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On the development 
of intrinsically‑actuated, multisensory dexterous 
robotic hands
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Abstract 

Restoring human hand function by mechatronic means is very challenging in robotics research. In this paper, we first 
make a brief review on the development of dexterous robotic/prosthetic hands, and then detail our design philoso-
phy of several robot hands. We make a concentration on a type of intrinsically-actuated robot hands, wherein the 
driving, transmission, and control elements are totally embedded in the hand. According to different application sce-
narios, we develop robot hands in two parallel lines, dexterous robotic hand and anthropomorphic prosthetic hand. 
In both, the hand’s actuation, sensing, and control subsystems are highly integrated and modularized. This feature 
endows our robot hands with compact appearances, simple integration, and large flexibilities. At last, we give some 
perspectives on the future development of dexterous hands from the aspects of structure, functionality, and control 
strategies.
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Background
As a powerful tool, a large variety of robotic sys-
tems  has been applied to  help human beings explore 
unknown  or  hazardous areas such as outer space, deep 
sea, or contaminated nuclear plants. To achieve effec-
tive explorations, a dexterous end-effector with superior 
operation and perception capabilities is an urgent need. 
Although traditional grippers can deal with some sim-
ple, fixed tasks (grasping and transferring workpieces), 
their low commonality, humble perception and insuffi-
cient flexibility make them hardly competent to complex 
operations in unstructured environment. Then, dex-
terous robotic hands (DRHs) with multiple degrees of 
freedom (DOFs), superior operational and perceptional 
capabilities arouse great attentions in the robot society 
[1]. Currently, although a large progress has been made, 
the DRHs available on the market still cannot compete 
to biological hands due to current technical constraints 

on actuators, sensors and control means. It is indicated 
that, rather than simply imitating the human hand, the 
research should switch to fully exploiting the robot 
hand’s advantages, while considering specific require-
ments (manipulative dexterity, grasp robustness, or 
human operability) that allow for successful, fluent, and 
dexterous operations [2].

As a branch of robotic hand research, the anthro-
pomorphic prosthetic hand (APH) is a type of bio-
mechatronic device used to restore hand motions for 
amputees or paralyzed patients. On this topic, great 
efforts have been made from both robotics and biomedi-
cal engineering. However, current prosthetic hands still 
cannot compete to a human hand in respect of structure, 
sensing, and control strategy. Only a few of prosthesis 
products can obtain their commercial success. Because 
of unintuitive control feelings, lack of sensory feed-
back, and poor hand functionality [3], a large portion of 
users often refuse to use their prosthesis. After analyz-
ing human hand’s activities of daily life (ADL’s), a study 
reveals that a superior hand prosthesis should have more 
controllable functions, faster response/shorter reaction 
time, and an intuitive control and feedback strategy [4]. 
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The advanced prosthetic hand systems are then charac-
terized by its anthropomorphic appearance, congenital 
dexterity (including both mechanical structure and sen-
sors), and high-level mechatronic integration. As for the 
hand’s manipulation capability, it is normally held that 
the hand dexterity improves as the number of active 
joints increases. However, studies also shows that, as the 
number of the active joints increases, the dexterity of a 
prosthetic hand may even decrease due to the intensified 
control complexity. Therefore, the prosthetic hand design 
should consider more comprehensive factors, such as the 
compromise between dexterity and controllability, the 
suitability and adaptability of the sensory feedback, as 
well as essential neural rehabilitation principles [5].

After briefly reviewing some representative stud-
ies, in this paper, we detail our development process of 
several DRH and APH prototypes. From a view of bio-
mechatronics, we also prospect some directions on 
the development of advanced robot hands, after fully 
acknowledging the challenges in front of us.

Representative studies
So far, over hundreds of robot hands, including DRHs 
and APHs, have been developed in academic colleges, 
research institutions and companies. Among these 
hands, the DRH is a special topic aiming to reproduce 
human hand’s manipulation dexterity by mechatronic 
means. According to drive position (inside or outside 
the hand), the DRH can be mainly divided into two cat-
egories: intrinsic actuation pattern (IAP) or extrinsic 
actuation pattern (EAP). Some representative DRHs with 
specifications of number of fingers, number of active 
DOFs, actuation configuration, and transmission mecha-
nism are shown in Table 1.

The design of robotic hands on the early stage, such as 
Stanford/JPL Hand and Utah/MIT Hand, are generally 
focused on the hand’s anthropomorphism and multi-sen-
sory integration. The DLR-I Hand [7] is a representative 
of the first generation DRH featured with independent 
actuation. To enhance the hand’s appearance and oper-
ating flexibility, the DLR-II Hand [8] further introduces 
an extra DOF between the thumb and the ring finger for 
offering palm curling. Driven by air muscles, the shadow 
hand has more than 20 DOFs that endows the hand with 
noticeable grasp functions. Besides pure IAP and EAP, 
many DRHs (such as the iCub hand [15]) also adopt a 
hybrid driven pattern, wherein multimodal sensors (tac-
tile, position, and force) are also integrated for providing 
more proprioception information.

Some DRHs are developed for special space and mili-
tary applications, such as the NASA’s Robonaut Hand 
I, II, and the DLR’s Dexhand. Nowadays, the Robonaut 
hand II has been tested successful in the International 

Space Station (ISS) to assist astronaut. Meanwhile, 
the Dexhand also has some special design, such as 
its transmission system (Dyneema tendon plus har-
monic reducer), control system (totally integrated into 
the hand), and communication system (CAN Bus and 
VxWorks controller), for properly working in the space 
environment. In addition, the DLR’s HASy Hand is a new 
type multi-finger DRH to be used in the bionic Hand-
Arm system [10]. It has a similar size, weight, and even 
behavior to a human hand. To reproduce the dynamic 
characteristic of the human hand, joints of the DLR 
HASy Hand are integrated with a special variable stiff-
ness actuation system (VSA, consisting of servo modules 
and elastic elements) [33]. All actuation and electronic 
systems are embedded in the forearm, making it easy to 
be integrated in any concrete applications.

Together with DRH, the development of APH also gets 
a large promotion. During the last decades of 20th cen-
tury, many multi-DOF prosthetic hands come into being, 
such as, Southampton prosthetic hand [34], Oxford Intel-
ligent prosthetic hand [35], Stanford prosthetic hand 
[36], and NTU prosthetic hand [37]. Due to the actuation 
techniques and manufacturing level at that time, these 
prosthetic hands are generally large, heavy, and provided 
with very limited number of sensors. Upon entering 21st 
century, the development of APH shows a diverse ten-
dency where the design guidelines are no longer simply 
“reforming” an existing DRH or totally “reproducing” the 
human hand. Both scope and depth of interdisciplinary 
fusion with relevant to mechanic, electronic, biology 
and control are getting strengthened in the APH devel-
opment. Today, an ideal APH should possess a human-
like appearance, as well as high-level dexterity. As well, 
it should be comfortable to wear and, more importantly, 
easy to control. We list a collection of representative 
APH prototypes, as Table 2 shows.

In particular, the DARPA extrinsic hand adopts a spe-
cial actuation mechanism named Cobot [49]. It consists 
of one power motor and 15 steering motors that is able 
to output 15 channels of motions. According to specific 
needs, the continuously variable transmission (CVT) 
device (including operating motor, position sensor, power 
transmitting ball, operating roller and synchronizing gear 
sets) is able to output varying torque moment and speed.

Comparing with IAP hands, the EAP prosthetic hands 
are superior in compactness, dexterity, actuation man-
ner and power. Tendon actuation is usually adopted 
in EAP hand since there is sufficient space in the palm 
allowing for more active DOFs and sensors. In addi-
tion, the actuation components outside the hands are 
not limited by space anymore, by which motors with 
greater power can be used. On the other side, consider-
ing the overall volume and weight, IAP prosthetic hands 
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usually use small-power direct current (DC) motors and 
tend to adopt a pre-tightening-free mechanism in actua-
tion. Besides, the number of the sensors and embedded 
chips (CPU, ROM, etc.) are largely restricted such that 
sufficient information about the manipulation cannot be 
instantly processed. This problem could be solved along 
with the development of advanced electronic/computer 
engineering. One big merit of the IAP prosthetic hands 
is their application flexibility for different amputation 
degree. The individual difference of patients requires 
less re-design or re-configuration procedures for IAP 
prosthetic hand. Thus, these hands are more likely to be 
standardized, commercialized and maintained.

DLR/HIT dexterous robotic hands
The HIT-I hand (Fig. 1a) is our first dexterous hand pro-
totype developed under a collaborative effort between 
Harbin Institute of Technology (HIT) and German Aer-
ospace Center (DLR) in 2001. The HIT-I hand adopts a 

modular design concept that all four fingers (little fin-
ger excluded) are driven by embedded motors with ten-
dons, because of which the degree of system integration 
is greatly improved and the size of the hand is well con-
trolled at that time. Position sensor and force/torque 
gauges are embedded thus that the hand can accomplish 
some multisensory hand operations. However, due to the 
quality of the tendons and digital level of that time, the 
hand only promises a comparably low compatibility and 
robustness.

Based on HIT-I hand, refinement work for improv-
ing the mechanic/electronic reliability and human-like 
appearance is proposed in the design of DLR/HIT Hand 
I (Fig. 1b) [50]. Each finger is modularized as three joints 
with three active DOFs, wherein the metacarpophalan-
geal (MCP) joint has two active DOFs and the proximal 
interphalangeal (PIP) and distal interphalangeal (DIP) 
joints had one active DOF (coupled through a four-bar 
linkage). In the metacarpal joint (TM) of the thumb, an 

Table 1  Dexterous robotic hands (selected)

Name Fingers Degree of 
freedom

Actuation 
configuration

Transmission
 mechanism

Ref.

Okada hand 3 11 Extrinsic Tendon + Pulley [6]

High-speed hand 3 8 Intrinsic Harmonic reducer [7]

Pinching hand 5 18 Intrinsic Gear + Pulley [8]

Ultrasonic hand 5 20 Intrinsic Ultrasonic motors + Elastic elements [9]

DLR-I hand 4 12 Intrinsic Tendon [10]

DLR-II hand 4 13 Intrinsic Belt + Linkage + Gear [11]

Dexhand 4 12 Hybrid Tendon [12]

DLR HASy hand 5 19 Extrinsic Tendon [13]

UB-II hand 3 11 Extrinsic Tendon [14]

UB-III hand 5 16 Extrinsic Tendon [15]

DIST hand 4 16 Extrinsic Tendon [16]

ARTS hand 5 11 Hybrid Tendon + Gear + Worm [17]

iCub hand 5 9 Hybrid Tendon [18]

Shadow hand 5 24 Extrinsic Tendon [19]

Stanford/JPL 3 9 Extrinsic Tendon [20]

Utah/MIT hand 4 16 Extrinsic Tendon [21]

Robonaut hand 5 14 Extrinsic Tendon [22, 23]

Extrinsic hand 5 11 Extrinsic Tendon [24]

Intrinsic hand 5 15 Intrinsic Belt + Ballscrew [25]

Gifu II hand 5 16 Intrinsic Linkage + Gear [26]

Gifu III hand 5 16 Intrinsic Linkage + Gear [27]

NAIST hand 4 12 Intrinsic Linkage + Gear [28]

NAIST hand 2 5 16 Extrinsic Tendon + Gear [29]

TWENTY-ONE 4 13 Intrinsic Linkage + Gear [30]

KIST hand 4 9 Intrinsic Spatial linkage [31]

ZJUT hand 5 20 Extrinsic Flexible pneumatic actuator [32]

DLR/HIT I 4 13 Intrinsic Linkage + Gear –

DLR/HIT II 5 15 Intrinsic Belt + Tendon –
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extra DOF is provided for realizing thumb opposition, 
thus that the relative position between thumb and four 
digits can be ensured in various grasping tasks. Gears, 
harmonic reducer, and linkages constitute to the hand’s 
transmission system. The actuation and control system 
is totally embedded and digitalized as much as possible. 

This design minimizes the hand’s weight and reduces the 
number of tendons used for driving the joints. With col-
laboration of Schunk company, a commercialized version 
of the dexterous robot hand, SAH (Fig. 1c), is also avail-
able on the market and receives many success applica-
tions. The package design of the SAH largely improves its 

Table 2  Anthropomorphic prosthetic hands (selected)

DC direct current motor; BLDC brushless DC motor; SM servo motor; SMA Shape memory alloy actuators; GA gas actuator

Name Year
20~

Fingers
joints
DOF

Force
velocity

Motors and
 configuration

Transmission mecha-
nism

Size
weight

Ref.

Cyber hand 03 5/15/16 70N
45°/s

6/DC
Extrinsic

Tendon 95 %
360 g

[38]

Manus hand 04 5/10/4 60N
90°/s

3/BLDC
Intrinsic

Tendon 120 %
300 g

[39]

IOWA
hand

04 5/15/5 – 5/DC
Intrinsic

Tendon 100 %
90 g

[40]

Fluid hand 04 5/8/8 110N
57°/s

1
Gear pump
Intrinsic

8/Fluid
actuator

100 %
350 g

[41]

Tokyo hand 05 5/15/12 0.4 Nm
200°/s

7/SM
Extrinsic

Tendon –
584 g

[42]

UB III 05 5/15/16 70N
250°/s

16/DC
Extrinsic

Tendon 120 %
–

[15]

SMA hand 08 5/15/7 –
41°/s

7/SMA
Extrinsic

Tendon 50 %
250 g

[43]

Dong-Eui hand 08 5/15/6 14N
–

6/DC
Intrinsic

Tendon –
400 g

[44]

Vanderbilt hand 09 5/16/17 – 5/GA
Extrinsic

Tendon –
580 g

[45]

Intrinsic hand 09 5/15/19 4.7 Nm
360°/s

15/BLDC
Intrinsic

Motor – [46]

xtrinsic hand 09 5/11/21 –
360°/s

1/Cobot
Extrinsic

Tendon – [47]

EA hand 09 5/16/5 80N
225°/s

5/DC
Extrinsic

Tendon 100 %
580 g

[48]

Fig. 1  DLR/HIT dexterous hand prototypes. a HIT-I b DLR/HIT I c SAH hand
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appearance and effectively protects the electronic system 
and cables within the hand.

In 2008, our newest generation DRH prototype, DLR/
HIT Hand II [51], is presented with five identical fin-
gers and a human-like curved palm, as Fig.  2 shows. To 
improve the hand’s manipulation dexterity and operation 
intelligence, a total of 15 active DOFs and 140 sensors 
(position, force, temperature, and tactile) are integrated 
based on IAP. Each finger can be divided into two modu-
lated units, 2-DOF basic joint unit and 1-DOF finger unit, 
within each the motors, reducers, sensors and electronic 
systems are totally built-in. By adopting micro brush-
less DC motors, timing belt, harmonic drive, and tendon 
coupling, the size and shape of DLR/HIT hand are signifi-
cantly reduced (similar to an average mature hand). To fur-
ther save space, sensors are tried to be integrated with the 
hand’s mechanical structures, such as, the torque gauge is 
a transmission linkage in the basic joint, and the 3D tactile 
grid is an embedded layer on the finger pads. Attributed to 
its multimodal sensors, the DLR/HIT Hand II has a supe-
rior perception capability during various operation tasks.

Multi‑fingered prosthetic hands
Since 2001, five prototypes of HIT-DLR anthropomor-
phic prosthetic hands (HITAPH) have been developed, 
as Table 3 shows. Designed based on DLR/HIT hand II, 
the HITAPH I–III has five fingers, and each is composed 
of three knuckles (2 knuckles in the thumb of HITAPH 
I and II). The HITAPH I–III are actuated by three DC 
motors, which are installed at the TM joint of the thumb, 
MCP joint of the index finger, and MCP joint of the mid-
dle finger, respectively. The middle finger, ring finger and 
little finger are co-actuated through torsional springs 
and linkages. Taking advantaging of the underactuation 
principal [52, 53], the inter-finger actuation of the hand is 
realized through elastic components, which provides the 
hands with an adaptive grasp to various objects. Among 
them, the HITAPH III [also called anthropomorphic 
robot (AR) hand III] [54] makes an improvement on its 
human-like appearance and grasp power.

To further improve the hand’s dexterity, the HITAPH 
IV [5] is developed with five active DOFs (that is, all five 
fingers are individually actuated). Attributed to advanced 
actuation techniques, the volume of the IAP hand is only 
85  % of that of HITAPH III. The total hand weight is 
about 450 g. The output force at the fingertip can reach 
up to 10N. Curved palm and scattered finger configura-
tion endow the hand with more anthropomorphic char-
acters in appearance and grasping. Reducing the number 
of the non-standardized mechanical and electronic ele-
ments is one critical request in the design of HITAPH 
IV, aiming to improve the hand’s interchangeability and 
maintainability. Meanwhile, the packaging design of the 
hand is also considered in the design, in connection with 
its actuation capacity, thermal and life design.

To further improve the thumb finger’s mobility, an 
additional DOF is provided at the TM joint for realiz-
ing opposition. Attributed to this extra DOF, the thumb 
can reach to each fingertip of the other four fingers. 
Another big revision is the reduced number of knuck-
les, (two, instead of three in HITAPH IV [55]), for brief-
ing the mechanical structure while keeping the hand’s 
functionality and reliability. A total of six DC motors are 
embedded, while the actuation force at the fingertip can 
reach up to 12N. The worm gear, instead of bevel gears, is 
adopted in the MCP joints, while tendon coupling mech-
anism is maintained in the DIP joints. With addition to 
the position and force sensors, a 3-D tactile sensor [56] 
is designed that can measure one perpendicular force 
and two tangential forces applied on the fingertips. The 
number of the parts of the HITAPH IV is largely reduced 
compared with former prototypes, making it very prom-
ising in commercialization.

Challenges and future work
There are mainly two trends for developing DRHs, one 
is anthropomorphism-oriented and the other is task-ori-
ented. For the first one, the robot hands are devised with 
much more human-like properties, as in its kinemat-
ics (hand structure, DOFs, grasping functionality, etc.), 
dynamics (stiffness, damping, friction, etc.), and percep-
tion capabilities (position sensors, force/torque sensors, 
tactile grid, slipping sensors, etc.). While for the task-
oriented trend, the DRHs are designed according to some 
specialized tasks or environments, such as the Robonaut 
2 hand and Dexhand, both for extravehicular activities 
on the ISS. Generally speaking, the word “anthropomor-
phism” is a very complicated concept including numer-
ous influential factors that lacking anyone of them may 
lead to an underperformance design. Under current 
conditions, how to make a compromise between the 
hand’s appearance and functionality, or how to establish 
a proper performance index [57] to compare design and 

Fig. 2  DLR/HIT Hand II
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thus make a suitable choice among alternatives, is still an 
urgent work in the robot hand research.

Attributed to its thumb’s dexterity, the human hand 
can achieve so many versatile grasps and delicate opera-
tions. Decoding the thumb’s movement in respect of 
DOF configuration is a big challenge in robotics research. 
We devote to analysis the thumb’s movement based on 
human hand anatomy and biomechanics theory, and 
then to give a set of appropriate DOF configurations 
(TM-MCP-DIP, 2-1-1, 2-2-1 [58], 3-1-1 [59]) that can be 
used in DRHs for achieving a variety of dexterous opera-
tions. From the point of directional dexterity, we attempt 
to analyze these configurations on specific manipulation 
tasks, which can further facilitate our selection accord-
ing to different application scenarios. How to arrange the 
thumb on the hand is another challenge. For achieving 

versatile and effective grasp patterns, an efficient method 
needs to be proposed for appropriately positioning the 
thumb on the palm.

The dexterous manipulations requested by the DRHs 
are not only promised by its anthropomorphic shape and 
motion, but also its high-speed processing system (sen-
sor measurement, data analysis, kinematic calculation, 
etc.) and real-time control algorithms (task interpreta-
tion, motion planning, sensory feedback, etc.). Because 
of massive data calculation and interchange, selection of 
an appropriate control structure and platform, highly-
integrated hardware and software hierarchy and suitable 
communication protocol are critical for DRH realizing a 
real-time manipulation. Currently, based on EtherCAT, a 
real-time control design and validation platform [60] has 
been developed, on which a large variety of algorithms, 

Table 3  Specifications of the HIT-DLR anthropomorphic prosthetic hands

Picture Name Year Fingers/
joints/
motors

actuation-
transmission

Sensors mass
size

Force
velocity

HITAPH I 2003 5/14/3 Underactuated  
linkage + Belt

1-1-2

Position, torque 500 g
130 %

10N
–

HITAPH II 2005 5/14/3 Underactuated  
linkage + Belt

1-1-3

Position, torque 500 g
110 %

10N
–

HITAPH III 2007 5/15/3 Underactuated  
linkage

1-1-3

Position, torque 500 g
120 %

10N
72°/s

HITAPH hand IV 2009 5/15/5 Coupling linkage
1-1-1-1-1

Position, torque 450 g
85 %

10N
89°/s

HITAPH hand IV 2013 5/11/6 Tendon + Worm
2-1-1-1-1

Position, torque, 
3D-tactile

475 g
80 %

12N
45°/s
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such as the impedance control strategy with coordinated 
multi-finger manipulation and optimized grasping forces 
[61], can be been verified.

For achieving delicate manipulations, the DRHs need 
to know necessary information about its outer environ-
ment (obstacles) and the object (stiffness, size, shape, and 
weight) to operate. The information is generally provides 
by our proprioception experiences (body schema) sensed 
by our central neural system through a long-term, multi-
sensory stimulation (visual, tactile, force, tension, etc.). 
The tactile sensor [62] has been now widely integrated 
into the fingertip to acquire such information as the con-
tact status, position, and some other physical properties 
(stiffness, texture, etc.) about the object. Even a primary 
haptic sense (object shape and category) can be recon-
structed by using the tactile sensor and position sensors 
integrated on the robot hand. However, how to effectively 
fuse these information into the control scheme, thus to 
improve the hand’s operation compliance, precision and 
intelligence, is still an open question [63].

The main task of a prosthetic hand is to to help physi-
cally disabled people restore hand functions in living envi-
ronment (ADLs). General APHs should have three main 
features, as human-like appearance (size, weight, textures, 
compliance, etc.), mobility, and perception. Besides, state-
of-the-art APHs request even more dexterous operations, 
given very limited choice on the actuation styles and DOF 
configurations. How to realize a large portion of human 
hand functions in very low actuation cost is very ambi-
tious  in APH research. Besides, high-precision position 
control (such as, to nip a needle) and accurate force con-
trol (such as, to grasp a fragile cup) are both frequently 
required in the daily use of APHs. How to devise a smart 
control strategy properly working on different condi-
tions is another question. For controlling the prosthetic 
hands, the surface myoelectric signals (sEMG) collected 
from the residual neuromuscular system (stump) are 
widely accepted. Traditional mode-switching methods 
established on EMG amplitude only give very limited 
functions, discrete robot-like finger movements, and 
unintuitive control feelings. By introducing the pattern 
recognition method [64], a large progress has been made; 
however, there is still a big gap between the research and 
its real application [65, 66]. Intrinsic timing-varying char-
acters of the EMG signals, environmental change (electro-
mechanical status, temperature, moisture, sweating, etc.) 
of the bio-machine interface, and confounding factors 
(body postures, contraction strength variations, involun-
tary EMG activations) largely affect the long-term usage 
of clinical APHs. In this case, the control of APHs should 
consider other alternative peripheral nervous signals, 
such as ultrasonic signal [67], mechanomyography [68], 
near-infrared spectroscopy [69] and electrocorticography 

[70], to be used in the control channel, and multi-sensory 
means [71], such as vision [72, 73] and tactile sense [74, 
75], to be used in the feedback channel. With the big pro-
gress of the worldwide scientific research on artificial cog-
nition and brain-computer interface, a fully-embodied 
hand avatar controlled by our brain with utmost ease will 
come soon.

Conclusions
This study focuses on the introduction of the develop-
ment route of intrinsic actuation dexterous hands and 
prosthetic hands, giving a brief overview on the current 
artificial dexterous hands and prosthetic hands. With the 
progressing of science and technology, robotic hands are 
gradually approximating to human hands in dexterity 
and perception, based on which they can finish various 
complicated operations in the manufacturing process, 
activities of daily life, and exploration of unknown 
environment.
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