
Sase et al. Robomech J (2015) 2:17
DOI 10.1186/s40648-015-0040-0

RESEARCH ARTICLE

GPU‑accelerated surgery simulation
for opening a brain fissure
Kazuya Sase1*, Akira Fukuhara2, Teppei Tsujita3 and Atsushi Konno1

Abstract 

In neurosurgery, dissection and retraction are basic techniques for approaching the site of pathology. These tech-
niques are carefully performed in order to avoid damage to nerve tissues or blood vessels. However, novice surgeons
cannot train in such techniques using the haptic cues of existing training systems. This paper proposes a real-time
simulation scheme for training in dissection and retraction when opening a brain fissure, which is a procedure for
creating a working space before treating an affected area. In this procedure, spatulas are commonly used to perform
blunt dissection and brain tissue retraction. In this study, the interaction between spatulas and soft tissues is modeled
on the basis of a finite element method (FEM). The deformation of soft tissue is calculated according to a corotational
FEM by considering geometrical nonlinearity and element inversion. A fracture is represented by removing tetra-
hedrons using a novel mesh modification algorithm in order to retain the manifold property of a tetrahedral mesh.
Moreover, most parts of the FEM are implemented on a graphics processing unit (GPU). This paper focuses on parallel
algorithms for matrix assembly and matrix rearrangement related to FEM procedures by considering a sparse-matrix
storage format. Finally, two simulations are conducted. A blunt dissection simulation is conducted in real time (less
than 20 ms for a time step) using a soft-tissue model having 4807 nodes and 19,600 elements. A brain retraction simu-
lation is conducted using a brain hemisphere model having 8647 nodes and 32,639 elements with force feedback
(less than 80 ms for a time step). These results show that the proposed method is effective in simulating dissection
and retraction for opening a brain fissure.

Keywords:  Surgery simulation, Finite element method, GPGPU

© 2015 Sase et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Background
Virtual reality (VR) surgery simulation is a safe and effi-
cient approach to surgical training. In the last two dec-
ades, laparoscopic surgery simulators have been widely
developed to support efficient training in surgical tech-
niques. In contrast, neurosurgery simulators have not
been investigated extensively. However, recent years have
witnessed some significant advancements in the devel-
opment of neurosurgery simulators [1, 2]. Neurosurgery
requires surgeons to perform precise operations. Because
surgeons rely on haptic cues in various contexts, the
physics of soft-tissue deformation should be reliable not
only for graphical rendering but also for haptic rendering.

One of the basic procedures in neurosurgery is the
opening of a brain fissure, which is necessary to create a
working space to access an affected area. Figure 1 shows
a schematic of this procedure. In order to approach an
affected area located at the bottom of the fissure, sur-
geons cut connective tissues such as the arachnoid
membrane and arachnoid trabeculae using microscis-
sors and push the brain tissues apart to keep the tis-
sues open using spatulas [3]. Aspirators are used to
apply tension to the membrane and remove blood. It is
known that the position of the spatulas and the pushing
force are related to the patient’s prognosis [4]. An early
simulator focusing on retraction in neurosurgery was
the virtual retractor developed by Koyama et al. [5]. It
modeled the deformations of intracranial vessels using
geometrical theory, but physical consistency was not
considered. Hansen et al. developed a real-time simula-
tor for brain retraction [6]. They adopted a finite element

Open Access

*Correspondence: sase@scc.ist.hokudai.ac.jp
1 Graduate School of Information Science and Technology, Hokkaido
University, Kita 14 Nishi 9, Kita‑ku, Sapporo, Japan
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40648-015-0040-0&domain=pdf

Page 2 of 16Sase et al. Robomech J (2015) 2:17

method (FEM) for calculating the deformation of brain
tissues and the reaction force. However, the resolution
of the mesh was limited to less than a thousand nodes
because of its high computational cost. Hasegawa et al.
conducted a cerebellar retraction simulation using a
high-resolution model [7]. They considered the nonlinear
viscoelastic behavior of soft tissues. However, their opti-
mization method was inadequate for realizing real-time
simulation.

To develop a haptic simulator for opening a brain fis-
sure, the following system specifications are required.

• • The refresh rate of the physics simulation must be
greater than 30 Hz for smooth animation [8].

• • The positions of the surgical instruments are input
by haptic devices, and the reaction force must be
returned immediately. Ideally, the refresh rate of
the force feedback should be greater than 1 kHz for
interaction with stiff materials [8].

• • The number of nodes of target finite element model
(brain hemisphere) should be approximately 10,000.

• • The ability to perform connective-tissue dissection
should be present [8].

• • The soft tissues should have physically correct
behavior. Brain tissues are known to have complex
mechanical properties; for example, white matter is
known to have anisotropic visco-hyperelasticity [9].

Generally, there is a compromise between the precision
and the speed for the computation of soft-tissue physics.
Therefore, we firstly simplify the mechanical properties
of soft tissues and aim to develop a visually acceptable
simulator with a refresh rate greater than 30 Hz for the
physics simulation.

To fulfill the above-mentioned requirements, we
firstly formulated the framework of the interactive

simulation using a linear FEM and combined it with hap-
tic devices [10]. In order to accelerate the calculation,
we developed an algorithm for collision detection that is
implemented on a graphics processing unit (GPU) [11].
However, the computational speed is not sufficient to run
in real-time. In particular, the FEM solver was not opti-
mized for calculation on the GPU, and it became the bot-
tleneck of the simulation.

In this paper, an efficient implementation of an FEM
solver is proposed to simulate the opening of a brain fis-
sure. The contributions of this paper are the following:

• • A GPU-accelerated method of a corotational linear
FEM including a boundary-condition-based collision
response is proposed.

• • A stabilization algorithm for the fracture simulation
based on element removal is incorporated into the
proposed GPU-accelerated FEM framework.

In the conventional FEM implementation, the most
time-consuming procedures are assembling the stiff-
ness matrix and solving linear equations. Moreover, the
calculation of the collision response requires additional
procedures. In the FEM solver proposed in this paper, the
collision response is calculated by applying geometrical
boundary conditions. Because conventional FEM solvers
do not consider the frequent changes in the geometri-
cal boundary conditions, efficient matrix assembly and
matrix rearrangement have not attracted much attention.
In this paper, the three above-mentioned procedures, i.e.,
assembling the stiffness matrix, solving linear equations,
and rearranging the stiffness matrix, are implemented by
considering a sparse-matrix storage format (“Implemen-
tation and GPU parallelization”). All of these algorithms
are implemented on a GPU. However, the proposed algo-
rithms assume that the mesh topology of analysis area

a b c
Fig. 1  Schematic of the opening of a Sylvian fissure. a Sylvian fissure, b cross-sectional view of X-X′, and c retraction and dissection using spatulas,
scissors, and an aspirator

Page 3 of 16Sase et al. Robomech J (2015) 2:17

is constant during a simulation. Therefore, additions
of new nodes and changes in the node connectivity are
not permitted. In order to realize the ability to dissect
under these limitations, we adopt a fracture represen-
tation on the basis of the element removal approach. In
this approach, fracture behaviors are calculated by inac-
tivating the physical contributions of removed elements.
However, it has been reported that the dynamic behaviors
become unstable, which may lead to diverse the numeri-
cal calculation when the tetrahedral mesh becomes non-
manifold because of element removals [12]. To solve the
stability problem, we also propose an element removal
algorithm to avoid topological singularities (“Modeling of
dissection”). The concept of proposed algorithm is active
element removal. Its implementation is considerably sim-
pler and can be used as alternative to existing methods
such as that in [13]. Finally, to evaluate the performance
of these implementations, a blunt dissection and brain
retraction are simulated, and the results of these simula-
tions are presented (“Results”).

Related work
Collision response
Recent cutting-edge studies on real-time haptic render-
ing for interacting deformable objects have focused on
efficient contact handling including collisions between
multiple deformable objects and self-collisions [14, 15].
They modeled contacts based on Signorini’s law and Cou-
lomb’s law, and the linear or nonlinear complementarity
problem needs to be solved. Although their algorithms
are highly optimized for a GPU, the number of nodes is
limited to several thousand for realizing real-time simu-
lation because of their high computational costs.

The fastest implementation of collision response is the
penalty method [16]. In this method, external forces are
applied to contact nodes according to the penetration
depth. To compute the magnitude of the external forces,
scalar coefficients are required for multiplication with the
depth. However, it is difficult to determine the scalar val-
ues for obtaining a stable response.

The other approach is the position constraint method.
In this method, nodal displacements are directly input
according to geometric relations. In an early study on a
real-time surgery simulator, Cotin et al. introduced a
position constraint formulation using the Lagrange mul-
tiplier method [17]. Hirota et al. adopted a boundary-
condition-based constraint [18]. Although these method
are essentially equivalent and both methods resulting
in a large simultaneous linear equations, the method of
Hirota et al. has the advantage in the term of the size of
the linear equations (see “Collision response of soft tis-
sues”). The limitation of this method is that accurate con-
tact response subject to Signorini’s law or Coulomb’s law

cannot be computed. However, because the computa-
tional cost is lower than that of the accurate methods, the
position constraint method can be used for the analysis
of a fine detailed mesh.

As mentioned above, the position constraint method
based on a boundary condition involves a large number
of simultaneous linear equations. Because the linear sys-
tem is large and sparse, the sparse matrix format should
be adopted for efficient execution of mathematical opera-
tions and to reduce memory consumption. However, its
GPU-optimized implementations considering the sparse
matrix format have not been discussed.

Fracture
In the field of computer graphics, several methods of
fracture simulation have been discussed [19–21]. This
section describes the details of fracture algorithms devel-
oped for real-time applications.

A notable approach is the extended FEM [22], which
allows for representation of any crack without the limita-
tions of a mesh topology by adding a shape function to
the element displacement field interpolations. Thus, an
additional degree of freedom (DOF) is provided to model
crack discontinuities.

Mor and Kanade modeled the knife cutting of soft
objects [23]. They proposed split patterns in which a tet-
rahedron is split into smaller tetrahedrons according to
the knife path. In this approach, the tetrahedral mesh is
explicitly modified by adding new nodes to it.

Delingette et al. proposed an element removal
approach in the early years of surgery simulation stud-
ies [24]. Even though this approach suffers from the dis-
advantage of a loss of volume, it offers advantages such as
a low computational cost and simple implementation. In
particular, we focus on the fact that this algorithm does
not require the addition of add new nodes. Thus, simula-
tions can be performed at the same computational cost
throughout. Because real-time characteristics are impor-
tant for practical use of the surgery simulator, we adopt
this element removal approach.

As shown by Forest, element removal may lead a tet-
rahedral mesh to become a nonmanifold geometry [12],
which means that the tetrahedral mesh has vertices or
edges where the thickness of the volumetric mesh can-
not be defined. Vertices and edges are known as singu-
lar vertices and singular edges, respectively, and such a
singularity is known as a topological singularity (Fig. 2).
Because the dynamic behavior can be unstable when the
FEM mesh becomes a nonmanifold geometry, topologi-
cal singularities should be avoided during simulation.

Some topological-singularity avoidance algorithms
have been proposed in the literature. Forest et al. pro-
posed a node separation algorithm [12]. They separated

Page 4 of 16Sase et al. Robomech J (2015) 2:17

the singular vertices and singular edges by adding cop-
ies of such vertices and edges. However, this approach
increases the computational cost because the DOFs of
the system increase with the addition of nodes. Nakay-
ama et al. proposed a delay algorithm that suspends the
removal of elements that cause topological singulari-
ties [13]. However, the delay algorithm does not correctly
simulate actual fracture phenomena. In the actual case,
the stress will be concentrated at a singular vertex and
singular edge. Thus, the two elements connected by a sin-
gular vertex or singular edge will be disconnected. There-
fore, such elements should be removed immediately.

Finite element model of the brain
Corotational FEM
The corotational formulation is an approximate approach
that considers the geometrical nonlinearity for small
strain deformations. This formulation evaluates element
strains with respect to the rotated element coordinates,
which are referred to as corotational coordinates (see
Fig. 3a). A corotational coordinate is a coordinate that
is rotated using the rotation component of the current
deformed configuration. A corotational FEM is a reason-
able choice for achieving a trade-off between precision
and computational cost [25]. In general, the element stiff-
ness equation is defined as

(1)f eext = K
eue,

where f eext and ue are the nodal force and displacement
vectors of an element, respectively. The element dis-
placement vector is defined as ue = xe − xe0, where xe
and xe0 are the displaced and initial nodal position vec-
tors of the element, respectively. If the rotation of the
element coordinates is represented by a rotation matrix
R ∈ R

3×3, the displaced position and force vectors are
transformed by R and the element stiffness equation
becomes

where Ke
0 is the element stiffness matrix of a linear FEM

and Re � blockdiag [R,R,R,R]. The above equation is
rewritten as

where

f e0 is known as the force offset vector.
R is calculated by singular value decomposition (SVD)

of deformation gradient. The details are described in
“Appendix A: Rotation of a deformed tetrahedron”.

Matrix/vector assembly
After Ke and f e0 are obtained, the global stiffness
matrix K ∈ R

3Nnode×3Nnode and global force offset vector
f 0 ∈ R

3Nnode, where Nnode is the number of nodes, are
calculated by gathering all element contributions using
connectivity information. This procedure is known as
matrix/vector assembly, and it is expressed as

(2)R
eTf eext = K

e
0

(

R
eTxe − xe0

)

,

(3)f eext = K
exe − f e0,

(4)K
e =R

e
K
e
0R

eT,

(5)f e0 =R
e
K
e
0x

e
0;

(6)K =
∑

e

L
eT
K
e
L
e,

(7)f 0 =
∑

e

L
eTf e0,

Fig. 2  Topological singularity

a b
Fig. 3  Deformation of a tetrahedral element. a Geometrical nonlin-
earity. b Inversion of an element

Page 5 of 16Sase et al. Robomech J (2015) 2:17

where Le ∈ R
12×3Nnode is the gather matrix, which gath-

ers element nodal data from global vectors. Le is a
Boolean matrix, which consists of zeros and ones. Note
that Eqs. (6) and (7) are just mathematical formula-
tions; the actual assembly process is implemented in a
more efficient manner. The efficient implementations are
described in “Efficient matrix/vector assembly in a sparse
storage format”.

The global stiffness equation is written as

where f ext and x are the global external force vector and
global position vector, respectively. For simplicity, this
equation can be written by analogy to the global stiffness
equation of a linear FEM as

where f = f ext − f 0.

Collision response of soft tissues
When a surgical instrument contacts with the brain
model, it is assumed that the contact nodes move
together with the instrument (Fig. 4). Hence, the dis-
placements of the contact nodes are known, but their
contact forces are unknown. In contrast, the displace-
ments of free nodes and internal nodes are unknown, but
their external forces are known (they are zeros). There-
fore, the nodes are rearranged into displacement-known
nodes and force-known nodes, and Eq. (9) can be modi-
fied by rearranging the matrix and vectors as follows [18]:

where the suffixes f and d denote the components of the
force-known and displacement-known nodes, respec-
tively. As shown in Fig. 4, the contact nodes are geomet-
rically constrained on the surface of a rigid body (surgical
instrument). Hence, the displacements of the contact
nodes are known, whereas the forces are unknown. In

(8)f ext = Kx − f 0,

(9)f = Kx,

(10)

[

f f
f d

]

=

[

Kff Kfd

Kdf Kdd

] [

xf
xd

]

,

contrast, the forces generated at unconstrained nodes
are zero under the stationary condition, whereas the
displacements are unknown. In Eq. (10), f d and xf are
unknown, and xf is obtained by solving the following lin-
ear equation:

After xf is obtained, the other unknown value f d is cal-
culated as

Although only the formulation of the static FEM is
described above, the adoption of the formulation of the
dynamic FEM with implicit time integration introduces
a mathematically similar equation to the formulation of
static FEM. The details of the formulation of the dynamic
FEM are presented in “Appendix B: Formulation of a
dynamic FEM”.

Implementation and GPU parallelization
This section describes the implementation of the FEM.
To measure the computational time, we used a CIARA
KRONOS S810R workstation, which employs an Intel
Core i7-3960X (six cores, overclocked to 4.5 GHz) CPU
with 64 GB of RAM and two GPUs, an NVIDIA K20c
(2,496 CUDA cores) for general-purpose computing
and an NVIDIA Quadro K5000 (1536 CUDA cores) for
graphics processing. Parallel processing is implemented
using OpenMP for multithread computing on a multi-
core CPU and NVIDIA CUDA for general-purpose com-
puting on GPUs (GPGPU).

Simulation procedures
The flowchart of our simulation scheme is shown in
Fig. 5. Before the real-time simulation loop, the element
stiffness matrices of the linear elasticity Ke

0 and the reduc-
tion lists described in “Efficient matrix/vector assembly
in a sparse storage format” are calculated. The real-time
simulation procedures are as follows.

(11)Kffxf = f f − Kfdxd.

(12)f d = Kdfxf + Kddxd.

Fig. 4  Contact nodes and free nodes

Page 6 of 16Sase et al. Robomech J (2015) 2:17

Calculation of element data: Re, Ke, and f e0 are calcu-
lated. The details of these parallel implementations are
described in “Calculation of element data”.
Matrix/vector assembly: K and f 0 are assembled.
The details of the parallelization of the assembly are
described in “Efficient matrix/vector assembly in a
sparse storage format”.
Collision detection: Collision detection between a
deformable object (brain) and rigid objects (brain
spatulas) is executed. The contact nodes of the
deformable object and the corresponding forced dis-
placements are determined. The discrete collision
detection approach reported in [11] is adopted. This
method can deal with collisions between a nonconvex
deformable object and a rigid object.
Application of boundary condition: On the basis of
collision detection, a boundary condition is set. As
mentioned in “Collision response of soft tissues”, a
large sparse matrix is rearranged according to the
boundary condition. The implementation details are
described in “Matrix rearrangement”.
Calculation of the deformation and external forces:
The calculation of the deformation is a problem involv-
ing a system of linear equations. The linear equations
are solved by the conjugate gradient method. Sparse-
matrix dense-vector multiplications are implemented
by the sparse-matrix library CUSPARSE provided by
NVIDIA Corp.

Calculation of element data
An element stiffness matrix Ke is calculated using Eq. (4).
It is assumed that the materials are isotropic; hence, Ke is
a symmetric matrix. Therefore, it is sufficient to store the
elements of the upper triangular matrix of Ke. Further,

f e0 is calculated in the same way as Ke (Eq. 5). Finally, all
K
e (K1, K2, . . . ,KNelem) and f e0 (f

1
0, f

2
0, . . . , f

Nelem
0), where

Nelem is the number of tetrahedral elements, are serial-
ized and stored in the arrays valuesKe and valuesF0e,
respectively. These procedures are implemented in paral-
lel using one thread per element.

Efficient matrix/vector assembly in a sparse storage format
In the matrix/vector assembly procedure, the element
stiffness matrices are assembled into the global stiffness
matrix, as described in Eq. (6), and the element force
offset vectors are assembled into the global force off-
set vector, as described in Eq. (7). First, the implemen-
tation of global stiffness matrix assembly is described,
and then, that of global force offset vector assembly is
described.

In most FEM problems, the global stiffness matrix is a
large sparse matrix that is stored in a sparse-matrix stor-
age format to reduce memory consumption. In this work,
the global stiffness matrix is stored using the coordinate
list (COO) sparse storage format during matrix assem-
bly. This is because of the requirement of matrix rear-
rangement described in “Matrix rearrangement”. The
COO consists of three arrays: values, rowIndices, and
columnIndices. In the COO format, only the nonzero ele-
ments of a sparse matrix are stored in the array values.
The row and column indices of the nonzero elements
are stored in the arrays rowIndices and columnIndices,
respectively. These arrays are stored in row-major order.
For example, the matrix

is stored as the following three arrays.

In the remainder of this section, values, rowIndices, and
colmunIndices represent the arrays of K in the COO
format.

In order to implement a fast matrix assembly algo-
rithm, we adopted the reduction list approach proposed
in [26]. When the mesh topology does not change during
simulation, rowIndices and columnIndices are constant
matrices. Hence, only values should be updated at every
time step. Matrix assembly involves a number of inde-
pendent summations expressed as





a b 0
0 c 0
0 0 d





values = [a, b, c, d]

rowIndices = [0, 0, 1, 2]

columnIndices = [0, 1, 1, 2]

(13)values(i) =

Nsrc,i
∑

j=1

valuesKe(srcIndicesi(j)),

Fig. 5  Flowchart of the simulation scheme

Page 7 of 16Sase et al. Robomech J (2015) 2:17

where srcIndicesi is an array that stores the source indi-
ces pointing to the components of valuesKe for the sum-
mation of the i-th component of values, and Nsrc,i is the
number of components of srcIndicesi. The components
of srcIndices are determined by the connectivity of a tet-
rahedral mesh. A reduction list stores the source indices
and a negative-signed destination index as

As shown in Eq. 14, a reduction list has one destination
index in general. On the other hand, because we assume
that the material is isotropic and K is a symmetric matrix,
the reduction list can store two destination indices as

where lower(i) is an index pointing to the lower compo-
nent of values(i). An example of reduction-array-based
summation is shown in Fig. 6. For a symmetric matrix,
there is a storage format that stores only upper or lower
triangular entries as in the case of Ke. However, the
adoption of such a storage format for K requires special
treatment in the subsequent procedures, which might
degrade the maintainability because of its complexity.
Thus, all the nonzero components of K are stored using
this reduction procedure. This approach avoids atomic
operation because the output memories are independent
of each other as in the case of the general reduction list
approach.

The assembly of f 0 is implemented in a similar man-
ner. After the calculation of Re, all values of f e0 are stored
as an array. The reduction list for the assembly of f 0 is
constructed in advance. The reduction is performed in a
thread per component of f 0, which allows for the calcu-
lation of f 0 without atomic operation. This reduction is
independent of the assembly of K. Therefore, assemblies
of K and f 0 are performed concurrently, e.g., on two
GPUs.

(14)

reductionListi = [srcIndices(1), srcIndices(2), . . . ,

srcIndices(Nsrc,i),−i].

(15)
reductionListi = [srcIndices(1), srcIndices(2), . . . ,

srcIndices(Nsrc,i),−i,−lower(i)],

Matrix rearrangement
As described in “Collision response of soft tissues”, col-
lisions are represented by geometrical boundary con-
ditions and the global stiffness matrix is rearranged by
considering the boundary conditions. This rearrange-
ment procedure involves permutation and separation
processes.

Permutation is performed by referring to a permuta-
tion list that includes the source index i and destina-
tion index list(i). The list is constructed according to the
boundary conditions. Figure 7 shows an example of per-
mutation in the case of one tetrahedron, in which nodes
0, 2, and 3 are constrained. The permutation procedure
accumulates the variables of the contact nodes at the
head of the array and those of the free nodes at the bot-
tom. Permutation using a permutation list is represented
as m′(list(i), list(j)) = m(i, j), where m and m′ represent
the source matrix and permutated matrix, respectively,
and m(i, j) denotes the i, j component of matrix m. If a
matrix is stored as a dense matrix, permutation is per-
formed by simply copying the source components to the
destinations. However, if the matrix is stored in a sparse
storage format, the implementation of permutation dif-
fers according to the storage format.

In this work, the global stiffness matrix is stored in the
COO format, as mentioned in “Efficient matrix/vector
assembly in a sparse storage format”. In the COO format,
permutation is easily and efficiently performed as

These operations do not conflict with each other, and
all permutations are performed in parallel. Other sparse
storage formats such as compressed sparse row (CSR) are
also widely used. The CSR format can be constructed by
compressing rowIndices used in the COO format. This
approach can further reduce the memory consumption
compared to the COO format, and it is suitable for par-
allelizing matrix–vector multiplication. However, the

(16)
rowIndices(i) = list(rowIndices(i)),

columnIndices(i) = list(columnIndices(i)).

Fig. 6  Reduction array

Page 8 of 16Sase et al. Robomech J (2015) 2:17

implementation of permutation is not easier than that of
the COO format. Although it can be realized using the
permutation matrix P as M′ = P

T
MP, this implementa-

tion is not efficient because the memory traffic increases
and additional arithmetic operations are required com-
pared to the COO format. Therefore, the COO format
was selected as the sparse storage format in this work.

Sorting should be performed to maintain the row and
column index arrays in ascending order; however, the
sorting process can be combined with a separation pro-
cess. An overview of the entire procedure including per-
mutation and separation is shown in Fig. 8 by taking a
matrix A as an example. After Eq. (16) is executed, three
arrays are sorted by columnIndices. Next, A is separated
along its columns into Af and Ad. When the separation
index is Nf, entries whose column index is less than Nf
are copied to Af. The other entries are copied to Ad. In
order to fix columnIndices to zero-base indices, Nf is sub-
tracted from all of the components of columnIndices in
Ad. Subsequently, three arrays, namely values, rowInd-
ices, and columnIndices of Af and Ad, are sorted by their
rowIndices. Note that this sorting must be stable, which
means that the original order is maintained when the
compared values are equal to each other. This is because
the ascending order of columnIndices might be disturbed
if the sorting is not stable. After sorting, Af and Ad are
separated along their rows into Aff, Adf, Afd, and Add .
Subtraction of rowIndices of Adf and Add is performed
for the same reason as that for Ad. Finally, the separated
matrices are obtained in the COO format.

These procedures require sorting of large arrays, which
is computationally expensive. In order to accelerate the
sorting process, they are implemented on a GPU using
the NVIDIA CUDA thrust library.

For further optimization, the permutation list and the
arrays (values, rowIndices, columnIndices) of A can be

compressed by considering the series order of the arrays
of A. An example of the compression is shown in Fig. 9.
Because three variables of each node are relocated together,
the permutation list becomes a combination of three con-
secutive integers. Moreover, rowIndices and columnIndices
consist of a combination of the same three integers, i.e., (0,
0, 0), and a combination of three consecutive integers, i.e.,
(0, 1, 2), respectively. Hence, sorting is performed accord-
ing to these three-integer blocks. In order to sort per block,
values is separated into three arrays, values_x, values_y,
and values_z. Next, the permutation list, rowIndices, and
columnIndices are compressed by storing only the first ele-
ment of the consecutive-integer blocks. This compression
reduces the size of the arrays to a third of their original size
and the computational cost of sorting decreases. After Aff,
Afd, Adf, and Add are obtained, the compressed arrays are
extracted in the original COO format.

Modeling of dissection
Topological‑singularity avoidance algorithm for element
removal
This section describes a simple and efficient topological-
singularity avoidance algorithm for element removal. The
basic concept of the approach is active element removal.
Although the volume decreases as elements are removed,
the approach is fast and easy to implement. The flow of
the algorithm is summarized as follows.

1.	 Fracture detection Determine the tetrahedrons to be
removed on the basis of a specified fracture criterion
and list them in a set Trm.

2.	 Singularity verification Check whether the verti-
ces and edges that belong to Trm are singular after
removing the tetrahedrons listed in Trm.

3.	 Detection of additional tetrahedrons to be removed If
any vertices or edges are predicted to be singular, the

Fig. 7  Permutation list

Page 9 of 16Sase et al. Robomech J (2015) 2:17

tetrahedrons that include the predicted singular ver-
tices or edges are added to Trm.

4.	 Repeat Singularity verification and Detection of addi-
tional tetrahedrons to be removed until Trm becomes
empty.

The maximum principal stress is selected as the cri-
terion to determine the tetrahedrons to be removed. If
the absolute value of the maximum principal stress of
an element exceeds a previously specified threshold, the
element is listed in Trm, the set of tetrahedrons to be
removed. Hence, the removal criterion is defined as

where σi (i = 1, 2, 3) is the maximum principal stress of
a tetrahedron, which is obtained as the eigenvalue of
the stress tensor Se, and σmax is the previously specified
stress threshold. Note that we use a constant strain ele-
ment; and thus, Se becomes constant on an element. In
the corotational FEM, Se is calculated by considering the
element rotation as Se = D

e
B
e
(

R
exe − xe0

)

, where De and

(17)max(|σ1|, |σ2|, |σ3|) > σmax,

B
e are the strain–stress matrix and displacement–strain

matrix, respectively.
In the singularity detection phase, the sets of vertices

Vrm and edges Erm are constructed from the tetrahe-
drons listed in Trm. Each vertex v ∈ Vrm and edge e ∈ Erm
is checked for a singularity. The algorithm of singularity
detection of vertex v is summarized as follows. An exam-
ple is shown in Fig. 10a.

1.	 Extract Tv, a set of tetrahedrons, that includes v as a
vertex.

2.	 Select an arbitrary tetrahedron tv0 ∈ Tv.
3.	 Construct Tv

edge, a set of tetrahedrons, that shares at
least one edge with tv0.

4.	 Select a tetrahedron tvx ∈ Tv
edge and search for an

edge-sharing tetrahedron as described above in steps
2 and 3. Add the new edge-sharing tetrahedron to
Tv
edge and repeat until no entry is found.

5.	 If n(Tv) �= n(Tv
edge), v is a singular vertex, where n(·)

denotes the number of tetrahedrons.

Fig. 8  Algorithm and example of matrix rearrangement

Page 10 of 16Sase et al. Robomech J (2015) 2:17

The algorithm for singular edge detection is similar to
that for singular vertex detection, as it is summarized as
follows. An example is shown in Fig. 10b.

1.	 Extract Te, a set of tetrahedrons, that include e as an
edge.

2.	 Select an arbitrary tetrahedron te0 ∈ Te.
3.	 Construct Te

edge, a set of tetrahedrons, that shares at
least one edge with te0 except edge e.

4.	 Select a tetrahedron tex ∈ Te
edge and search for an

edge-sharing tetrahedron as described above in steps
2 and 3. Add the new edge-sharing tetrahedron to
Te
edge and repeat until no entry is found.

5.	 If n(Te) �= n(Te
edge), e is a singular edge.

The detection of additional tetrahedrons to be removed
phase determines a set of additional tetrahedrons to be
removed, Tadd, in order to avoid a topological singu-
larity. When a singular vertex v is detected, Tv

edge and
T̂ v
edge

(

= Tv ∩ T̄ v
edge

)

 are defined. In order to prevent the
loss of volume as much as possible, the number of tetra-
hedrons to be removed should be minimized. Therefore,
the smaller set between Tv

edge and T̂ v
edge is selected as Tadd

by comparing n(Tv
edge) and n(T̂ v

edge). For the same rea-
son, when a singular edge e is detected, the smaller set
between Te

edge and T̂ e
edge = Te ∩ T̄ e

edge is selected as Tadd.
After Tadd is determined, it is added to Trm as mentioned
at the beginning of this section.

Examples of fracture simulations are shown in Fig. 11.
In the simulation without topological-singularity avoid-
ance (Fig. 11b), tetrahedrons connected with only a sin-
gular vertex or edge exhibit unstable deformation. On the
other hand, in the simulation with topological-singularity
avoidance (Fig. 11a), the risk of instability is eliminated,
and the simulation continues in any fracture situation.

Implementation
The calculation of the maximum principal stress on each
element is computed in parallel by the GPU. To calcu-
late the eigenvalues of the stress tensor, the Jacobi eigen-
value algorithm is adopted. The singularity avoidance
algorithm is implemented on a six-core CPU because it
requires numerous conditional branchings and compli-
cated data structures for the mesh topology. However, it
is not a time-consuming procedure and is rapidly com-
puted, even on a CPU.

Results
Performance evaluation of GPU implementations
We compare three implementations of matrix/vector
assembly and matrix rearrangement procedures: (1) a
CPU with no parallelization, (2) a six-core CPU with
multithread parallelization, and (3) a GPU implementa-
tion. Cube-shaped models discretized by various num-
bers of tetrahedrons were used for the comparison. The
surface nodes of the two opposite sides of the cube are

Fig. 9  Example of actual input arrays and compressed arrays

Page 11 of 16Sase et al. Robomech J (2015) 2:17

constrained. The execution times of the three differ-
ent implementations of the matrix/vector assembly and
matrix rearrangement procedures are plotted in Figs. 12
and 13, respectively.

Blunt dissection simulation
Blunt dissection is an operation for separating tissues
without cutting. It is generally performed along fissures
by breaking connective tissues. In neurosurgery, sur-
geons perform cutting operations using scissors or blunt
dissection depending on the context of the surgery.

An FE model of a cube with a fissure (4807 nodes and
19,600 tetrahedrons) was used in the simulation. It was
assumed that the fissure was filled with connective tis-
sues, the Young’s modulus and Poisson’s ratio of which

were 100 and 0.4 Pa, respectively. The Young’s modulus
and Poisson’s ratio of the main body were assumed to
be 1000 and 0.4 Pa, respectively. The fracture threshold
stresses were set to the same values as their Young’s mod-
uli. Note that these mechanical parameters are deter-
mined to distinguish the relative stiffness of the materials
and not validated by experiments. Initially, the tips of
two spatulas were inserted into the fissure, and then they
were opened to dissect the connective tissues at a velocity
of 5.0 mm/s. In order to compare different implementa-
tions, this simulation was executed by each implementa-
tion with a constant time step of 20 ms.

The simulation was conducted without oscillation
or divergence. Figure 14a, b show the snapshots and
its principal stress visualizations during the simula-
tion. Figures 15 and 16 show the calculation time and
the number of removed elements at each time step. An
additional movie file shows the following simulations in
greater detail (see Additional file 1).

Brain retraction simulation
Brain retraction is an operation performed by push-
ing soft tissues to create a working space. One of the
important brain fissures, which are frequently performed
retractions, is the the Sylvian fissure. The Sylvian fissure
is filled with the arachnoid mater, which needs to be dis-
sected by surgeons. This section shows the result of a
brain retraction simulation conducted in real-time by
user input using a Sensable Phantom Omni haptic device.
The reaction force to the user-controlled instruments
was fed back through the haptic device. The simulation
was conducted under the assumption that the arachnoid
mater was dissected beforehand. The task objective given
to the user is to retract the brain tissues and expose the
brain tumor existing at the bottom of the Sylvian fissure.

(a)

(b)
Fig. 10  Example of topological singularity detection. a Singular
vertex detection. b Singular edge detection

Fig. 11  Examples of fracture simulations [31]. These sequences show soft-tissue fracture simulations executed a with and b without topological-
singularity avoidance

Page 12 of 16Sase et al. Robomech J (2015) 2:17

A brain hemisphere mesh model (8647 nodes, 32,639 ele-
ments) was used in this simulation. This model was con-
structed by scanning an anatomical model of the human
brain, Brain Model C20 (3B Scientific GmbH), and modi-
fying it using 3D modeling software. The bottom nodes
of the hemisphere mesh model were fixed; hence, the dis-
placements of the bottom nodes were always set to zero.

Figure 17 shows the overview of the simulation. An
operator moves a pointer displayed on the monitor by
controlling a haptic device. Using the pointer, the oper-
ator can pick up and control the spatulas in the virtual
space. Collision detection is performed between each
spatula and the brain model. The reaction force applied
to the spatula from the virtual brain is fed back by the
haptic device. As seen in Fig. 17, the Sylvian fissure was
opened by two spatulas and the tumor was exposed.
Figure 18 shows the calculation time of the time steps.
The calculation times for assembling a matrix, rearrang-
ing a matrix, and solving a linear system of equations are
plotted. In this simulation, a stress analysis and the frac-
ture procedure were not performed. Figure 19 shows the

time history of the raw and filtered reference forces by a
first-order low-pass filter (cut-off frequency 1.0 Hz). An
additional movie file shows the following simulations in
greater detail (see Additional file 1).

Discussions
Figures 12 and 13 show that the GPU implementations
had the highest speed among the three implementations
in both evaluations. In the comparison of the matrix/
vector assembly, for the model with 15,625 nodes and
69,120 elements, the GPU implementation (10.7 ms)
was 19.7 times faster than the single-CPU implemen-
tation (210.9 ms) and 3.9 times faster than the six-core
CPU implementation (41.9 ms). In the comparison of
the matrix rearrangement, for the same model, the GPU
implementation (11.0 ms) was 7.1 times faster than the
single-CPU implementation (78.4 ms) and 5.1 times
faster than the six-core CPU implementation (56.3 ms).

The results of the blunt dissection simulation show
that the combination of our GPU implementation and
the fracture algorithm worked as expected. As seen in
Fig. 14b, the connective tissue was easily deformed and
removed owing to the stress concentration because it was
specified to be softer than the main body. In Fig. 15, the
calculation time jitter is shown. One of the causes is the
difference in the convergence times of the conjugate gra-
dient method. Another cause is the change in the bound-
ary condition. When the boundary condition changed,
the matrix rearrangement procedure is executed and
takes additional calculation time. The average calcula-
tion times of the three implementations, a CPU with no
parallelization, a six-core CPU with multithreaded paral-
lelization, and a GPU implementation, were 103, 41, and
17 ms, respectively. The speed-up of the GPU versus the
CPU was 6.1. Only the GPU realized smooth animation
with a refresh rate greater than 30 Hz. As seen in Fig. 16,
the fracture started at step 25, and the peak number of
removed elements was 33 at step 60. It is shown that the
number of removed elements did not affect the calcula-
tion time. This result shows that this approach is prefer-
able for surgery simulation because the simulation can be
continued at the same refresh rate throughout.

On the other hand, the results of the brain retraction
simulation show that our implementation could not
achieve the target calculation speed. The range of calcu-
lation time for a time step was 40–80 ms. This refresh
rate is not sufficient for visually acceptable animations
and reaction-force rendering. The reference force was
discontinuous, and the force display could oscillate if we
did not apply the low-pass filter. Although the low-pass
filter reduced the discontinuous force feedback, this is
not a fundamental solution for displaying realistic reac-
tion forces. From these results, further acceleration is

Fig. 12  Computational time for matrix assembly

Fig. 13  Computational time for matrix rearrangement

Page 13 of 16Sase et al. Robomech J (2015) 2:17

needed to achieve stable and visually acceptable simu-
lation. Moreover, the development of a method for dis-
playing smooth and stable forces is a topic for future
study.

Conclusion
In this paper, a real-time simulation scheme for soft-
tissue deformation and fracture for brain retraction
is proposed. GPU implementations for matrix/vec-
tor assembly and a matrix rearrangement procedure
for accelerating a corotational FEM including bound-
ary-condition-based collision response are proposed.

A simple mesh modification method considering the
avoidance of topological singularities is developed and
combined with the proposed GPU-accelerated FEM
framework. Finally, blunt dissection and brain retraction
simulations are performed using the proposed imple-
mentation. Both simulations can be conducted in real
time. Although the proposed method could not achieve
a visually acceptable update rate for the brain retraction
simulation using our target brain hemisphere model, it
performs faster than the CPU implementations.

In this study, viscoelasticity and material nonlineari-
ties were not considered. In order to obtain more realistic

Fig. 14  Results of the blunt dissection simulation. a Snapshots. b Stress visualization. The colors of the tetrahedrons represent the regularized
absolute values of the maximum principal stress max(|σ1|, |σ2|, |σ3|)/σmax, where σi (i = 1, 2, 3) and σmax are the principal stresses and the fracture
threshold stress, respectively

Fig. 15  Computational time of the blunt dissection simulation Fig. 16  Number of removed elements

Page 14 of 16Sase et al. Robomech J (2015) 2:17

material behavior, we plan to integrate material proper-
ties more precisely in our future implementation.

Authors’ contributions
AK led and directed the project. AK and TT showed the need for a fast and
stable calculation method of deformation and fracture of soft tissues for
neurosurgery. KS proposed the algorithms implemented them on a GPU,
and drafted the manuscript. TT, AF, and AK participated in the discussion on
the optimization of the algorithms. Furthermore, TT implemented the base

Additional file

Additional file 1. Blunt dissection simulation and brain retraction simula-
tion using the proposed method.

simulation framework, and AF implemented the collision detection procedure.
All authors read and approved the final manuscript.

Author details
1 Graduate School of Information Science and Technology, Hokkaido Univer-
sity, Kita 14 Nishi 9, Kita‑ku, Sapporo, Japan. 2 Graduate School of Engineering,
Tohoku University, 2‑1‑1 Katahira, Aoba‑ku, Sendai, Japan. 3 Graduate School
of Science and Engineering, National Defense Academy, 1‑10‑20 Hashirimizu,
Yokosuka, Japan.

Acknowledgements
This work was supported by JSPS through the Funding Program for Next
Generation World-Leading Researchers (LR003), the Grant-in-Aid for Scientific
Research (A) (15H01707), the Grant-in-Aid for Challenging Exploratory
Research (24650288), and the Grant-in-Aid for JSPS Fellows (15J01452).

Fig. 17  Brain retraction simulation

Fig. 18  Computational time of the brain retraction simulation

Fig. 19  Time history of reaction force. The raw data is the reference
force value provided by the FEM solver and the filtered data is the
actual reference value for the force feedback. In this simulation, a first-
order low-pass filter (cut-off frequency, 1.0 Hz) was applied

http://dx.doi.org/10.1186/s40648-015-0040-0

Page 15 of 16Sase et al. Robomech J (2015) 2:17

Competing interests
The authors declare that they have no competing interests.

Appendix 1: Rotation of a deformed tetrahedron
A rotation matrix of a tetrahedron element is obtained
by SVD of the deformation gradient tensor F [27]. This
formulation is stable even if the elements are inverted
(see Fig. 3b). In the case of the first-order tetrahedral ele-
ment, F transforms an edge vector of the initial shape
dmj into an edge vector of the deformed shape dsj as
dsj = Fdmj (j = 1, 2, 3). From this equation, F is cal-
culated as F = DsD

−1
m , where Ds = [ds1 ds2 ds3] and

Dm = [dm1 dm2 dm3]. F can be represented as

where U and V are orthogonal matrices, and � is a diago-
nal matrix. The rotation matrix is calculated as

where C � diag
[

1, 1, det(UV
T)
]

 [28].
To obtain the rotation matrices of the tetrahedral ele-

ments, SVD of a large number of 3× 3 matrices described
in Eq. (18) must be performed. However, most existing
parallel implementations of SVD are specialized for large
matrices [29]. For SVD of a large number of small matrices,
Bedkowski et al. introduced an algorithm for three-dimen-
sional reconstruction using mobile robots [30]. In the pre-
sent work, the algorithm introduced by Bedkowski et al. is
modified. The modified algorithm is summarized as follows:

1.	 Diagonalize FTF by the Jacobi eigenvalue algorithm
as FTF = V

T
SV, where V is an orthogonal matrix,

and S is a diagonal matrix whose elements are the
eigenvalues of FTF.

2.	 Construct a matrix � whose diagonal elements are
the singular values of FTF. The singular values are
obtained by calculating the square root of each diag-
onal element of S.

3.	 Calculate U = FV�−1.
4.	 U and V are used in Eq. (19).

In this algorithm, the eigenvalue approach is different
from that of Bedkowski et al. They calculated the eigen-
values by obtaining the roots of a cubic polynomial. On
the other hand, we adopted the Jacobi eigenvalue algo-
rithm to simplify the implementation.

Appendix 2: Formulation of a dynamic FEM
The equation of motion for a deformable object is written as

where M and C are a mass matrix and a damping matrix,
respectively. M is a diagonal matrix determined by

(18)F = U�V
T,

(19)R = UCV
T,

(20)Mẍ + Cẋ + (Kx + f 0) = f ext,

gathering the equivalent masses of all nodes from the
node-share tetrahedrons: mi =

∑

Ti
mTi/4, where mi

is the equivalent mass of node i, Ti is a tetrahedron that
shares node i, and mTi is the mass of Ti. In general, C is
determined on the basis of the material constitutive law.
However, for simplicity, Rayleigh damping is adopted in
this study:

where α and β are scalar values representing the damping
effect, which are selected heuristically for stabilizing the
simulation.

Eq. (20) can be written in the same form as the linear
FEM form as

by defining a vector f = f ext − f 0. When we substitute v
for ẋ, the time derivatives of the variables are defined as

In order to avoid numerical instability in the dynamic
simulation, we adopt implicit time integration because it
has unconditionally stable characteristics. Implicit time
integration is formulated as

By substituting Eqs. (21) and (25) into Eq. (26), vi+1 can
be obtained by solving the following equation:

As discussed in “Collision response of soft tissues”, the
contact nodes move together with the rigid body; hence,
xd and vd are known, whereas f d is unknown. The forces
applied to the unconstrained nodes are zero, i.e., f f = 0.
Therefore, Eq. (27) can be rewritten as

where

(21)C = αM + βK,

(22)Mẍ + Cẋ + Kx = f

(23)ẋ = v,

(24)Mv̇ =− Cv − Kx + f .

(25)xi+1 = xi +�t vi+1,

(26)Mvi+1 =Mvi +�t
(

−Cvi+1 − Kxi+1 + f i+1
)

.

(27)

(

(1+ α�t)M +
(

β�t +�t
2

)

K

)

vi+1

= Mvi +�t

(

−Kxi + f i+1

)

.

(28)

(

(1+ α�t)M̄ +
(

β�t +�t
2

)

K̄

)

v̄i+1

= M̄v̄i +�t

(

−K̄x̄i + f̄
i+1

)

,

M̄ =

[

Mf 0

0 Md

]

, K̄ =

[

Kff Kfd

Kdf Kdd

]

,

v̄ =
[

vfvd
]

, x̄ =

[

xf
xd

]

, f̄ =

[

f f
f d

]

.

Page 16 of 16Sase et al. Robomech J (2015) 2:17

Eq. (28) is rewritten as

Received: 23 May 2015 Accepted: 13 December 2015

References
	1.	 Delorme S, Laroche D, DiRaddo R, Del Maestro RF (2012) Neurotouch: a

physics-based virtual simulator for cranial microneurosurgery training.
Neurosurgery 71:32–42

	2.	 Banerjee PP, Luciano CJ, Lemole GM, Charbel FT, Oh MY (2007) Accuracy
of ventriculostomy catheter placement using a head- and hand-tracked
high-resolution virtual reality simulator with haptic feedback. J Neurosurg
107:515–521

	3.	 Yasargil MG (1995) Microneurosurgery. Thieme
	4.	 Zhong J, Dujovny M, Perlin AR, Perez-Arjona E, Park HK, Diaz FG (2003)

Brain retraction injury. Neurol Res 25:831–838
	5.	 Koyama T, Okudera H, Kobayashi S (1999) Computer-generated surgical

simulation of morphological changes in microstructures: concepts of
“virtual retractor”. J Neurosurg 90(4):780–785

	6.	 Hansen KV, Brix L, Pedersen CF, Haase JP, Larsen OV (2004) Modelling of inter-
action between a spatula and a human brain. Med Image Anal 8(1):23–33

	7.	 Hasegawa Y, Adachi K, Azuma Y, Fujita A, Kohmura E, Kanki H (2010) A
study on cerebellar retraction simulation for developing neurosurgical
training system. J Jpn Soc Comput Aided Surg 12(4):533–543

	8.	 Spicer MA, van Velsen M, Caffrey JP, Apuzzo MLJ (2004) Virtual reality
neurosurgery: a simulator blueprint. Neurosurgery 54:783–798

	9.	 Sahoo D, Deck C, Willinger R (2014) Development and validation of an
advanced anisotropic visco-hyperelastic human brain FE model. J Mech
Behav Biomed Mater 33(1):24–42

	10.	 Konno A, Nakayama M, Chen XS, Fukuhara A, Sase K, Tsujita T, Abiko S
(2013) Development of a brain surgery simulator. In: Proceedings of the
International Symposium on Interdisciplinary Research and Education on
Medical Device Developments, pp 29–32

	11.	 Fukuhara A, Tsujita T, Sase K, Konno A, Jiang X, Abiko S, Uchiyama M
(2014) Proposition and evaluation of a collision detection method for real
time surgery simulation of opening a brain fissure. ROBOMECH J 1(1):6

	12.	 Forest C, Delingette H, Ayache N (2005) Removing tetrahedra from mani-
fold tetrahedralisation: application to real-time surgical simulation. Med
Image Anal 9(2):113–122

	13.	 Nakayama M, Abiko S, Jiang X, Konno A, Uchiyama M (2011) Stable
soft-tissue fracture simulation for surgery simulator. J Robot Mechatron
23(4):589–597

(29)

[

Aff Afd

Adf Add

] [

vi+1
f

vi+1
d

]

=

[

bi+1
f

bi+1
d

]

.

	14.	 Courtecuisse H, Jung H, Allard J, Duriez C, Lee DY, Cotin S (2010) Gpu-
based real-time soft tissue deformation with cutting and haptic feedback.
Prog Biophys Mol Biol 103:159–168

	15.	 Courtecuisse H, Allard J, Kerfriden P, Bordas SPA, Cotin S, Duriez C (2014)
Real-time simulation of contact and cutting of heterogeneous soft-
tissues. Med Image Anal 18(2):394–410

	16.	 Galoppo N, Tekin S, Otaduy MA, Gross M, Lin MC (2007) Interactive haptic
rendering of high-resolution deformable objects. In: Proceedings of the
2nd International Conference on Virtual Reality, pp 215–233

	17.	 Cotin S, Delingette H, Ayache N (1999) Real-time elastic deformations
of soft tissues for surgery simulation. IEEE Trans Visual Comput Graph
5(1):62–73

	18.	 Hirota K, Kaneko T (2001) Haptic representation of elastic objects. Pres-
ence Teleoper Virtual Environ 10(5):525–536

	19.	 O’Brien JF, Bargteil AW, Hodgins JK (2002) Graphical modeling and anima-
tion of ductile fracture. ACM Trans Graph 21(3):291–294

	20.	 Wojtan C, Thürey N, Gross M, Turk G (2009) Deforming meshes that split
and merge. ACM Trans Graph 28(3):76:1–76:10

	21.	 Hegemann J, Jiang C, Schroeder C, Teran JM (2013) A level set method for
ductile fracture. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pp 193–201

	22.	 Jeřábková L, Kuhlen T (2009) Stable cutting of deformable objects in
virtual environments using xfem. IEEE Comput Graph Appl 29(2):61–71

	23.	 Mor AB, Kanade T (2000) Modifying soft tissue models: progressive cut-
ting with minimal new element creation. In: Proceedings of the Third
International Conference on Medical Image Computing and Computer-
Assisted Intervention, pp 598–607

	24.	 Delingette H, Cotin S, Ayache N (1999) A hybrid elastic model allowing
real-time cutting, deformations and force-feedback for surgery training
and simulation. Proc Comput Animat 1999:70–81

	25.	 Müller M, Dorsey J, McMillan L, Jagnow R, Cutler B (2002) Stable real-time
deformations. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pp 49–55

	26.	 Cecka C, Lew A, Darve E (2012) Application of assembly of finite element
methods on graphics processors for real-time elastodynamics. In: Hwu
WmW (ed) GPU Computing Gems Jade Edition, Boston, pp 187–205

	27.	 Irving G, Teran J, Fedkiw R (2004) Invertible finite elements for robust
simulation of large deformation. In: Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pp 131–140

	28.	 Myronenko A, Song X (2009) On the closed-form solution of the rotation
matrix arising in computer vision problems. Tech Rep arXiv:09041613v1
[csCV]

	29.	 Lahabar S, Narayanan P (2009) Singular value decomposition on gpu
using cuda. In: Proceedings of 23rd IEEE International Parallel and Distrib-
uted Processing Symposium, pp 1–10

	30.	 Bedkowski J, Maslowski A (2011) GPGPU computation in mobile robot
applications. Int J Electr Eng Inform 4(1):15–26

	31.	 Sase K, Konno A, Tsujita T, Fukuhara A, Chen X, Komizunai S (2014)
Stable fracture model of soft materials for a simulation of brain tumor
resection. In: Proceedings of the 2014 JSME Conference on Robotics and
Mechatronics, pp 3A1–B03

http://arxiv.org/abs/09041613v1

	GPU-accelerated surgery simulation for opening a brain fissure
	Abstract
	Background
	Related work
	Collision response
	Fracture

	Finite element model of the brain
	Corotational FEM
	Matrixvector assembly
	Collision response of soft tissues

	Implementation and GPU parallelization
	Simulation procedures
	Calculation of element data
	Efficient matrixvector assembly in a sparse storage format
	Matrix rearrangement

	Modeling of dissection
	Topological-singularity avoidance algorithm for element removal
	Implementation

	Results
	Performance evaluation of GPU implementations
	Blunt dissection simulation
	Brain retraction simulation

	Discussions
	Conclusion
	Authors’ contributions
	References

