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Abstract

Robot navigation in a human environment is challenging because human moves according to many factors such as
social rules and the way other moves. By introducing a robot to a human environment, many situations are expected
such as human want to interact with robot or humans expect robot to avoid collision. Robot navigation modeling
have to take these factors into consideration.
This paper presents a Social Navigation Model (SNM) as a unified navigation and interaction model that allows a robot
to navigate in a human environment and response to human according to human intentions, in particular during a
situation where the human encounters a robot and human wants to avoid, unavoid (maintain his/her course), or
approach (interact) the robot. The proposed model is developed based on human motion and behavior (especially
face orientation and overlapping personal space) analysis in preliminary experiments of human-human interaction.
Avoiding, unavoiding, and approaching trajectories of humans are classified based on the face orientation and
predicted path on a modified social force model. Our experimental evidence demonstrates that the robot is able to
adapt its motion by preserving personal distance from passers-by, and interact with persons who want to interact
with the robot with a success rate of 90%. The simulation results show that robot navigated by proposed method can
operate in populated environment and significantly reduced the average of overlapping area of personal space by
33.2% and reduced average time human needs to arrive the goal by 15.7% compared to original social force model.
This work contributes to the future development of a human-robot socialization environment.
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Background
In the recent years, instead of fixed environment like
industry, the trend of using robot is shifted to unstruc-
tured and public environments such as department store
or hospital where humans exist. Same way as computers,
many kind of service robots are expected to share and
coexist in the same environment as humans to help them
with their lives, especially, the kids, elderly and disabled
people.
Examples of robots’ expected capabilities in public space

are avoiding collisions and providing service to humans.
Successful methods to achieve safe, time and energy
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optimized path to avoiding static obstacles or dynamic
obstacles [1] have been achieved for decades.
However, to navigate among humans, robot have to

come up with a a higher level model because humans
adjust their motions related to how the others (human and
robot) move and also expect to interact with a robot. This
idea is presented in Fig. 1. Three types of general human
motion that a robot is expected to be found in a human
environment are as follow:

• Avoid : humans want to avoid the collision with the
robot by themselves.

• Unavoid : humans do not avoid the robot and expect
the robot to avoid them.

• Approach : humans want to interact with the robot.

© 2015 Ratsamee et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40648-015-0033-z-x&domain=pdf
mailto: ratsamee@arailab.sakura.ne.jp
http://creativecommons.org/licenses/by/4.0


Ratsamee et al. ROBOMECH Journal  (2015) 2:11 Page 2 of 18

Fig. 1 (left) Social Force Model for human collision avoidance (right) Social Navigation Model; during human-robot confrontation, a robot is able to
move according to human intention, (1) he/she wants to avoid the collision with a robot by changing lanes, (2) he/she wants to keep moving in the
same direction, so the robot has to avoid him/her or (3) he/she wants to approach the robot and interact with it

How canwe enable a robot to navigate according to a sit-
uation where humans want to avoid, unavoid or approach
the robot?
In this study, we propose a social navigation model (as

a unified robot navigation and interaction model in a
human environment) which ensure:

• Safe and socially acceptable (smooth) motion : a
robot does not collide with humans and also do not
invade human personal space.

• Human priority : a robot avoids the collision in
advance in order to provide a free space to human.

• Human approach motion : a robot responses to
human when he/she approaches robot for interaction.

Usually, a robot and a human move in different direc-
tions to avoid a collision. In contrast, they get closer
when they intend to interact with each other. These
behaviors are verified in preliminary experiment and are
modeled as a repulsive and attractive force, respectively.
We use face orientation to model these forces, as gaze
(face orientation) is considered to be a guide of human
attention/intention [2]. Human body pose is considered
together with face orientation, to create a modified social
force model [3, 4] for human motion prediction. Human
avoiding, unavoiding and approaching trajectories are
classified within the range where social space and per-
sonal space are concerned. With the proposed model,
our robot responds smoothly to human motion. Further-
more, the robot is able to behave like a human by pro-
viding the human with face orientation in the intended
direction before changing its direction when avoiding col-
lisions, and maintaining a proper distance when it was
approached by human.

Related work
Many researches [5–9] have addressed the navigation
and localizing problems in human environment. On the

other hand, many HRI researches have been addressed
when humans have already entered a public or social
distance such as the research of a robot initializes con-
versation with users [10], greeting behavior modeling
in human-robot conversation [11, 12] and a robot nat-
ural greeting behavior based on gestures and utter-
ances [13]. However, a complete model which takes
into consideration of the problem of how to make a
robot understands and responses to human attention to
unavoid, avoid, and approach motion have never been
reported.
In this work, we presents a novel concept of unified

navigation and interaction model that allows a robot not
only to navigate smoothly but also interact with human
according to human intentions to avoid, unavoid (main-
tain his/her course), or approach (interact) the robot,
which previous studies did not reported a method to
address this problem yet. Therefore, we report related
works on aspects of social-aware robot navigation mod-
eling in many scenarios of human environment in this
section.

Navigation in humans environment
In the early period of collision avoidance research in
a human environment, Murakami et al. [14] discussed
the study of collision avoidance between an autonomous
wheelchair and human. The wheelchair robot motion
planning strategy is based on rough observation of the
human face, i.e., whether the human notices the robot.
Tamura et al. [9] proposed a collision avoidance model
in which a predicted human trajectory is considered as
human intention to avoid or unavoid a robot. Glas et al.
[7] present the concept of network robotics where the sen-
sors in the environment and social robot are integrated.
Many Laser range finders (LRFs) in the environment is
used to detect human motion using 3 circle model and
track them using particle filter. Multiple robots operated
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by single operator framwork and user interface is also be
proposed.
Lately, the human-robot interaction (HRI) concept is

discussed together with the collision avoidance problem.
By considering HRI factors (such as proxemics, human
gaze, and posture) involved in human path prediction, a
robot motion can become more socially acceptable. Most
research pays attention to how to integrate these factors
via a number of different models [5, 8, 15]. Lam et al.
[5] have focused on the harmonious coexistence between
humans and robots in navigation tasks. Predefined har-
monious rules and sensitive fields of humans and robots
were used for robot path planning. Hence, the robot was
able to move autonomously to complete a given task and
also behave like a human during its operation. Sisbot et al.
[8] proposed human-awareness motion planning, which
satisfies safety, visibility, and hidden zone criteria.
However, humans do not always intend to avoid the

robot. Sometimes, they also want to interact when they
need a service from the robot. Therefore, the ability of
robots to behave according to human intentions, espe-
cially when they want to avoid or approach a robot is
important.

Walking side by side
Another aspect of navigation is how the robot can walk
side by side with a target human and at the same time
avoids the collision with others in the environment. Yoichi
Morales et al. [16] presented a computational model
which is constructed based on preliminary learning from
trajectories of pairs of people when they walk side-by-
side. Human-robot mutual utilities were considered in the
model when both faced with obstacle in the environment.
Ferrer et al. [17] presented a robot companion approach
based on social force concept where interaction force to
target human is included. The interactive leaning scheme
is also proposed for human to adjust robot motion tomeet
their own comfortableness.

Approaching human
In the social context, a robot does not need to wait
for human to interact with them. In contrast, the robot
should be able to approach human to give a direct ser-
vice. Yamaoka et al. [18] proposed a model for a robot to
properly adjust its motion when presenting information
to human. Satake et al. [19] discussed robot strategies to
select and approach appropriate humans in public space
based on human trajectories analysis. Shi et al. [20] also
proposed a robot behaviormodel to initiate a conversation
with a human.

Following and guiding people
There are situations where a robot have to follow human
to target location or to be a leader to guide people around

such as leading a human to target location or being a
tour guide. Muller et al. [21] proposed an iterative plan-
ning model which allow a robot to search for persons
that move to the same target location and follow them.
Gockley et al. [12] proposed a model for robot to fol-
low person in the direction of the person and evaluated
the model to be a human-like behavior. Zender et al. [22]
presents people following motion by considering socially
acceptable distances from target human, and also provide
social cues such as gaze or speech to indicate how the
robot tries to maintain followingmotion. Recently, Garrell
et al. [23] proposed multiple robots navigation model that
cooperatively guiding group of people in urban area. The
prediction and anticipation model is used to predicts the
position of a group of human as well as the robot behavior
to control people to remain as a group.

Gaze and face pose in navigation
In HRI, many researches enabled robot to use gaze
to communicate information about the task to human
[24, 25]. Gaze helps establish mutual understanding in the
context of dialogue interactions [26].
For navigation, gaze and face pose are important social

cues as human use it for signaling each other while they
passing each other. Lu et al. [27] proposed a system capa-
ble of creating efficient navigation in a corridor by intro-
ducing costmap for social navigation and introducing gaze
behavior from the robot to the human when robot avoid
the collision. Ratsamee et al. [4] modified the social force
model by including a force due to face pose so that human-
like navigation is achieved with a robot. the robot is able
to avoid a collision with a human in a face-to-face con-
frontation. Human’s proxemic preferences is also related
to gaze as it has been shown in Takayama et al. [28] work
that the approach distance of human to a robot is based
on the robot’s gaze.

Methods
System architecture
A robot that understand human intentions requires sev-
eral modules to operate together. Figure 2 shows the
overall diagram of our proposed system. To obtain the
skeleton information [29], we use a RGBD sensor (Kinect).
The map of the environment were built in advance based
on MRPT framework [30]. Other modules are explained
in detail as follow

Face and body pose estimation
The face orientation and body pose of the human dur-
ing motion are estimated according to our previous work
[4]. The human tracking and body pose is estimated based
on the upper body appearance of skeleton information
from Kinect sensors using extended Kalman Filter with
the accuracy of 5-cm. The method is robust to partially
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Fig. 2 The overall blocking diagram of proposed system

occlusion and be able to track multiple people. Based on
the The face pose is detected and tracked with maximum
6 degree RMS error with in the range up to 5 m. If the fail-
ure occurred due to complete occlusion, the system can
reinitialize itself automatically.

Personal space
We also take into consideration the concept of personal
space [31], which prevents uncomfortable feelings when
humans plan to avoid or interact with a robot. Lam et al.
[5] discuss different types of personal space in different
situations e.g. egg-shaped personal space while moving.
Scandolo et al. [32] use personal space in their social
cost map model for socially acceptable path simulation.
Context-dependent social mapping [33] was proposed
as an effective and adaptable human spatial interactions
between groups of human.
In this study, the personal space during human motion

according to time step, t, is modeled as an ellipse:

[
x (θrt)
y (θrt)

]
=

[
xt
yt

]
+ R

[
ma cos(θrt)
mi sin(θrt)

]
(1)

where R =
[
cos(ϑt) − sin(ϑt)
sin(ϑt) cos(ϑt)

]
is the rotation matrix.

x (θrt) and y (θrt) are the points on the personal space dis-
tributed by angle, θrt (varying from 0-2π ). mi and ma are
the minor and major axe which derived fromma = cx+vx
and mi = cy + vy where cx and cy are personal space con-
stant on x and y axis respectively. The direction of the
personal space is estimated by the face orientation, ϑt .
We utilized adaptive ellipse-shaped personal space

because giving a human with a long and clear space in
front of humans while they are moving with a certain
speed provide both mental and physical safety [5]. How-
ever there is a trade of between efficiency and safety.
When there are many pedestrians in the environment, too
wide personal space leads to make a robot easily falls into
local minima (deadlock problem [34, 35]) which is the sit-
uation when robot can not move. To avoid this problem,
the minor axis of personal space should be more narrow

compared to major axis so that the flow of humans and
also robot can penetrate smoothly. The result of smooth
and unfreezing navigation will be discussed in Simulation
Section.

Human state
The characteristics of a human which are applied to mod-
ified social force model for motion prediction, are stated
as

H = [
xt yt vt ρt ϑt

]T . (2)

where (xt , yt) are the x and y position of the human and
vt is human velocity. ρt and ϑt are the body pose and face
orientation angle with respect to the world coordinate.
The calculated velocity of human, current robot position,
goal position, and personal space are input to the social
navigation model to estimate robot velocity and its face
orientation.

Learning from human interaction
Humans treat technology (that similar to their common
understanding) in the same way they treat other humans
[27, 36]. If the robot do not behave similar to their
common understanding, the human will confuse by the
robot’s behavior and end up with failure in human-robot
interaction. Therefore, learning how humans interact
between each other is important toward smooth interac-
tion between human and robot. In order to extract the
key interaction to build the a social navigation model,
we observed humans motion and behavior in preliminary
experiments while they were approaching and avoiding
each other.

Preliminary experiment setup
For public space such as department store or hospital, the
robot is mainly expected to meet general people that a
robot does not know in prior same way as when shopping
mall or hospital staff meets new customer in daily work.
Hence, the main focus is how service robot responses
smoothly to unfamiliar people that robot meet in public
space. Our main goal of this experiment is to analyze how
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humans who do not know each other avoid, unavoid or
approach with each other in public space and make use of
that knowledge to create social navigation model.
There were 16 participants who have no prior expe-

rience working with robots. All participants have not
known each other before. Participants were the Osaka
University student. The ages are ranged from 19 to 30
(mean= 23, SD= 3.28, median= 22). Twelve participants
(75%) were male, and all participants were Asian (50% are
Japanese and 50% are Thai).
Two tracks were prepared: face-to-face confrontation

(left side of Fig. 3(b)) and different lane passing-by situ-
ation (right side of Fig. 3(b)). Two people from 16 par-
ticipants were randomly paired. All pairs of participants
performed both tracks. For each pair of participants, two
tasks, approaching and avoiding, were conducted. Five tri-
als were performed in each task. In each experiment, only
a participant decides to approach, unavoid or avoid other
human. The human position, body pose, face orientation
and relative distance were tracked simultaneously by 2
kinect sensors at the start/goal line. The personal space
of the human was adapted using face orientation. The
moment when human is going to change from one state
to another state (for example avoiding to approach) were
marked by the participants as a ground truth.

Preliminary experiment results
The graphical results at the moment of avoiding and
approaching are presented in Fig. 4. Obviously, the over-
lapping area of the personal space between humans clearly
distinguishes these two behaviors. During an avoiding
motion (upper graph in Fig. 4), the participants do not
have any interest to interact with each other. Therefore,
there is a small overlapping area of the personal space
during motion. As presented in Fig. 5(a), the average over-
lapping area during the avoiding motion is found to be

only 12.5 cm2. On the other hand, there is an average
overlapping area of 65.24 cm2 while participants were
approaching each other.
The average number of overlapping face orientations

between participants was also be investigated. Fig. 5(b)
shows a comparison of the total number of overlapping
face orientations when the participants avoid or approach
each other. In an approaching case, the average over-
lapping face orientation is found to be 13.11 times. In
contrast, the average overlapping face orientation when
participants avoid each other is only 5.11 times.
The results about the overlapping of personal space

and face orientation confirmed a repulsive and attractive
force acted between participants while they avoided or
approached each other. The duration of overlapping face
orientation between humans is directly related to how
much humans were going to approach each other. We use
these results to develop the social navigation model. Note
that the variance of overlapping face orientation in the
avoiding case was high, because it was hard for humans
to predict whether he/she wants to avoid or unavoid the
other during face-to-face confrontation. This information
prompted us to create 2 ranges of consideration in the
social navigation model to avoid the confusion that might
happen in face-to-face confrontation with human.
The average range of avoidance or approach (DH

interactive)
and the appropriate distance for interaction (dinteract)
between humans are found to be 2.18 and 0.69 m respec-
tively. Because the maximumwalking speed of a human in
this experiment was 1.44m/s, we setDR

interactive to be from
0.45 to 2.5 m (our system runs at an average of 18 Hz).
Therefore, DR

collision−free was set from 2.5 to 4 m. We set cy
and cx as 0.5 and 0.2 m respectively. These ranges corre-
spond to results obtained through the study of proxemics
[28, 31] since they are within the range of personal space
to social space.

(a) (b)

Fig. 3 a Graphical display of how humans avoid each other and b Preliminary experiment setup of (left) face-to-face confrontation and (right)
different lane passing-by
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Fig. 4 The results about personal space overlapping in the case of (upper) avoiding and (lower) approaching case

(a)

(b)

Fig. 5 a Total proxemic overlapping area and b total number of
overlapping face orientation

Robot motion planning based on human intention
As presented in Fig. 6, we build Modified Social Force
Model (MSFM) and Social Navigation Model (SNM)
based on the fundamental model of Social force con-
cept. To classify human motion (avoid, unavoid and
approach) correctly, we integrate the high-level percep-
tion of humans, including body pose, face orientation
and personal space during motion to a modified social
force model. For a robot to smoothly respond to human
motions, we use the social navigation model in motion
planning.

Modified social force model (MSFM)
We employ the social force model [3, 37] to predict human
motion. A human, Hi, is modeled as a particle i with a
mass, m. He/she walks with an intended velocity, v, in a
desired direction, d. In the social force model at each time
step, their motion is described by the superposition of 2
types of force:

Attractive force to the goal
With an internal motivation to the goal, a human adapts
his/her velocity v to an intended direction by

Fgoal = m
vd − v

τr
(3)

where τr is the rate of change (relaxation time) required
by agent (human or robot) for adapting the current veloc-
ity to the intended direction. We use the body pose of a
human as a representation of the intended direction for
human motion prediction [29].
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Fig. 6 Two different model for The overall blocking diagram of proposed system

Repulsive force from others
Based on the influences from the object and the other
humans present in the environment, a human has to
adapt his/her direction according to these disturbances,
which are modeled as the repulsive force between human
, Fhuman and object, Fobject . Both Fobject and Fhuman are the
result of a combination of social repulsive forces, fsocial,
and physical repulsive forces, fphysical. A physical repulsive
force fphysical is formulated as

fphysical = kph
(
ri,A − di,A

)
vi,A (4)

where kph represents the physical constant of the physi-
cal force. A can be a person/an object encountered in the
environment. Other humans and objects are modeled as
particles with radii ri and rA. di,A is the distance between
the two entities. ri,A is the summation of their radii. Vector
vi,A indicates the direction from A to Hi. Social repulsive
forces are described as :

fsocial = ksoe
( ri,A−di,A

sA

)
vi,Aw(γ ) (5)

Influences from social repulsive forces are limited to the
field of view of humans, therefore the anisotropic term,
w(γ ) = λ + (1 − λ)

1+cos(γ )
2 , defined by constant, λ, is

introduced in the equation. γ is the angle between other
humans and intended direction. kso is the magnitude and
sA is the range of the force.

Modification based on Face Orientation
Typically, face orientation points to human inten-
tion/attention [2]. In a face-to-face confrontation, if
humans want to talk to the person who walks pass by, they

will look at him as a sign to start the conversation [2].
On the other hand, if humans do not know each other or
do not want to start a conversation, they will look in the
direction that they want to go to show their own inten-
tions. This is a natural human mechanism and is modeled
as a social force based on face orientation, Fface:

Fface = FSe
( ri,A−di,A

sA

)
vi,Aw

(
θfs

)
(6)

FS refers to the strength of the force. The exponential
growth of the force depends on the range of the force, sA,
distance, di,A, and the sum of their radii, ri,A. The term
vi,A is the face orientation vector of Hi related to A, and
describes the orientation of the force. The angle between
the face orientation vectors is denoted by θfs. Therefore,
the resulting force is modeled as :∑

F = Fgoal + Fobject + Fhuman + Fface (7)

We use v to predict the human path which is derived
from

d
dt

v =
∑

F
m

(8)

in every time step. An illustration of all forces is shown
in Fig. 7(a).

Social navigation model
The Social Navigation Model (SNM) is developed from
the concept of social force model. In SNM, the human’s
intentions to avoid, unavoid or approach a robot are deter-
mined based on face orientation and human predicted
path [38].
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Fig. 7 a The modified social force model, b collision-free and interactive range, c avoid and unavoid motion classification, and d direction of the
force due to face orientation depends on the probability of approaching or avoiding derived, from face orientation

As presented in Fig. 7(b), there are two types of range
to be considered; DR

collision−free is the range where a robot
considers whether humans intend to avoid or unavoid a
robot and DR

interactive is the range where a robot considers
whether humans intend to approach or avoid robot. The
values of all parameters in this section are discussed in a
preliminary experiment with humans.

Collision-free range
DR
collision−free is considered when a human and a robot are

in the same lane only. We use the concept of avoiding
or unavoiding probability based on predicted path [9], as
presented in Fig. 7(c). Next position (pτ ) on the human
predicted path is used as a reference. dτ , which is the dis-
tance from pτ to Trτ

(un)avoid (avoid or unavoid trajectory)
is derived as:

dτ
(un)avoid =

∥∥∥Trτ(un)avoid − pτ
∥∥∥ (9)

Hence, the total distance, dτ
total

, is defined as

dτ
total

= dτ
avoid

+ dτ
unavoid

(10)

We can find the probability of a human performing an
unavoidance motion Pτ

unavoid or avoidance motion Pτ
avoid

by

Pτ
unavoid = 1 − dτ

unavoid
dτ
total

(11)

Pτ
avoid = 1 − dτ

avoid
dτ
total

(12)

If Pτ
avoid > Pτ

unavoid, the robot remains in the same lane.
The robot changes the lane when Pτ

avoid < Pτ
unavoid . As

a result, in both cases, the robot and human will be in a
different lane. This robot behavior is safe and comfortable
for humans in a passing by situation, since humans prefer a
bigger distance and they feel more relaxed when the robot
leaves the way open from them [39].

Interactive range
Next, the robot starts considering human intention to
approach in the range of DR

interactive, which is derived as

DR
interactive = DH

interactive + vr,ht (13)
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where DH
interactive is the range that humans normally start

avoiding each other. vr,h is the relative velocity of the
human with respect to the robot.
Within this range, the robot considers both the pre-

dicted path and the face orientation as signs of human
intentions. The visualization of this force is presented in
Fig. 7(d).
We consider the duration of face orientation towards the

robot from the first observation time to time τ as f τ
robot

,
and the duration of the face orientation to others as f τ

other
.

Hence, the total duration is defined as

f τ
total

= f τ
robot

+ f τ
other

(14)

From the duration of face orientation towards any tar-
get object, we define the probability that the human will
approach (Prτapproach) or avoid (Pr

τ
avoid) at time, τ , based on

the following two equations :

Prτapproach = ξ

[
f τ
robot

f τ
total

+
(
1 −

dτ
approach
dτ
total

)]
(15)

Prτavoid = ξ

[
f τ
other

f τ
total

+
(
1 − dτ

avoid
dτ
total

)]
(16)

Note that dτ
unavoid is treated as dτ

approach and ξ is the
normalized factor. We use this condition to adapt the
direction of the force Ffaceinteractive in the SNM. Different
from the MSFM applied to human, the force due to face
orientation applied to the robot is derived as

Ffaceinteractive = FSe
( ri,R−di,R

sR

)
vi,Rw(θRfs ) (17)

where the force can be adapted as

• Attractive force, FS : when Prτapproach > Prτavoid• Repulsive force, −FS: when Prτapproach < Prτavoid

If Prτapproach > Prτavoid, the subgoal of the robot is cre-
ated in front of the human with an appropriate distance
(dinteract) for the human to feel comfortable when inter-
acting with the robot. The robot remains in the same
lane when Prτapproach < Prτavoid. In case of the approach
case, when the human behavior is confirmed, the subgoal
will be created in front of human. Since the robot sense
human locally with sensor on the robot , when they are
many people. Safety will be a main concern for the robot.
Even the person in front of robot want to interact but the
robot might have high change to collide with another per-
son, the robot will stop the motion and wait for the target
approach human. Note that the robot is able to interact
with person one by one. In case there are more than 1 per-
son want to interact with the robot, the closest person to
robot will be targeted for interaction.

Results and discussion
In this section, Human-robot experiments were con-
ducted to analyze and verify our proposed method. We
used a one-way repeated-measure analysis of variance
(ANOVA) to analyze errors.

Experiment setup
An Enon humanoid robot (Fig. 8(a)) with a Kinect sen-
sor placed on the head (1.8 m above the ground) was
used in the experiment. The robot size is 0.30 in width
and 1.80 height. Experiments were conducted in a com-
mon human-robot coexisting situation such as a corridor
or an office. Participants in this experiment are the same
group of people who participated in preliminary exper-
iment. The experiment setup was the same as Fig. 3(b)
where participant have equal chance to start at the ini-
tial point on the same lane or different lane. For each
participant, we conducted 15 experiments each on avoid,
unavoid and approach cases. For approaching case, par-
ticipants were told that they would be able to approach
the robot to ask for information or utilize the touchscreen
on robot body to search for information. To evaluate the
proposed model, we used the criteria [4, 9] presented in
Fig. 8(b). With this criteria, the result obtained with the
proposed method can be classified as:

• Fail refers to the case when the robot collides with a
human.

• Safe is when the robot can avoid a human but there
are high overlapping regions of personal space.

• Smooth is when the robot can avoid a collision with
the human and also has a small overlapping region of
personal space.

• Success refers to the situation when the robot
successfully maintains an appropriate distance when
it is approached by a human.

If the overlapping area between robot and human is
less than or equal to the average overlapping area dur-
ing avoiding motion between human and human in pre-
liminary experiment, we consider it as a Smooth case,
otherwise it is classified as a Safe case. After the exper-
iment, we ask the participants to answer the post ques-
tionnaires. The post questionnaire was mainly concerned
with participant’s opinion regarding to their experience in
the experiment with robot compared to human (prelimi-
nary experiment) and overall participant experience. Five
points Likert scale [40] was used to evaluate the following
questions:

• Q1: I felt more relax encountering the robot on the
corridor compared to human.

• Q2: I felt that the robot always provide me the way in
face-to-face confrontation.
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(a) (b)

Fig. 8 a Enon robot and b the graphical idea used to describe possible cases during navigation. If the robot collides with a human, we consider it as
a ‘Fail’ case. A ‘Safe’ case is when the robot can avoid a human but there are high overlapping regions of personal space. The robot achieves
‘Smooth’ collision avoidance when it can avoid a collision with the human and also has a small overlapping region of personal space. Lastly, a
‘Success’ case refers to the situation when the robot successfully maintains an appropriate distance when it is approached by a human

• Q3: I felt that the robot understand my attention
when I plan to maintain my path (unavoid).

• Q4: I felt that the robot understand my attention
when I plan to avoid it.

• Q5: I felt that the robot understand my attention
when I approach it.

Parameter optimization
MSFM and SNM parameters were determined from the
dataset of avoid and unavoid trajectories from preliminary
experiment. Parameters in SNM is determined from all
trajectories from preliminary experiment. We have com-
pared a ground truth of observed position, face pose of
persons from preliminary experiment, trgt(t), with the
predicted position from SFM, MSFM and SNM, trp(t).
Genetic Algorithm [41] for parameter optimization is
applied in order to minimizing the following objective
function;

{
m, r, τr , kA(ph,so), s

A, λ, FS
}
=argmin

⎧⎨
⎩
∑
Ntr

∥∥trgt(t)−trp(t)
∥∥
⎫⎬
⎭

(18)

where Ntr is total number of trajectories. Table 1 presents
the parameters learned after applying the optimization

Table 1 The optimized parameters for SFM, MSFM and SNM
using Genetic Algorithm (GA)

Parameters m r τr koph koso so khph khso sh λ FS sFS

Unit kg m N/m N m N/m N m - N/m m

SFM [37] 80 0.2 0.5 600 100 0.01 250 70 0.4 0.5 - -

SFM 74 0.22 0.44 611 89 0.05 273 64 0.35 0.7 - -

MSFM 76 0.21 0.49 647 92 0.02 255 66 0.5 0.6 25 0.24

SNM 79 0.23 0.57 594 99 0.03 273 65 0.51 0.68 37 0.27

process. As a comparison, we compared our optimized
parameter set with the study of [37]. Our learned param-
eters for SFM, MSFM and SNM are slightly different
because we learn from human-human interaction in
many different scenario such as avoid, unavoid and also
approach trajectories of human which does not exist in
other datasets of related works of Human-Human inter-
action using only SFM [37, 42]. Note that, the force due
to face pose parameter is less than the social repulsive
force parameter. The force due to face orientation has a
relative effect on the social repulsive force. A high value
of force due to face orientation makes the human track-
ing path fluctuate, while a low value yields no effect.
According to [37], the influence of the obstacle in the
environment and other humans are different therefore, we
have 2 sets of parameter for obstacles

(
ko
(ph,so), s

o
)
and

humans
(
kh
(ph,so), s

h
)
.

One to one interaction results
This section we presented the evaluation results of One
to One Interaction between a human and a robot.
Figure 9 shows the percentage of success rates of avoiding,
unavoiding and approaching cases. We achieved a 85%
success rate in an approaching case and a 90 and 92% suc-
cess (smooth+safe) rate in the avoiding and unavoiding
cases respectively. ‘Fail’ case was found to be below 10%
which occurred sometime when the system failed to track
face and body pose.
All participants were able to complete the post ques-

tionnaire. Figure 10 shows the analysis of the post ques-
tionnaire using 5 points Liker scale. Most participants
mention that they feel relax when facing robot the robot
compared to human (Q1) especially person who did not
want to avoid robot mentioned that they felt relaxed
because the robot did not block their way and they also
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Fig. 9 The success rate of robot motion planning in the case of avoiding, unavoiding and approaching case

noticed that the robot turned its face away before trying
to avoid them (Q2,Q3).
When participant intend to unavoid the robot, the robot

always change the lane in advance (Q4) which reduce
the confusion that usually happened in face-to-face con-
frontation between humans. In the approaching case,
participants mentioned that the robot moved to them
smoothly and maintained a proper distance from them
allowing them to use the touch screen on the robot
(Q5). This suggestion confirmed that the proposed model
achieved all 3 possible cases of human behavior.

One to many interaction results
To demonstrate the robustness of our proposedmodel, we
extended the experiment in the previous section by per-
form the experiments in the environment where a robot
has to perform different tasks continuously.
Experiment 1 : Figure 11 shows the situation where the

robot has to perform collision avoidance continuously.
In this case, none of the participants wanted to avoid
the robot (i.e. they expected the robot to avoid them).

The result shows that the robot was able to estimate the
path of the humans one by one and avoid both of them.
Both avoiding motions also satisfied the smooth collision
avoidance requirement.
Experiment 2 : Another experiment was performed in

an office environment as presented in Fig. 12. The robot
observes the first person and understands his/her inten-
tion to unavoid the robot within the collision-free range,
therefore the robot turns its face toward the opposite
direction, and steers away from the human. Afterward, a
second person is observed. As opposed to the first person,
the second person intends to interact with the robot and
provides the proper face orientation. Using the proposed
model, the robot approaches the human and maintains an
appropriate distance.
Experiment 3 : This experiment presented the scenario

when 2 persons are walking together and notice the robot
on the corridor. The experiment result in Fig. 13 shows
the robot and the human maintains their course. Both
Human trajectories and face pose were observed. Even the
human looks at the robot at the interactive range, they

Fig. 10 An analysis (mean and standard deviation) of the answer of questionnaires (Q1-Q5) from all participants
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Fig. 11 Experiment 1: the experiment result shows that the robot was be able to avoid the collisions continuously when humans do not intend to
interact with the robot and expect the robot to avoid the collisions

don’t show any intention to interact with robot via the tra-
jectory. Only force due to face pose alone are not sufficient
to change the robot behavior from maintaining course to
interact with the person. Hence, the robot remains on the
their own track until the 2 persons pass them.

Experiment 4 : The experiment result in Fig. 14 shows
the robot avoid humans at the first place as the humans
remain on their track. Even the robot is in different lane,
when the human shows the intention to interact with
robot via both face orientation and trajectory with in

Fig. 12 Experiment 2: The experiment results show that the robot was able to avoid the collision with the first person and then interact with the
other person based on an analysis of the human face orientation based on the proposed model. Furthermore, the proxemic rule about the personal
space estimated by face orientation was also preserved because of a smaller overlapping region during avoidance. Finally, the robot maintained the
personal distance when interacting with humans
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Fig. 13 Experiment 3: The experiment result shows the robot and the human maintains their course. The robot observes human trajectory and face
pose while moving. Even the human looks at the robot at the interactive range, they don’t show any intention to interact with robot via the
trajectory. Hence, the robot remains on the their own track

the interactive range, the robot approaches humans and
remain at the proper range. For the interaction, the robot
can serve human one by one therefore, the closest person
will become a target for robot to interact.
Furthermore, as two or more persons might have no

interest in the interaction with the robot and also block
all robot possible paths, the robot have to stop until
the human give it a possible path to continue the task.
This situation is called deadlock problem and as dis-
cussed in many researches [5, 17] that we either develop

robot behavior to request the path from human in case of
emergency or robot should wait until the possible path is
available.

Simulation
We developed the simulation in order to evaluate the
performance of the SNM in populated environments. as
presented in Table 2, under simulation, we compare how
3 different pairs of models applied to robot and humans
which are Pair 1: SNM and MSFM, Pair 2: MSFM and

Fig. 14 Experiment 4: The experiment result shows the robot avoid humans at the first place. Since the human shows the intention to interact with
robot via both face orientation and trajectory with in the interactive range, the robot approaches humans and remain at the proper range



Ratsamee et al. ROBOMECH Journal  (2015) 2:11 Page 14 of 18

Table 2 Pair of models for robot and human

Pair Robot model Human model

Pair (1) SNM MSFM

Pair (2) MSFM MSFM

Pair (3) SFM SFM

MSFM, and Pair 3: SFM and SFM would affect smooth
collision avoidance and interactions between people and
the robot.

Simulation setup
Three different scenarios, presented in Fig 15, were pre-
pared which are the Open Space where there is no obsta-
cle, the Common Hall and the Door Way where the
bottleneck behavior are expected. To evaluate human and
robot collision avoidance and interaction, we first per-
formed the simulation in Open Space environment (20
by 20 m) where there is no obstacle. Secondly, we per-
form the simulation in a 20 by 20 m common hall sce-
nario. This scenario represents the realistic social space
where there are a lot of obstacles and people are pass-
ing by. Thirdly, we challenge our proposed SNM in
the door way (with a bottleneck in the middle) sce-
nario. Pedestrians are moving in opposite directions
and pass through a bottleneck, i.e. a narrowing of the
passageway.
We performed the simulation for more than 30,000

experiments with the variation of number of pedestrians
and the initial position of each pedestrians and robot. The
example of the simulation scenario is presented in Fig. 16.
To evaluate how robot navigated and interacted among
crowds, two group of pedestrians (represented in blue and
green color in Fig. 15) are assigned move toward two des-
tinations, which are leftmost and rightmost on the map.
In each simulation, robot will be assigned randomly to
one group of pedestrian. These assignments are typical
of the kind of navigation and interaction a person unfa-
miliar with robots is likely to encounter in uncontrolled
environments in the future, such as department store and
hospitals, where a robot have to move toward the same
goal as some people and may encounter another people
with no prior explanation.
According to human density metric [35], we varied the

human density in each scenario from low density of 0.1
to high density of 1 persons/m2 (a shoulder to shoul-
der crowd). Pedestrians will be assigned equally with
one behavior from three behaviors (avoid, unavoid or
approach represented by square, star and circle mark
respectively in Fig. 15) when he/she met robot. We
assigned the same face pose pattern to each agent that
we learned from the preliminary experiments. The robot
sensed the human locally within its field of view.

Safety is our main concern therefore we not allow the
robot to collide with either walls or people. If the robot
path and predicted path of pedestrians leaded towards
collision within its personal space (1.2 m), then the robot
was emergency stopped and give a way to pedestrian.
Pedestrians are allowed to reduce the relaxation time and
personal space so that pedestrian can escapes from when
freezing problem happened in high density scene.
The simulation run on a PC (E5420 2.50 GHz Xeon

CPU, 4096M RAM, NVIDIA Quadro FX 1700 graphic
card). The processing time and the evaluation process
varies between 10 seconds to 300 seconds, depending on
time and the number of pedestrians. All data processing
is performed using MATLAB. We evaluated the smooth-
ness which refer to the overlapping area of personal space,
traveling time of human to arrive goal and the percent-
age of successful interaction when human approached
robot.

Simulation results
Overlapping space
The overlapping area of personal space is represented in
the range of [ 0 − 1] as we used the maximum overlap-
ping area of each pair of models for normalization. The
second column of Fig. 15 shows the overall overlapping
area of the different methods with respect to the density
of pedestrians in the scene. In all possible case, under 0.1
persons/m2, their is no overlapping error since each agent
can have many possible paths to arrive the goal. Overlap-
ping of personal space grows linearly with crowd density
when the human density goes over 0.2 persons/m2.
As a comparison between scenarios, the average over-

lapping area of personal space in Open Space is lower
than Common Hall scenario. Many existing obstacles pre-
sented in the Common Hall environment make robot
and each agents choose the paths where high overlap-
ping of personal space can not be avoided. However, in
all the cases, SNM model guaranteed the safety since
there is no collision caused by robot occurred even in 1
persons/m2 case, because the robot aim to give the way
to the pedestrians first and navigate to the goal when the
path clear of pedestrian. In case of Door Way, overlap-
ping area were abruptly increased when densities above
0.35 people/m2. This was a result of the freezing prob-
lem at the door way, many agents can not move at the
bottleneck which yields the accumulation of overlapping
area of personal space. Based on the adaptive of relax-
ation time when many agents can not move, pedestrian is
allowed to have narrow personal space which help them
relax the stress at bottleneck and can be able to pass each
other.
The average overlapping area of pair (1) SNM and

MSFM is significantly lower than (2) MSFM and MSFM
and (3) SFM and SFM by 21.1 and 33.2% respectively.
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(a) (b)

(c) (d)

(e) (f)

Fig. 15 Simulation result of three scenarios which are a Common Hall c Open Space and e Doorway where the bottleneck is expected. The second
column presented the overlapping area corresponded to each scenarios which are b Common Hall d Open Space and f Doorway. We compared
three different models which are (red) pair (1): SNM and MSFM, (green) pair (2): MSFM and MSFM, and (blue) pair (3): SFM and SFM
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Fig. 16 The example of the simulation result in the Common Hall (left) the beginning of simulation (center) at the middle part of simulation (right)
the end of the simulation

Clearly, using SNM highly increases the smoothness of
navigation even in populated environment.

Time to achieved the goal
The comparison of time to achieve the goal of human
in each scenario is presented in Fig. 17. Because of the
obstacles in the environment, time to achieve the goal of
human in Common Hall is averagely higher than in Open
Space scenario. Even the time to achieve the goal of robot
with (1) SNM and MSFM take more time compared to (2)
MSFM and MSFM and (3) SFM and SFM to achieve the
goal, the time pedestrians used to achieve the goal of pair
(1) SNM and MSFM is lower than (2) MSFM and MSFM
and (3) SFM and SFM since the robot sometime has to
stop moving forward and give the way to unavoid pedes-
trians at collision-free range, especially, when the human
density was higher than 0.5 persons/m2. The pedestrians
are able to pass the robot with much greater ease and
ends up arrive the goal quicker as a result. On average,
the time to achieve the goal of human of pair (1) SNM
and MSFM is lower than (2) MSFM and MSFM and (3)
SFM and SFM by 10.14 and 21.23% respectively in case
of low human density (less than 0.3 persons/m2) and 6.15

and 9.3% respectively in case of high human density (more
than 0.7 persons/m2).

Bottleneck
In our door way scenario, pedestrians have to move
in opposite directions passing through narrowing door
way (bottleneck) as presented in Fig. 15(e). When the
human density was higher than 0.35 persons/m2, crowds
of pedestrian will form up on both sides of the bottleneck,
trying to push through the doorway. Afterward, an oscilla-
tory flow of small groups of pedestrians will pass through
one direction, making a space for another small group on
the opposite side to pass through each other, and so on.
We want to see how robot with (1) SNM and MSFM

responsed in this challenging scenario. Base on the deci-
sion to change the lane in collision-free range, the robot
aim to move to free space where there is no people which
usually end up at the left or right corner from the door
way. Essentially, the robot waited until the density at the
door way was low enough (less than 0.35 persons/m2) to
navigate to the goal. This is the process to ensure safety
and smoothness and also show that our robot can survive
in such a difficult situation.

(a) (b) (c)

Fig. 17 The result of time to achieve the goal of human of each pair of models in each scenarios which are a Common Hall b Doorway and c Open
Space
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Fig. 18 The result of interaction achieved in each scenario

Interaction
As presented in the experiment setup, we assigned 33%
of pedestrians with approach behavior in each simulation.
The success rate of robot that interaction with human
is presented in Fig. 18. We can see that the robot hav-
ing no problem interact with approach pedestrians under
human density of 0.3 persons/m2. However, in high den-
sity environment, where the pedestrian are expected to
come from many direction, the robot main priority is
the avoid the collision (safety) therefore during the avoid-
ing motion the robot have to skip the interaction with
approach pedestrians.
In door way case, robot usually move to the left/right

side of the wall therefore, the approach pedestrian who
escape from the crowd can interact with the robot eas-
ily therefore the interaction can be done more suc-
cessfully compared to Open Space and Common Hall
scenario.

Conclusion
We proposed a novel social navigation model that allows
a robot to both navigate smoothly in a human environ-
ment and behave properly when human want to main-
tain course (unavoid) or approach robot for interaction.
Human behavior is determined based on human face ori-
entation and predicting human path using a modified
social force model. From preliminary experiments, we
realized that avoiding and approaching behaviors corre-
sponds to repulsive and attractive forces between two
agents and we use this evidence to create our proposed
model.
Experiments were performed in social scenarios, such

as when walking persons encounter a robot in a corridor
or social space. By taking into account the effect of face
orientation and personal space during motion planning,

not only does the robot achieve safe and smooth colli-
sion avoidance, but it is also able to achieve approaching
behavior. Using the proposed model, the robot was able to
preserve the laws of proxemics while avoiding or interact-
ing with the human with a success rate of 90%. The sim-
ulations in populated environment show that robot can
navigate smoothly without collision by reducing the aver-
age of overlapping area of personal space by 33.2% com-
pared to original model. Furthermore, the robot motion is
considered to be time efficient for human since the robot
path do not delay humans when they travel to the goal.
On average, the proposed model reduced the time human
need to travel to the goal by 15.7% compared to origi-
nal model. Furthermore, the interaction with human was
achieved with more than 70% even the human density is
up to 0.5 persons/m2.
In this study, the parameters were systematically opti-

mized by Genetic algorithm from our set of participants.
All parameters and human characteristics have to be
reconsidered for other groups of people from a different
culture or context.
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