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Abstract

With the objective to improve road safety, the automotive industry is moving toward more “intelligent” vehicles. One
of the major challenges is to detect dangerous situations and react accordingly in order to avoid or mitigate
accidents. This requires predicting the likely evolution of the current traffic situation, and assessing how dangerous
that future situation might be. This paper is a survey of existing methods for motion prediction and risk assessment for
intelligent vehicles. The proposed classification is based on the semantics used to define motion and risk. We point
out the tradeoff between model completeness and real-time constraints, and the fact that the choice of a risk
assessment method is influenced by the selected motion model.
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Introduction
Safety is a cornerstone of both Advanced Driver Assis-
tance Systems (ADAS) and Autonomous Vehicles. A
closely related concept is that of risk, which can be intu-
itively understood as the likelihood and severity of the
damage that a vehicle of interest may suffer in the future.
From this definition it is clear that, in order to assess the
risk associated with a particular situation, it is necessary to
have mathematical models which allow us to predict how
this situation will evolve in the future. This paper surveys
such models and their relation with risk assessment.
We have chosen to organize motion modeling and pre-

diction approaches according to the kind of hypotheses
they make about the modeled entities. As depicted in
Figure 1, we propose a classification in three levels with an
increasing degree of abstraction:

1. Physics-based motion models are the simplest
models, they consider that the motion of vehicles
only depends on the laws of physics. They are
described in Section ‘Physics-based motion models’.

2. Maneuver-based motion models are more advanced
as they consider that the future motion of a vehicle
also depends on the maneuver that the driver intends
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to perform. These models are presented in
Section ‘Maneuver-based motion models’.

3. Interaction-aware motion models take into account
the inter-dependencies between vehicles’ maneuvers.
Only a few examples of such advanced
representations may be found in the literature. They
are reviewed in Section ‘Interaction-aware motion
models’.

The differences between the three families of motion
models are illustrated by Figure 2. In these examples, the
Physics-based motion model assumes a constant speed
and orientation for the cars, the Maneuver-based motion
model assumes that the black car goes straight and the
blue car turns left, the Interaction-aware motion model
assumes that the black car goes straight, that the blue
car turns left and that the joint motion of the cars is
constrained by the traffic rules.
Section ‘Risk assessment’ deals with a different aspect of

the problem: how to apply these motion models for risk
estimation. Since the actual meaning of the word “risk” is
not the same for all these approaches, we propose to clas-
sify existing approaches into two broad families. The first
one considers only the risk associated with physical colli-
sions between entities. The second family of approaches
introduces the idea that risk is related to vehicles behav-
ing differently from what is expected of them given the
context (e.g. according to traffic rules).
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Figure 1Motion modeling overview.

Physics-basedmotionmodels
Physics-based motion models represent vehicles as
dynamic entities governed by the laws of physics. Future
motion is predicted using dynamic and kinematic models
linking some control inputs (e.g. steering, acceleration),
car properties (e.g. weight) and external conditions (e.g.
friction coefficient of the road surface) to the evolution of
the state of the vehicle (e.g. position, heading, speed).
Extensive work has been done on such Physics-based

motion models for vehicles, and they remain the most

commonly used motion models for trajectory prediction
and collision risk estimation in the context of road safety.
The models are more or less complex depending on how
fine the representation of the dynamics and kinematics
of a vehicle is, how uncertainties are handled, whether
or not the geometry of the road is taken into account,
etc.
This section is divided into three parts. In Section

‘Evolution models’, the most standard evolution mod-
els are described. In Section ‘Trajectory prediction’, a

Figure 2 Examples of motion prediction with the different types of motion models.
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review is provided of the different methods for predicting
trajectories using these evolution models. Finally, the lim-
itations of Physics-based motion models are addressed in
Section ‘Limitations’.

Evolution models
Dynamicmodels
Dynamic models describe motion based on Lagrange’s
equations, taking into account the different forces that
affect the motion of a vehicle, such as the longitudinal and
lateral tire forces, or the road banking angle [1]. Car-like
vehicles are governed by complex physics (effect of driver
actions on the engine, transmission, wheels etc.), therefore
dynamic models can get extremely large and involve many
internal parameters of the vehicle. Such complex mod-
els are relevant for control-oriented applications, but for
applications such as trajectory prediction simpler models
are preferred. They are often based on a “bicycle” repre-
sentation, which represents a car as a two-wheeled vehicle
with front-wheel drive moving on a 2-D plane. Examples
of such simple dynamic models are found in several works
[2-7].

Kinematic models
Kinematic models describe a vehicle’s motion based on
the mathematical relationship between the parameters of
the movement (e.g. position, velocity, acceleration), with-
out considering the forces that affect the motion. The
friction force is neglected, and it is assumed that the
velocity at each wheel is in the direction of the wheel
[1]. Kinematic models are far more popular than dynamic
models for trajectory prediction because they are much
simpler and usually sufficient for this type of applica-
tions (i.e. applications which are not vehicle control). In
addition the internal parameters of a vehicle needed by
dynamic models are not observable by exteroceptive sen-
sors, which rules out the use of dynamical models for
ITS applications involving other vehicles than the ego-
vehicle. A survey of kinematic models for car-like vehicles
was done by Schubert et al. [8]. The simplest of these
are the Constant Velocity (CV) and Constant Acceleration
(CA)models, which both assume straight motion for vehi-
cles [9-13]. The Constant Turn Rate and Velocity (CTRV)
and Constant Turn Rate and Acceleration (CTRA) models
take into account the variation around the z-axis by intro-
ducing the yaw angle and yaw rate variables in the vehicle
state vector [10,12,14-17]. The complexity remains low as
the velocity and yaw rate are decoupled. By considering
the steering angle instead of the yaw rate in the state vari-
ables, one obtains a “bicycle” representation, which takes
into account the correlation between the velocity and the
yaw rate. From this representation, the Constant Steer-
ing Angle and Velocity (CSAV) and the Constant Steering
Angle and Acceleration (CSAA) can be derived.

Trajectory prediction
The evolution models described above can be used for
trajectory prediction in various ways, the main difference
being in the handling of uncertainties.

Single trajectory simulation
A straightforward manner to predict the future trajec-
tory of a vehicle is to apply an evolution model (see
Section ‘Evolution models)’ to the current state of a vehi-
cle, assuming that the current state is perfectly known
and that the evolution model is a perfect representation
of the motion of the vehicle. This strategy can be used
with dynamic models [2] or kinematic models [11,13,17],
and is illustrated in Figure 3. The advantage of this sin-
gle forward simulation is its computational efficiency,
which makes it suitable for applications with strong real-
time constraints. However the predictions do not take
into account the uncertainties on the current state nor
the shortcomings of the evolution model, and as a result
the predicted trajectories are not reliable for long term
prediction (more than one second).

Gaussian noise simulation
Uncertainty on the current vehicle state and on its evolu-
tion can be modeled by a normal distribution [9,10,12,16].
The popularity of the “Gaussian noise” representation of
uncertainty is due to its use in the Kalman Filter (KF).
Kalman filtering is a standard technique for recursively
estimating a vehicle’s state from noisy sensor measure-
ments. It is a special case of Bayesian filtering where the
evolution model and the sensor model are lineara, and
uncertainty is represented using a normal distribution. In
a first step (prediction step) the estimated state at time t is
fed to the evolution model, resulting in a predicted state
for time t+1 which takes the form of a Gaussian distribu-
tion. In a second step (update step) the sensor measure-
ments at time t + 1 are combined with the predicted state
into an estimated state for time t+1, which is also a Gaus-
sian distribution. Looping on the prediction and update

Figure 3 Trajectory prediction with a constant velocity motion
model (based on [13]).
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steps each time a new measurement is available is called
filteringb.
By looping on the prediction step, one can obtain for

each future timestep amean and covariance matrix for the
state of the vehicle, which can be transformed into a mean
trajectory with associated uncertainty (normal distribu-
tion at each timestep) [9,15,16]. This process is illustrated
in Figure 4.
Compared to the “single trajectory simulation” app-

roaches, these techniques have the advantage that they
represent the uncertainty on the predicted trajectory.
However they suffer form a similar limitation in the
sense that modeling uncertainties using a unimodal nor-
mal distribution is insufficient to represent the different
possible maneuvers. A solution to this problem is to rep-
resent uncertainty using mixtures of Gaussians. Switching
Kalman Filters (SKF) [18] can be used for this purpose.
They rely on a bank of Kalman Filters to represent the
possible evolution models of a vehicle and switch between
them [10,19,20]. An alternative to the SKF is to use heuris-
tics to switch between the different kinematic models
depending on the situation [12].

Monte Carlo simulation
In the general case, i.e. when no assumption is made
on the linearity of the models or on the Gaussianity of
the uncertainties, the analytical expression for the dis-
tribution on the predicted states is usually not known.
Monte Carlo methods provide tools to approximate this
distribution. The idea is to randomly sample from the
input variables of the evolutionmodel in order to generate
potential future trajectories. In order to take into account
the road topology, weights can be applied to the generated

Figure 4 Trajectory prediction with a constant velocity motion
model and Gaussian noise simulation. Ellipses represent the
uncertainty on the predicted positions (based on [9]).

trajectories to penalize the ones which do not respect
the constraints of the road layout. The evolution models
described in Section ‘Evolution models’ can be used for
Monte Carlo simulation by sampling on the inputs instead
of considering them to be constant. Typical inputs to be
sampled from are the acceleration and steering angle or
lateral deviation. In order to take into account the feasi-
bility of a maneuver, one can either remove the generated
trajectory samples with a higher lateral acceleration than
what is physically allowed [21], or take into account the
physical limitations of a vehicle in the evolution model so
that the inputs are distributed in a more realistic man-
ner and the post-processing step for removing unfeasible
trajectories is not needed [6,22]. Example predicted tra-
jectories are displayed in Figure 5.Monte Carlo simulation
can be used to predict a vehicle’s trajectory either from
a perfectly known current state or from an uncertain
current state estimated by a filtering algorithm.

Limitations
Since they only rely on the low level properties of
motion (dynamic and kinematic properties), Physics-
based motion models are limited to short-term (less than
a second) motion prediction. Typically, they are unable to
anticipate any change in the motion of the car caused by
the execution of a particular maneuver (e.g. slow down,
turn at constant speed, then accelerate to make a turn
at an intersection), or changes caused by external factors
(e.g. slowing down because of a vehicle in front).

Maneuver-basedmotionmodels
Maneuver-based motion models represent vehicles as
independent maneuvering entities, i.e. they assume that
the motion of a vehicle on the road network corresponds
to a series of maneuvers executed independently from the
other vehicles. Here, a maneuver is defined as “a physi-
cal movement or series of moves requiring skill and care”
[23]. The word “behavior” is sometimes used in the lit-
erature for the same purpose [24-28], but for the sake
of clarity the word “maneuver” will be used throughout
this paper. Trajectory prediction with Maneuver-based
motion models is based on the early recognition of the

Figure 5 Trajectory prediction (yellow arrows) with Monte Carlo
simulation (e.g. [21]).
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maneuvers that drivers intend to perform. If one can iden-
tify the maneuver intention of a driver, one can assume
that the future motion of the vehicle will match that
maneuver. Thanks to this a priori, trajectories derived
from this scheme aremore relevant and reliable in the long
term than the ones derived from Physics-based motion
models.Maneuver-based motion models are either based
on prototype trajectories or based on maneuver inten-
tion estimation. Section ‘Prototype trajectories’ intro-
duces prototype trajectories and how they can be used
for trajectory prediction. Section ‘Maneuver intention
estimation and maneuver execution’ covers approaches
based on maneuver intention estimation. Finally, the limi-
tations ofManeuver-basedmotion models are analyzed in
Section ‘Limitations’.

Prototype trajectories
The idea is that the trajectories of vehicles on the road
network can be grouped into a finite set of clusters, each
cluster corresponding to a typical motion pattern. Exam-
ple clusters are displayed in Figure 6.
Motion patterns are represented using prototype trajec-

tories which are learned from data during a training phase.
Subsequently prediction can be performed online given a
partial trajectory by finding the most likely motion pat-
tern(s) and using the prototype trajectories as a model for
future motion.

Representation
Motion patterns are represented using prototype trajecto-
ries which are learned from sample (previously observed)

Figure 6 Clustered trajectories: each cluster is represented by a
color and corresponds to a typical motion pattern (e.g. [29]).

trajectories. Because the road network is a structured
environment, it is generally assumed that the motion pat-
terns can be identified in advance (they can for example be
extracted from a digital map, by identifying all the possible
maneuvers at a given location). In this case no cluster-
ing process is needed, i.e. each trajectory in the training
dataset is already assigned to a clusterc.
Starting from there, several possibilities exist for repre-

senting a motion pattern based on the sample trajectories.
One solution is to compute a unique prototype trajectory
for each motion pattern, by agglomerating the previously
observed trajectories. For example, a stochastic represen-
tation of a motion pattern can be derived by computing
the mean and standard deviation of the sample trajecto-
ries [30]. Another way to account for the variations in the
execution of a motion pattern is to have several proto-
types for each class, e.g. a subset of the training samples
[31]. A different approach was proposed in [32], where
the different behaviors were not represented by individ-
ual prototypes, but merged in a single graph structure,
learned online using a Topology Learning Network.
More recently, several works showed that Gaussian Pro-

cesses (GPs) are well-suited for representing motion pat-
terns in the context of road traffic [25,33-35]. GPs can be
seen as a generalization of Gaussian probability distribu-
tions. They model a process as a Gaussian distribution
over a function. When applied in the context of vehi-
cle trajectories, the assumption is that the trajectories in
the learning dataset are sample functions from a Gaus-
sian Process. Therefore the learning consists in fitting
a Gaussian distribution over these functions. The main
advantages of GPs are their robustness to noise in the
observed trajectories (compared to the approaches pre-
sented above) and their ability to represent the variations
in the execution of a motion pattern in a consistent and
probabilistic manner. For example, a GP featuring the
function f (t) = (x, y), with t the time and (x, y) the 2D
coordinates of the vehicle will be able to partially account
for variations in the speed of execution of amaneuver [25].
An alternative is to use the function f (x, y) = (�x

�t ,
�y
�t ),

which maps locations to velocities and therefore removes
any time-dependent aspect from the model [33,34]. The
variability in the velocity due to varying traffic conditions
is captured in the covariance function of the GP. However
this ability to represent the inherent variations of a pat-
tern comes at a price; a naive implementation of a GP has
a complexity of O(n3), where n is the number of training
sample points.

Trajectory prediction
Starting from the partial trajectory executed by a vehi-
cle so far, prediction can be performed by comparing it
with the learnedmotion patterns, selecting the most likely
one(s) and using the prototype trajectories as a model
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for future motion. First, metrics need to be defined to
measure the distance of a partial trajectory to a motion
pattern. When motion patterns are represented by Gaus-
sian Processes, the distance is computed as the proba-
bility that the partial trajectory corresponds to the GP,
by integrating over the possible futures of the trajec-
tory [25,33,34]. When motion patterns are represented
by a finite set of prototype trajectories, the distance of
a partial trajectory to a motion pattern is measured by
its similarity with the prototype trajectories. A number
of metrics have been defined to measure the similarity
between two trajectories, including the average Euclid-
ian distance between points of the trajectories [36], the
modified Hausdorff [29], the Longest Common Subse-
quence (LCS) [37] and its translation-and-rotation invari-
ant version the Quaternion-based Rotationally Invariant
LCS [31].
The simplest solution to predict future motion after the

distance to each motion pattern has been computed is to
select the most likely motion pattern and to use it as a
uniquemodel [36]. Alternatively it is possible to consider a
mixture of motion patterns: a probability distribution over
the different motion patterns is computed, and then either
the different motion models are combined (weighted) into
one [33], or a set of potential future trajectories are gen-
erated with associated weights [31,34]. Another solution
proposed recently is to use a Hierarchical Mixture of
Experts (HME) [38], which has the advantage that cate-
gorical variables can be handled (e.g. turn signal, class of
road layout).

Limitations
For a long time, the main limitation of prototype tra-
jectories was their strictly deterministic representation
of time. Indeed, when motion patterns are represented
using a finite set of trajectories it would take a very
large number of prototypes to model the large variation
in the execution of a motion pattern. In order to rec-
ognize maneuvers involving a waiting period at a stop
line for example, one has to resort to hard thresholds
to identify waiting intervals and ignore them when com-
puting the distance between two trajectories. Handling
more subtle variations in velocity like the ones caused by
heavy traffic is still an issue for such models. To a cer-
tain extent, the introduction of Gaussian Processes solved
this problem by allowing a time-independent represen-
tation of motion patterns [33,34]. However GPs suffer
from other limitations. In addition to their heavy compu-
tational burden, they lack the ability to take into account
the physical limitations of a vehicle and thereforemay gen-
erate unrealistic sample trajectories. To the best of our
knowledge the only solution to this problem proposed
in the literature is the one introduced by Aoude et al.
[34], which uses a Rapidly-exploring Random Tree (RRT)

algorithm to randomly sample points toward dynami-
cally feasible trajectories, using as inputs the current state
of the vehicle and the sample trajectories generated by
the GPs.
Another difficulty when using prototype trajectories is

their adaptation to different road layouts, in particular
when applied to road intersections. Because each motion
model is trained for a specific intersection geometry and
topology, they only can be reused at intersections with a
similar layout.

Maneuver intention estimation andmaneuver execution
An alternative to trajectory prototypes is to first esti-
mate the maneuver intention of the driver (e.g. waiting
at the stop line, following another vehicle, executing a
left turn) and then predict the successive physical states
so that they correspond to a possible execution of the
identified maneuver. A major advantage over trajectory
prototypes is that there is no need to match the partial
trajectory with a previously observed trajectory. Instead,
higher-level characteristics are extracted and used to rec-
ognize maneuvers, which makes it easier to generalize the
learnt model to arbitrary layouts.

Maneuver intention estimation
Many cues can be used to estimate the maneuver inten-
tion of a driver, for example the physical state of the
vehicle (position, speed, heading, acceleration, yaw rate,
turn signal, etc.), information about the road network
(geometry and topology of the road, speed limit, traf-
fic rules, etc.), driver behavior (head movement, driving
style, etc.). Maneuver intention estimation has been inves-
tigated by many works. This survey focuses on maneuver
intention estimation at road intersections, but most of the
approaches presented here can be applied to other traffic
situations.
Context and heuristics can be used to determine what

maneuvers are likely to be performed in the near future
in a deterministic manner [39]. For classifying maneu-
vers in more complex scenarios, discriminative learning
algorithms are very popular, such as Multi-Layer Percep-
trons (MLP) [28] Logistic regression [40], Relevance Vec-
tor Machines (RVM) [41], or Support Vector Machines
(SVM) [42-44]. An equally popular alternative is to break
down each maneuver into a chain of consecutive events
and to represent this sequence of events using a Hid-
den Markov Model (HMM). The transition probabili-
ties between the different events can be learned from
data, as well as the observation model (i.e. the relation-
ship between the non-observable events and the available
observations). For a new sequence of observations, the
maneuver intention is estimated by comparing the likeli-
hood of the observations for each HMM [24,25,45-47].
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A comparative review of works on maneuver intention
estimation is provided in Table 1.

Maneuver execution
Trajectories are predicted so that they match the iden-
tified maneuver(s). This can be done in a deterministic
manner, by deriving the input controls corresponding to
the recognized maneuver and then generating a single tra-
jectory from a kinematic motion model [48]. One issue
with this strictly deterministic approach is that it can-
not take into account uncertainties on the current vehicle
state, on the maneuver which is being performed or on
the execution of this maneuver. In order to explore the
space of the potential executions of a maneuver in a prob-
abilistic manner, GPs or RRTs can be used. A GP can be
learned for each maneuver from training data and used in
a generative manner to create sample trajectories for each
maneuver [25,49]. Alternatively, a RRT tree can be grown
by sampling points in the input space of the vehicle’s evo-
lution model, applying a bias in the sampling according to
the estimated maneuver intentions [42]. This method has
the advantage that it always generates dynamically feasible
trajectories for a maneuver. As an alternative to trajecto-
ries, reachable sets can be used to represent the future
motion of vehicles. This representation can be stochastic
[50] or geometric [39] (see Figure 7).

Limitations
In practice, the assumption that vehicles move indepen-
dently from each other does not hold. Vehicles share the
road with other vehicles, and themaneuvers performed by
one vehicle will necessarily influence the maneuvers of the
other vehicles. Inter-vehicle dependencies are particularly
strong at road intersections, where priority rules force
vehicles to take into account the maneuvers performed by
the other vehicles. Disregarding these dependencies can
lead to erroneous interpretations of the situations, and
affects the evaluation of the risk.

Interaction-awaremotionmodels
Interaction-aware motion models represent vehicles as
maneuvering entities which interact with each other, i.e.
the motion of a vehicle is assumed to be influenced by
the motion of the other vehicles in the scene. Taking into
account the dependencies between the vehicles leads to
a better interpretation of their motion compared to the
Maneuver-basedmotionmodels described in the previous
section. As a result, it contributes to a better under-
standing of the situation and a more reliable evaluation
of the risk. Despite this, there are few Interaction-
aware motion models in the literature. They are based
either on prototype trajectories or on Dynamic Bayesian
Networks. These solutions are presented in Sections

Table 1 Comparative review of works onmaneuver intention estimation at road intersections

Estimatedmaneuvers Estimation method Features

Greene et al. [39] Stop, go straight, left turn, right turn Heuristics Positive, velocity, state of the nearby traffic light

Tamke et al. [48] Go straight, left turn, right turn Heuristics Turn signal

Aoude et al. [42] Safe errant SVM-BF Distance to intersection, speed, longitudinal
acceleration

Kumar et al. [43] Lane keeping, lane change left, SVM-BF Distance to lane center, steering angle
lane change right

Mandalia et al. [44] Lane keeping, lane change left, SVM Lane position at four different distances
lane change right

Morris et al. [41] Lane keeping, lane change left, RVM Subset of signals produced by radars,
lane change right forward-looking camera, head tracking

camera, and CAN-bus

Klingelschmitt et al. [40] Go straight, turn right, stop Logistic regression Speed, acceleration, distance to intersection

Garcia-Ortiz et al. [28] Stopped, brake, keep speed MLP Speed, gas and brake pedal information, distance
to intersection, state of traffic light

Aoude et al. [24] Complaint violating HMM Distance to intersection, speed, longitudinal acceleration

Tay [25] Go straight, left turn, right turn Hierarchical Position, speed
HMM

Berndt et al. [45] Go straight, left turn, right turn HMM Steering angle

Lefevre et al. [47] Lane keeping, lane change left, HMM Speed, distance to lane center, orientation,
lane change right road curvature, steering angle

Streubel et al. [46] Go straight, turn left, turn right HMM Speed, acceleration, yaw rate
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a b

c
Figure 7Maneuver execution using three different approaches. (a) RRT (adapted from [42]) (b) GP (adapted from [49]) (c) Stochastic reachable
sets (adapted from [50]).

‘Models based on trajectory prototypes’ and ‘Models
based on Dynamic Bayesian Networks’, followed by the
limitations of Interaction-awaremotion models.

Models based on trajectory prototypes
For methods relying on trajectory prototypes, inter-
vehicle influences cannot be taken into account during the
learning phase because the resulting number of motion
patterns would quickly become intractable. However, it is
possible to take into account the mutual influences dur-
ing the matching phase by assuming that drivers have a
strong tendency to avoid collisions when they can [51,52].
Pairs of trajectories which lead to an unavoidable col-
lision are penalized in the matching process, and as a
result safe trajectories are always considered to be more
likely than hazardous ones. This approach is an elegant
workaround for taking into account inter-dependencies
when using trajectory prototypes. However the issue of
modeling other types of influences remains, since the
influence of one vehicle on the trajectory of another can-
not be modeled directly.

Models based on Dynamic Bayesian Networks
Most Interaction-aware motion models are based on
Dynamic Bayesian Networks (DBN).

Pairwise dependencies between multiple moving enti-
ties can be modeled with Coupled HMMs (CHMMs) [53].
However, since the number of possible pairwise depen-
dencies grows quadratically with the number of entities,
the complexity is not manageable in the context of com-
plex traffic situations. A solution to simplify the model is
to make CHMMs asymmetric by assuming that the sur-
rounding traffic affects the vehicle of interest, but not vice
versa [54]. The assumption of asymmetric dependencies
greatly reduces the computational complexity of the prob-
lem. It has since then been used in a number of works, in
particular when dealing with lane change and overtaking
maneuvers [25] or car following [55].
The fact that vehicles interactions are regulated by

traffic rules is exploited by Agamennoni et al. [56,57].
Multi-agent influences are decomposed as log-linear com-
binations of pairwise dependencies, with pairwise depen-
dencies of the type “vehicles on a smaller road yield to
vehicles on the main road”. This is illustrated in Figure 8.
Finally, a few works have proposed general proba-

bilistic frameworks for tracking vehicles and predicting
their future motion. Instead of modeling pairwise
dependencies, the model proposed by Gindele et al.
[26] accounts for mutual influences by using factored
states. The causal dependencies between the vehicles are
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Figure 8 Trajectory prediction with an Interaction-awaremotion model (adapted from [56]). The model is able to predict that the yellow
agent should yield to the blue one because of the traffic rules (yield line on the floor).

modeled as a function of the local situational context,
which reduces greatly the computational complexity. The
approach was validated on simulated highway scenarios,
but could in theory be applied to other traffic situations.
A similar approach was used by Lefevre et al. [58-60] to
model the joint motion of vehicles at road intersections.
However, instead of directly modeling the dependencies
between the local situational context and the intention of
a driver, they introduced an intermediate variable called
“Expected maneuver”. In the proposed model, the situa-
tional context influences what the driver is expected to
do, which in turn influences what the driver intends to do.
This framework was tested at road intersections in simula-
tion and with real passenger vehicles. The results showed
the benefits of taking into account interactions between
vehicles when reasoning about traffic situations and risk at
intersections. A generalization to general traffic situations
was also developed [60].

Limitations
The Interaction-aware motion models are the most com-
prehensive models proposed so far in the literature. They
allow longer-term predictions compared to Physics-based
motion models, and are more reliable than Maneuver-
based motion models since they account for the depen-
dencies between the vehicles. However, this exhaustive-
ness has some drawbacks: computing all the potential
trajectories of the vehicles with these models is computa-
tionally expensive and not compatible with real-time risk
assessment. For this reason, some risk assessment tech-
niques have been proposed recently which do not rely on

trajectory prediction. These methods will be described in
Section ‘Risk based on unexpected behavior’.

Risk assessment
The previous sections dealt with motion models which
can be used to predict the future motion of vehicles. How
can these predictions be used to actually evaluate the risk
of a situation?
The very notion of risk is not always a clearly defined

concept. In the context of intelligent vehicles, it is gen-
erally associated with the idea that a situation may be
dangerous for the driver, i.e. may result in harm or injury.
Following this, it is natural to consider collisions as the
main source of risk, and to base the assessment of risk
solely on collision prediction. This approach, which has
been adopted by many works in the ITS community, is
the focus of Section ‘Risk based on colliding future trajec-
tories’. Recently a number of works have suggested that
predicting collisions is only part of the road safety prob-
lem. These works propose a more general interpretation
for the notion of risk, saying that dangerous situations
arise from drivers performing unexpected maneuvers.
These approaches are described in Section ‘Risk based on
unexpected behavior’.

Risk based on colliding future trajectories
This section provides a review of approaches to risk
assessment based on collision prediction. Typically they
are composed of two steps:
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1. Predict the potential future trajectories for all the
moving entities in the scene.

2. Detect collisions between each possible pair of
trajectories, and derive a risk estimate based on the
overall chance of collision.

Techniques to perform trajectory prediction (step 1)
were presented in Sections ‘Physics-based motion mod-
els’, ‘Maneuver-based motion models’, ‘Interaction-aware
motion models’. Given the future trajectories of two vehi-
cles, many tools exist to extract information regarding
the occurrence of a collision (step 2). While the most
basic methods only provide basic information such as
whether, where and when a collision will occur, the
more advanced ones can compute its probability, type,
severity, etc.

Binary collision prediction
The computation of the collision risk can be binary. In the
special case of linear Physics-based motion models, the
analytical solution for the state of the vehicles at a specific
time can easily be derived by solving the linear differential
equations of the motion model. It follows that the inter-
section point between two trajectories can be computed
in an efficient manner [11,13]. However, in the general
case the motion equations are too complex for a closed-
form solution to be derived. One solution is to approxi-
mate each trajectory by a piecewise-straight line trajectory
[17]. A more common approach is to discretize the tra-
jectories and to check iteratively for a collision at each
discrete timestep. Following this reasoning, collisions can
be detected in a simple manner by defining a threshold
on the distance between two points (from two trajectories
at the same timestep) [42]. In order to take into account
the shape of the vehicles, this threshold can be replaced
by a condition on the “overlap between the shapes of
the two vehicles”. Although the exact shape is not always
mentioned, vehicles are often represented as polygons
[2,6,7,21,25] or can be represented by loom test points
[61]. If information is available about the uncertainty on
the state of the vehicles, and if this uncertainty is Gaussian,
an ellipse can be used instead of a polygon by applying
a threshold on the standard deviations [9,16]. In order to
simplify the calculation of the intersection area, ellipses
can be approximated by a set of circles [9] or by a set of
points [16].
Some driver assistance systems focus on detecting

unavoidable collisions. This computation is a special case
of binary collision prediction where risk is assigned the
value 0 or 1 depending on whether there exists a collision-
free maneuver that the driver can perform. Determining
whether such a maneuver exists can be done in two ways.
The first one consists in computing escape maneuvers
(i.e. how the vehicle should steer, brake or accelerate to

avoid the collision) and check whether these maneuvers
are feasible (with “feasible” meaning that the steering,
braking or accelerating does not exceed the physical lim-
itations of the vehicle) [2]. The second one is to consider
the entire space of combined steering, braking and accel-
erating maneuvers, and to perform an optimized search
for collision-free trajectories [7]. This concept is closely
related to the notion of Inevitable Collision States (ICS)
[62] used in robotics.

Probabilistic collision prediction
The collision risk can be computed in a probabilistic man-
ner, taking into account the uncertainty on the future
motion of vehicles.
In the case of stochastic reachable sets, the collision

probability can be computed on a discretized position
space by calculating the probability that the center of
both vehicles is in the same cell, for all the possible com-
binations of cells [22]. With the geometric version of
reachable sets, the collision probability can be measured
as the percentage of overlap between the geometric shapes
representing the future motion of vehicles [39].
For a normally distributed uncertainty on the current

state, a solution based on stochastic linearization via the
unscented transformation has been proposed [63].
When the future motion of a vehicle is represented by

a probability distribution on sample trajectories (which
is typically the case with approaches relying on Monte
Carlo simulations or Gaussian Processes), it is possible
to compute risk as the “probability of a collision in the
future” by integrating over all the possible future tra-
jectories and detecting collisions between each possible
pair. This approach provides a lot of flexibility in the
handling of uncertainties. For example, for a Maneuver-
based motion model the calculation can either sum over
both the maneuvers and their executions, or assume that
the maneuvers are known and sum on the possible exe-
cutions only [25]. Furthermore, depending on the final
application one can compute the risk of colliding with a
specific vehicle or sum over all the vehicles and obtain a
global collision risk [25,52].

Other risk indicators
Several risk indicators exist which can complement the
collision risk.
By further analyzing the predicted trajectories and their

intersecting points, it is possible to derive some indi-
cators which give more information about the poten-
tial collision. Popular indicators of the criticality of a
potential collision are the velocity of the vehicles [7,64],
the amount of overlap between the shapes representing
the vehicles [9], the probability of simultaneous occu-
pancy of the conflict area by both vehicles [65], and
the configuration of the collision [9]. The information
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provided by these indicators can be used to deter-
mine the best way to mitigate or avoid the potential
collision.
Other popular risk indicators are based on a measure

of the “Time-To-X” (or TTX) where X corresponds to a
relevant event in the course toward the collision.

• Time-To-Collision (TTC): The most standard
indicator is the Time-To-Collision, which
corresponds to the time remaining before the
collision occursd. It can be used as an indication of
what action (if any) should be taken [2,6,9,15,66]. For
example, when the TTC is still large, it might be
preferable to inform or warn the driver rather than to
apply the brakes. For autonomous emergency braking
applications, the TTC can be compared with the time
required for the vehicle to come to a full stop in order
to decide when to apply the brakes [67]. For driver
warning applications, the driver reaction time needs
to be added to the time to stop the vehicle [13]. The
TTC can also be used as a tool to identify the least
dangerous maneuver for an autonomous vehicle, by
assuming that the risk of executing a specific
trajectory for the autonomous vehicle is inversely
proportional to the earliest TTC (the TTC is
calculated for all the possible trajectories of the other
vehicles in the scene) [42].

• Time-To-React (TTR): A closely related indicator is
the Time-To-React, which corresponds to the time
available for the driver to act before the collision is
inevitable. The idea is to simulate different driver
actions (such as braking, accelerating, steering)
and to identify the latest moment at which one of
these maneuvers is able to avoid the collision
[11,48].

Risk based on unexpected behavior
While the approaches presented in Section ‘Risk based on
colliding future trajectories’ estimate the risk of a situation
by predicting the future trajectories of vehicles and look-
ing for collisions, the approaches presented in this section
detect behaviors which deviate from the nominal behav-
ior expected on the road. This formulation extends the
concept of risk beyond collisions, by taking into account
the emotional strain caused by drivers performing unex-
pected maneuvers. For example, a vehicle proceeding in
an intersection when only a very short gap is available will
not necessarily result in a collision, but most drivers will
consider it to be dangerous since they expected the vehicle
to wait for a longer gap.
Two types of approaches are presented below: detecting

unusual events and detecting conflicting maneuvers.

Detecting unusual events
The risk of a situation can be estimated by defining the
nominal behavior of vehicles on the road and detecting
events which do not match that nominal behavior.
An intuitive solution is to define a set of rules which

characterize the nominal behavior of a vehicle depend-
ing on the context, and to consider any deviation from
that nominal behavior as a danger. The rules can be sim-
ple heuristics on acceptable speeds when approaching an
intersection [68], or can include more advanced concepts
such as the semantics of the location, weather conditions
or the level of fatigue of the driver [69]. However an estab-
lished limitation of rule-based systems is their inability to
account for uncertainties (both on the data and on the
model).
As an alternative to manually defining what is a nominal

behavior, one can use real data to learn the typical behav-
ior of road users. In [70], models are learned for nominal
behaviors in the form of Gaussian Mixture Models. The
likelihood of the current observations characterizes how
“usual” the current situation is. Unusual activities such as
running a red light or performing a forbidden turn are
detected using a simple threshold on that likelihood.

Detecting conflictingmaneuvers
A number of works propose to assess the risk of a situa-
tion by estimating the maneuver intentions of the drivers
and detecting potential conflicts between them, or con-
flicts with the traffic laws. Since these approaches rely on
estimated maneuver intentions, and since the concept of
maneuver does not exist in Physics-based motion models,
vehicle motion is usually represented using Maneuver-
based or Interaction-awaremotion models.
If enough data is available from vehicles violating traffic

laws, it is possible to learn models for specific danger-
ous events in addition to the models for the nominal
behavior. Each model is labeled as a “dangerous behavior”
or a “nominal behavior”. The problem of detecting dan-
gerous situations then becomes a classification problem,
where the likelihood of observations is used to select the
model which best explains the current observations. This
approach was implemented in [24], using tens of thou-
sands of real trajectories recorded by radars and cameras
at a road intersection. The presence of a significant num-
ber of traffic light violations in the data allowed them
to learn a model of that behavior. In parallel, a nom-
inal model was learned from vehicles which complied
with the traffic rules. Two classification algorithms were
implemented and successfully validated on the dataset:
the first one combined Support Vector Machines with a
Bayesian Filter, the second one relied on Hidden Markov
Models.
For traffic situations involving more than one vehicle,

one can use traffic rules to label pairs of maneuvers as
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“conflicting” or “not conflicting”. This method has been
implemented in the context of road intersections, by man-
ually labeling pairs of maneuvers based on the priority
rules (e.g. stop, yield) [71,72]. This concept of conflict-
ing maneuvers was recently generalized to automatically
extract what maneuvers are expected from drivers given
the traffic rules and the current situational context [59].
The expected maneuvers can then be directly compared
with the driver’s intended maneuver in order to compute
the risk value.

Conclusion
This survey addressed motion prediction and risk assess-
ment techniques in the context of intelligent vehicles.
Motion prediction approaches were categorized based

on their degree of abstraction. Physics-basedmotionmod-
els operate at a low level, they consider that the motion
of vehicles only depends on the laws of physics. They
allow for an efficient computation of the risk, but are lim-
ited to short-term collision prediction. Maneuver-based
motion models operate at a higher level, as they con-
sider that the future motion of a vehicle also depends on
the maneuver that the driver intends to perform. They
provide a more reliable estimation of long-term motion
and risk, but are not always reliable since they ignore the
dependencies between the vehicles in the scene. Finally,
Interaction-aware motion models add another level of
abstraction by taking into account the inter-dependencies
between vehicles’ maneuvers. However, their computa-
tional complexity mean they are not always compatible
with real-time risk assessment.
Overall, the main difficulty faced by these approaches

is that in order to reliably estimate the risk of a traf-
fic situation it is necessary to reason at a high level
about a set of interacting maneuvering entities, taking
into account uncertainties associated to the data and
the models. This high-level reasoning is computation-
ally expensive, and not always compatible with real-time
risk estimation. For this reason, a lot of effort has been
put recently into designing novel, more efficient risk
estimation algorithms which do not need to predict all
the possible future trajectories of all the vehicles in the
scene and check for collisions. Instead, algorithms have
been proposed which focus on the most relevant trajec-
tories to speed up the computation, or to use alterna-
tive risk indicators such as conflicts between maneuver
intentions.
This survey also highlighted the fact that the choice of a

risk assessment method is tightly coupled with the choice
of a motion model. Therefore, we believe that major
improvements in this field will be brought by approaches
which address jointly vehicle motion modeling and risk
estimation.

Endnotes
aExtensions of the Kalman Filter exist which deal with

non-linear models. A comparison of their performances
for trajectory prediction is done in [73].

bMore details about probabilistic filtering can be found
in [74].

cFor readers interested in a state of the art of clustering,
a comparative survey of the most popular methods was
presented by Morris and Trivedi [75]. In particular, road
traffic situations were investigated by Buzan et al. [37],
Hu et al. [36], and Atev et al. [29].

dThe term Time-To-Collision is often used to refer
specifically to collision detection methods which assume
a constant velocity for the vehicles. Here the alternative
definition of the Time-To-Collision is used, where it
corresponds to the time remaining before the collision
occurs.
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