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Abstract

In this paper, we study a new method for robot programming: view-based teaching/playback. The motivation of its
development is to achieve more robustness against changes of task conditions than conventional teaching/playback
without losing its general versatility. For proof of concept, the method was implemented and tested on a virtual
environment.
The method is composed of two parts: teaching phase and playback phase. In the teaching phase, a human operator
commands a robot to achieve a manipulation task. All the movements of the robot are recorded. All the images of the
teaching scenes are also recorded by a camera. Then, a mapping from the recorded images to the movements is
obtained as an artificial neural network. In the playback phase, the motion of the robot is determined by the output of
the neural network calculated from scene images.
We applied this view-based teaching/playback to pick-and-place and pushing by a robot hand with eight degrees of
freedom in the virtual environment. Human demonstrated manipulation was successfully reproduced by the robot
hand with our proposed method. Moreover, manipulation of the object from some initial positions that are not
identical to those in the demonstrations was also successfully achieved with our method.

Keywords: Robot programming; View-based approach; Neural networks

Background
Conventional teaching/playback is still widely used in
robot programming. It only depends on their internal sen-
sors such as encoders for joint angles, and therefore it is
simple and applicable to various tasks. Moreover, it is very
reliable as far as task conditions, e.g. initial pose of the
manipulated object, do not change. However, it is impossi-
ble for a robot to adapt to nontrivial variations in the initial
pose of the object or unexpected fluctuations in the pose
of the object during manipulation relying on only internal
sensors.
Thus image-based detection of the object came into

fairly widespread adoption to adapt variations in the
pose of the object. Model-based image processing such
as feature extraction and pattern matching is performed
to localize the object accurately. In this method, how-
ever, how to detect an object is specific to the target
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object. Therefore it is cumbersome for operators to reg-
ister object models with the detection system and the
general versatility of this method is limited. Moreover,
model-based image processing usually requires camera
calibration and appropriate lighting.
Now we are motivated to develop a new robot pro-

gramming method for achievement of more robustness
against changes of task conditions than conventional
teaching/playback without losing its general versatility.
We study “view-based robot programming” in this paper.
It uses PCA (Principal Component Analysis) to perform
image processing in view-based (or appearance-based)
approach [1], which is not specific to the target object.
It also uses the generalization ability of artificial neural
networks to obtain robustness. The method is applied to
robotic manipulation in a virtual environment for proof of
its concept.
Here we show some related works. Study on vision-

based robot programming from human demonstrations
has a long history (e.g., [2-4]). Recent efforts on program-
ming by demonstration can be found at [5,6]. However,
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Figure 1 Outline of view-based teaching/playback.

most of them use not view-based, but target-specific
model-based techniques for image processing.
The view-based (or appearance-based) image process-

ing was applied to mobile robot navigation (e.g., [1]) and
visual servoing of robot manipulators (e.g., [7]) in many
studies. In these applications, the objective is relative posi-
tioning of a robot with regard to a target. On the other
hand, robotic manipulation requires positioning of not
only a robot but also a manipulated object.
There are few studies on view-based robotic manip-

ulation. Zhang et al. presented a method for position-
ing of robots with eye-in-hand cameras [8] for grasping
objects. In their study, assuming that coarse positioning
of a robot hand was completed, fine positioning of the
hand with regard to a target object was achieved by view-
based neuro-fuzzy control. Their method is for relative
positioning of only a robot with regard to a target, too.
Shibata and Iida dealt with reinforcement learning of

box pushing by amobile robot with view-based image pro-
cessing [9]. They focused on learning from scratch and

Figure 2 Neural network for teaching/playback.

therefore the box pushing task was rather simple; not to
carry the box to a goal, but just to push the box. Kobayashi
et al. also proposed a view-based method for reinforce-
ment learning of robotic manipulation: pushing an object
to a goal by a manipulator [10,11]. They focused on learn-
ing from scratch, too, and therefore the robot motion is
rather coarse: movement in the four cardinal directions
in 50 [mm] steps. In contrast to these studies on view-
based reinforcement learning, we consider view-based
supervised learning of robotic manipulation in this paper.
In the next section, we outline our proposed method

for robot programming. In Section ‘Teaching phase’
and ‘Playback phase’, each of the steps that constitute
our method is described in a general form. In Section
‘Results’, our method is applied to pick-and-place, a
typical grasp manipulation, and pushing [12], a typical
graspless (or nonprehensile) manipulation, in a virtual
environment. The concrete details of our method for this
implementation are also described. Some discussions on
our proposed method are made in Section ‘Discussion’.
Finally, we conclude this paper in Section ‘Conclusion’.

Figure 3 Experimental setup.
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Figure 4 Virtual environment.

Methods
Outline of view-based teaching/playback
Our method consists of two parts as well as conventional
teaching/playback: teaching phase and playback phase.
In the teaching phase, a human operator commands a

robot to perform a manipulation task (Figure 1a). All the
movements of the robot are recorded. All the images of
the teaching scenes are also recorded by a camera.
Then, a mapping from the recorded images to the

movements is obtained as an artificial neural network
(Figure 1b). The input of the neural network is a scene
image, and its output is the desirable robot motion

corresponding to the image. The details of the teaching
phase are described in generalities in Section ‘Teaching
phase’.
In the playback phase, the motion of the robot is deter-

mined by the output of the neural network calculated
from scene images (Figure 1c). If the neural network
is constructed properly, it must be able to reproduce
the original robot motion demonstrated in the teach-
ing phase as far as the task condition is unchanged.
Moreover, even if the condition is changed (for exam-
ple, the initial pose of the object varies), the neural net-
work may be able to drive the robot to complete the
task due to its generalization ability. The details of the
playback phase are described in generalities in Section
‘Playback phase’.

Teaching phase
Human demonstration
In the teaching phase, a human operator commands a
robot with an input device such as a teach pendant and a
data glove to perform a manipulation task. Here we call it
demonstration.
One demonstration is sufficient to reproduce the task as

far as the task condition is constant. However, our method
has no advantage over conventional teaching/playback
in such a constant condition. Thus we should perform
two or more demonstrations in different conditions to
adapt to changes of task conditions with the help of the
generalization ability of neural networks.
The pairs of the movement of the robot and the scene

image taken by a camera were recorded throughout the
demonstrations. The scene images were grayscaled for
compaction.

Figure 5 Data glove.
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Figure 6 Finger bending.

Denoising and Gray-Level Normalization
Real scene images captured by a camera often have a noise.
Here we use a 3 × 3 median filter to reduce the influence
of image noise such as salt-and-pepper noise.
The real scene images are also affected by the changes of

lighting conditions. Here we use gray-level normalization

to reduce the influence of the lighting conditions. Each
pixel value of grayscaled scene images is adjusted by
means of gamma correction [13] as follows:

Inorm =
(

I − Imin
Imax − Imin

)γ

, (1)

where I is the original gray level of the pixel (I ∈[ 0, 1])
and Inorm is the adjusted gray level. Imin and Imax is the
minimum and maximum gray level in the original image,
respectively. γ is determined so that Inorm = 0.5 when
I is the median of the gray levels of the original image.
Note that the value of γ is determined for each of scene
images.

Image compression by PCA
A scene image vector I after median filtering and gray-
level normalization is composed of numerous pixel data
and therefore it is not realistic to use the raw pixel data
as the input of the neural network. Here we use PCA
(Principal Component Analysis) for all the scene images as

Figure 7 An Example of reconstructed images from factor scores.
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view-based image compression as used in [8]. Even a small
number of factor scores [14] can reconstruct the original
image approximately as follows:

I = Iavg +
Npixel∑
i=1

FSiui ≈ Iavg +
NPC∑
i=1

FSiui, (2)

where Iavg is the average of scene image vectors in the
demonstrations, Npixel is the number of pixels of a scene
image, FSi are factor scores, ui are principal components,
andNPC is the number of principal components to be used
for approximation (NPC � Npixel). Thus we use the factor
scores, FS1, . . . , FSNPC , as the input of the neural network
instead of the raw pixel data.
We can use the technique described in [15] to reduce

the computation to obtain principal components ui. It is
applicable when NPC is less than or equal to the number
of demonstration images.

Mapping by neural network
We use a three-layered feedforward neural network as
shown in Figure 2 for mapping from image to robot
motion. The activation function for the units in the neu-
ral network is the standard sigmoid function. The neural
network can be written formally as the following function:

Movement(t) = f (FS(t),Movement(t − �t)). (3)

The output of the neural network is the movement of the
robot at time t, Movement(t). The input of the neural net-
work is factor scores of the current scene image, FS(t),
and the movement of the robot in the previous time step,
Movement(t − �t), where �t is the sampling time. The
latter is added so that the neural network can recognize
the “context” of the task; even if the scene image does not
change, the neural network can change the motion of the
robot. This is useful to switch robot motion (for example,
from approaching to grasping) in some cases.

Figure 8 Demonstration of pick-and-place.
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The weights of the neural network can be computed
from image data and motion data in demonstrations by
backpropagation with momentum (BPM) [16].

Playback phase
In the playback phase, a grayscaled scene image is
obtained and denoised by 3 × 3 median filter as in the
teaching phase. Then the gray-level of the image is nor-
malized using Equation (1) as in the teaching phase, too.
Factor scores FSi for the normalized scene image I can be
computed as follows:

FSi = uTi
(
I − Iavg

)
. (4)

Then the robot motion is determined by computing the
output of the neural network from the factor scores (and
the previous movement of the robot) using Equation (3).
The above procedure is repeated until the manipulation

task is completed.

Results
Virtual environment
We prepared a virtual environment as shown in Figure 3
for proof of the concept of our view-based teach-
ing/playback. A virtual robot hand (Figure 4) was created
on a dynamics simulator, ODE (Open Dynamics Engine)
[17]. The virtual hand was driven by a human operator
with a data glove (Essential Reality P5 Glove, Figure 5). A
Linux PC with a Pentium 4 running at 3.2 [GHz] was used
for the virtual environment.
The position and orientation of the virtual hand were

PD-controlled using those of the data glove as refer-
ence. The hand had two fingers: a “thumb” and an “index
finger” (Figure 6). Each of the fingers had three joints,
which were P-controlled so that the three joint angles
were equal, using the bending sensor value of the cor-
responding glove finger as reference. Thus the virtual
hand has eight degrees of freedom in total (3 DOF for
position, 3 DOF for orientation and 2 DOF for finger
bending).

Figure 9 Playback of pick-and-place.
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In the virtual environment, the human operator can
drive the virtual robot hand with the data glove and
perform dynamic manipulation of objects. Scenes of the
virtual environment can be obtained as color images of
256 × 256 pixels by window capture instead of using a
camera.

Pick-and-place and pushing
We applied our view-based teaching/playback to pick-
and-place and pushing. The virtual object was a cube
with edges of length 1 as shown in Figure 4. The goal
position of the object is also shown in Figure 4 as a
circle of 0.15 radius. The center of the goal circle is
distant −0.9 in X-direction and 0.9 in Y-direction from
the initial position of the center of the object. Note
that we do not have to know the object information
such as its dimension and shape because our method is
view-based.
In the teaching phase, a human operator moved the vir-

tual hand with the data glove. The movement of the hand

can be written as an eight-dimensional [ 0, 1]-normalized
vector as follows:

Movement(t) =
[
�x̂(t)T ,�θ̂(t)T , b̂(t)T

]T
, (5)

where

�x̂(t) = x(t) − x(t − �t)
2�xmax

+ 1
2

�θ̂(t) = �θ(t)K̂(t)
2�θmax

+ 1
2

b̂(t) = b(t)
bmax

.

x(t) is the position of the hand at time t; �xmax is the
upper limit of the change of x(t) in �t; K̂(t) is the equiva-
lent axis of a finite rotation [18] of the hand between time
t − �t and t; �θ(t) is the amount of the rotation; �θmax
is the upper limit of the rotation in �t; b(t) is the angles

Figure 10 Demonstration of pushing.
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of the flexion of the thumb and the index finger; bmax is
the upper limit of the flexion angle of the fingers. The
pairs of the movement and the scene image were recorded
throughout demonstrations by the human operator.
In pick-and-place, the operator pinched the object by

the two fingers of the virtual hand, lifted it up, and carried
it to the goal position. In pushing, the operator pushed the
object by the tips of the two fingers of the virtual hand and
carried it to the goal position.
The PCA was performed on all the scene images in the

teaching phase. In this case, one hundred factor scores
can reconstruct an original image well (Figure 7). Thus the
first one hundred principal components were calculated
(NPC = 100).
The output of the neural network was eight-dimensional

(for Movement(t)) and the input of that was 108-
dimensional (100 for FS(t) and 8 for Movement(t − �t)).
We used three-layered neural networks that have one
hundred neurons in their hidden layer. All the weights of
the neural networks were determined by BPM.

In the playback phase, one hundred factor scores were
calculated for each scene image. The playback manipu-
lation was terminated when the object touched the goal
circle.

Simple playback of demonstration
Figure 8 shows a demonstration of pick-and-place in the
teaching phase. The object was carried to the goal position
and one hundred scene images were taken in the demon-
stration. Figure 9 shows a playback of the demonstration
in our proposed method. The object was successfully
picked up and placed at the goal position.
Figure 10 shows a demonstration of pushing in the

teaching phase. The object was carried to the goal position
and one hundred scene images were taken in the demon-
stration. Figure 11 shows a playback of the demonstration
in our proposed method. The object was successfully
pushed to the goal position.
These results show that our view-based teaching/

playback can be used as a substitute for conventional

Figure 11 Playback of pushing.
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Table 1 Offline computation time (100 images in total)

Process Time [min]

Median Filtering & Gray-Level Normalization 0.5

PCA 4

BPM 10

teaching/playback, even with partial visual occlusion of
the object by the hand. Offline computation time for these
experiments is shown in Table 1.
The cumulative contribution ratio of the first one hun-

dred principal components was 100% for the scene images
in demonstration in the above two cases because the
number of the scene images was one hundred for each.

Playback from different initial positions
Next we applied our method to pick-and-place, in which
the initial positions of the object were different from those
in demonstrations.
We performed nine demonstrations from initial posi-

tions shifted within [±0.1,±0.1] in X- and Y-direction as
shown in Figure 12. One hundred scene images were taken
for each demonstration. Then trials of playback from one
hundred random initial positions of the object shifted
within [±0.1,±0.1] in X- and Y-direction (Figure 12) were
performed. The cumulative contribution ratio of the first
one hundred principal components was 88% for the scene
images in demonstration.
In this experiment, the success rate of the trials was

100%. Here “success” means that the object touches

Table 2 Offline computation time (900 images in total)

Process Time [min]

Median Filtering & Gray-Level Normalization 2

PCA 23

BPM 142

the goal circle in playback. This result means that
our view-based teaching/playback achieved robustness
against changes of task conditions: fluctuations of the ini-
tial position of the object. Offline computation time for
this experiment is shown in Table 2.

Playback with noisy images in different lighting condition
In order to test the robustness of our method against
image noise, random salt-and-pepper noise was added
to the scene images both in the teaching and playback
phases. The noise was added as follows:

I ←
⎧⎨
⎩
1 (white pixel) when r > 1 − �

0 (black pixel) when r < −(1 − �)

I otherwise,
(6)

where I is the original gray-level of the pixel, r is a uniform
random value in [−1, 1] for the pixel, and � is a thresh-
old. Figure 13 shows examples of scene images with noise
when � = 0.01 (1%) and 0.05 (5%).
Moreover, the lighting condition in the playback phase

was changed from that in the teaching phase to make
scene images brighter or darker. This was done by chang-

Figure 12 Initial object positions in demonstration and playback.
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Figure 13 Example images with salt-and-pepper noise.

ing RGB values of the ambient light in OpenGL [19],
which is used in ODE. Figure 14 shows examples of scene
images in changed lighting conditions. The RGB values of
the ambient light were changed from (0.5, 0.5, 0.5) in the
original condition to (1.0, 1.0, 1.0) and (0, 0, 0) in brighter
and darker conditions, respectively.
We conducted teaching of pick-and-place in the same

way as in the previous subsection. Nine demonstrations
from different initial positions as shown in Figure 12 were
performed, and one hundred scene images were taken
for each demonstration. Then trials of playback from one
hundred random initial positions of the object (Figure 12)
were performed. The cumulative contribution ratio of the
first one hundred principal components was 88% and 87%
for the noise level of 1% and 5%, respectively.

The success rate of the view-based playback was shown
in Table 3. The results show that our view-based teach-
ing/playback can perform manipulation tasks even with
image noise and change of lighting conditions to some
extent.

Discussion
As shown in the previous section, our view-based teach-
ing/playback enabled a robot hand to perform pushing
and pick-and-place. Note that relative positioning of a
hand with regard to a target as presented in [8] is unable
to deal with such manipulation tasks.
In our view-based teaching/playback, camera calibra-

tion is unnecessary. The camera can be placed at any
position from which the object and the end-effector of the

Figure 14 Example images in changed lighting conditions.
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Table 3 Success rate of view-basedmanipulation

Darker Brighter

Noise (1%) 100% 100%

Noise (5%) 93% 84%

robot are observable. There is no need for careful tun-
ing of lighting for vision. The view-based nature of our
method leads to these advantages.
We can use two or more cameras easily in our method,

if the increase of computational load is acceptable. Intro-
duction of different types of sensor information, such as
depth images and haptic images, is also straightforward.
Information from such additional sensors can contribute
to more reliable playback.
Of course, our method has some limitations:

• Because image information is mapped to robot
movement by neural networks directly, it is difficult
to teach jerky robot motion.

• Multiple human demonstrations must be
“consistent”. For example, let us consider pushing of
an object to a goal avoiding an obstacle. If the object
is carried on the right side of the obstacle in one
demonstration and on the left side in another
demonstration, a neural network would generate an
interpolational robot motion to make the object hit
the obstacle.

• Because our method is view-based, unexpected
changes of camera views might disturb robot
motions. We are investigating a scheme using an
additional neural network to detect such changes [20]
and a scheme with subimage-based neural networks
to adapt to them [21].

In this paper, we do not use joint angles of the robot
hand as the input to the neural network, because the infor-
mation of the joint angles are included implicitly in FS(t).
However, when the robot hand is often occluded, the joint
angles should be fed into the neural network.

Conclusion
In this paper, we studied a newmethod for robot program-
ming: view-based teaching/playback. It was developed to
achieve more robustness against changes of task condi-
tions, such as variations in initial positions of the object,
than conventional teaching/playback without losing its
general versatility. In this method, cumbersome camera
calibration is not necessary because it is view-based.
The view-based teaching/playback was applied to pick-

and-place and pushing in a virtual environment for proof
of its concept. Using multiple demonstrations in the
teaching phase, the virtual robot moved an object success-
fully to the goal position in the playback phase, even from

some initial positions different from those in the demon-
strations. The median filtering and gray-level normaliza-
tion were used for robust view-based image processing
against image noise and changes of lighting conditions.
Future work should address application of the proposed

method to various manipulation tasks by actual robots.
There is no need for special modification of our method
for actual robots, and we have already applied it to simple
pushing tasks by an industrial manipulator successfully
[20,22].
However, further investigation is required to make our

view-based teaching/playback more practical.
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