, and the other three points (two black circles and black 
triangle) represent the contact points of the other three legs. The biggest black triangle region represents the supporting leg polygon, except for the 
groping leg. The green triangle region represents the admissible region of the COG πg, and the green asterisk point represents the targeted position 
of the COG. The blue triangle region represents the admissible region of the position of the groping leg for the COG πgrp,g, where the float leg is 
shown by the black triangle point



Page 10 of 17Ambe and Matsuno ﻿Robomech J  (2016) 3:7 

As a conclusion, the proposed force distribution 
method achieves suitable torque inputs, taking account of 
slippage for the leg-grope walk in various environments.

Experiments
Setting
To demonstrate the effectiveness of the proposed 
method, we also carried out some experiments with the 
real robot. However, the results of the force distribution 
could not be used, because the joints of the robot were 
controlled not by torque inputs but by position inputs. 
Hence, we only consider the geometrical relations of 
the leg grope walk by following the assumption about 

friction. The leg grope movement (Step D) is replaced 
by two steps: Steps D′-1 and D′-2 as in the following 
description. The modified leg-grope walk sequence con-
sists of the following five steps.

A′	Move the COG of the robot inside of the admissible 
region of COG while standing on four legs. The COG 
is placed more with in the leg supporting polygon 
than the COG position for the leg-grope.

B′	 Move the groping leg up gradually until the normal 
reaction becomes 0 without any other movement.

C	 Swing the groping leg to the point of the leg-grope 
and make the leg touch down.
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D′-1	 Move the COG to the position for the leg-grope 
standing on four legs. As a result, the normal reac-
tion of the groping leg increases gradually.

D′-2	 Put down the groping leg gradually until the nor-
mal reaction is over Rref without any other movement.

Figure  10 shows an example of this leg-grope walk. 
Note that Steps A′ and D′-1 allow the robot to get a large 
stability margin in a swing movement (the COG is placed 
more within the leg supporting polygon than the COG 
position for the leg-grope) (Fig.  10). Note that Steps B′, 
D′-1 and D′-2 allow the robot to apply the force using 
position control.

We demonstrated one cycle of walking with the pro-
posed method on a simple slope and an irregular slope to 
validate the robot being able to apply the force over Rref 
to the foothold to probe the environment. We also dem-
onstrated that even if the robot’s foothold collapsed dur-
ing the leg-grope movement, the robot did not stumble.

We conducted three trials for each experiment, and 
show one of them as a typical result. In these experi-
ments, the angle of the slope and the grope-reaction 
are set as π/12 [rad] and Rref = 1

2Mg cos(π/12), respec-
tively. The robot swings its four legs L2, L1, L3 and L4 in 
sequence, and the contact point of each groping leg (L2, 
L1, L3 and L4) and the COG position for groping are rep-
resented on OG − xGyG in Fig. 6, as in the simulation.

Result of walking on a simple slope
The robot climbs a simple slope (θ = π/12, ψ = 0 [rad]) 
using the proposed leg-grope walk, as in the simula-
tion result. Figure  11 shows the time response of the 

elements of the force vector fi on the contact coordi-
nate �iS of one walking cycle of experiments. In Fig. 11, 
dotted horizontal lines represent the value of Rref. As 
time goes by, the robot moves its COG while standing 
on four legs, decreases the normal reaction of the grop-
ing leg (Steps A’ and B’), swings the groping leg to the 
point to be probed (Step C), and probes the foothold 
by applying the grope reaction Rref (Step D’). We repeat 
this procedure for four groping legs L2, L1, L3 and L4 in 
order. We find that the robot applies the normal force 
to the ground over Rref in the leg-grope step (Step D′), 
as marked with black circles. However, the magnitude 
of each normal force is less than Rref, except for the leg-
grope step D′. The other four trials also have the same 
properties. Hence, we can say that the leg-grope walk is 
achieved successfully, as we expected.   

Result of walking on an irregular slope
We also carried out the experiment on an irregular slope. 
The environment consists of slopes whose inclination 
angle is θ = π/12 [rad], but the directions of the gradient 
vectors are not the same, as shown in Fig. 1a. Figure 12 
shows the time response of the elements of the force vec-
tor fi on the contact coordinate �iS. The representation 
of the figure is the same as in Fig.  11. We find that the 
magnitude of the normal force is less than Rref, except for 
the leg-grope step (Step D’). However, the grope-reaction 
Rref can be applied in the leg-grope step, as shown with 
black circles. The other four trials also have the same 
properties. Hence, we conclude that the robot also per-
forms well on the irregular slope. A video of this experi-
ment is contained in Additional file 2.
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prevent slippage successfully
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Result in the case of foothold collapse
In this experiment, the robot climbs a simple slope that 
is the same as the previous one. The grope-reaction Rref 
and contact points of the legs are set to the same way as 
the previous ones. We set the foothold of leg L1 as fragile 
enough to collapse while walking. The robot stops walk-
ing after the detection of the foothold collapse. Figure 13 
shows the time response of the attitude and the zR-axis 
acceleration of the robot body. At the marked time 
(around 35 [s]), the foothold of the leg L1 collapsed. We 
found that the robot attitude changed by approximately 2 
degrees only, and it never fell when and after the environ-
ment collapse. Figure 14 shows the time response of the 
elements of the force vector fi on the contact coordinate 

�iS. The magnitude of the normal force of each leg ( fziS 
on Fig.  14) is almost less than Rref, although that of leg 
L2 is larger than Rref at very short moments near the 
collapse (a blue circle on Fig.  14). The sudden loss of 
one foothold induces a sudden change in body attitude 
(Fig. 13) because the leg is not rigid (back-lash of joints, 
flexibility of joints induced by PD controller, etc.). This 
sudden attitude change causes non-negligible accelera-
tion and forces over Rref (Figs. 13 and 14). Although this 
is the limitation caused by design failure, the method 
is practical enough to allow the robot to walk without 
stumbling. The other four trials also have the same prop-
erties. A video of this experiment is also included and can 
be found in Additional file 3.
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Fig. 10  Process of the leg-grope walk for the leg 1 on OG − xGyG for experiments. The black circles are the contact points of the leg toe. The green 
triangle and blue triangle represent the admissible region of the COG and the groping leg, respectively. Step A’: the robot moves the COG inside of 
the admissible region of the COG while standing on four legs. Step B’,C: the robot moves the groping leg up and swings it to the point of the leg-
grope, and the leg touches down. Step D’-1: the robot moves the COG to the position for the leg-grope. Step D’-2: the robot pushes the groping leg 
down gradually until the normal reaction is over Rref
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Conclusion
We propose the leg-grope walk on fragile irregular ter-
rain considering slippage by force distribution. In simu-
lation, the proposed method successfully derives the 
torque inputs to distribute the forces appropriately con-
sidering slippage avoidance. We also conducted various 

robotic experiments, and show the effectiveness of the 
method. The robot can walk stably by probing footholds 
step by step. Even if the foothold collapses, the robot can 
keep its posture and never stumbles. Thus, we conclude 
that the proposed method is useful for robots to walk 
safely on fragile irregular terrain.
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As limitations, foothold collapse based on slippage is 
not considered in this study, although we ensure that the 
robot fulfils friction cone constraints. The force distribu-
tion method is not demonstrated with the robot, because 
the joints of the robot are designed to be controlled by 
position inputs. Thus, we carried out the robotic experi-
ments based on the geometric relation by following the 

assumption about the friction. However, the experiments 
show that the method is still practical. In the future, we 
need to design a robot whose joints are controlled by 
torque inputs to demonstrate the effectiveness of the 
force distribution method.

Practically, the robot cannot walk fast, because the 
method is designed based on static equilibrium and the 
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Fig. 13  Time responses of attitudes and zR-axis acceleration in the case of foothold collapse. The robot keeps its attitude angles (roll and pitch 
angle) and never stumbles when and after the foothold of leg L1 collapses
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region for the leg-grope is not so large. Recent dynami-
cal walking strategies for legged robots [25–29] may out-
shine the proposed strategy in terms of walking speed. 
However, our walking strategy must be useful in a situ-
ation where scattered debris or a fragile environment 
should not be further compromised. This is the only 
method that allows robots to walk safely by making the 
magnitude of the normal reaction as small as possible. 
We think that a robot should change its walking strategy 
depending on the terrain, as LittleDog does  [14–16]. If 

the terrain is flat, the robot can use a fast gait. However, 
if the terrain is fragile, we believe that our method will be 
useful.

It would be interesting in future work to combine this 
method and the terrain classification methods  [17]. For 
example, terrain that is found to be fragile using the leg-
grope walk can be used as learning data for terrain clas-
sification to estimate fragile footholds in advance, which 
compensates for the slow walking speed of the leg-grope 
walking method.
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