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Abstract 

We introduce an algorithm that maneuvers a vehicle through an area with randomly moving pedestrians. In non‑crit‑
ical situations, our strategy is to avoid pedestrians by steering, whereas dangerously moving pedestrians are avoided 
by braking, possibly coming to a complete stop. The distinction between non‑critical and dangerous situations, 
as well as proof of safety, is based on a continuous optimization problem that we define. In this abstract problem, 
called Emergency Braking Game, one pedestrian is actively trying to collide with a continuously decelerating car. We 
show how to determine the outcome of the game based on the initial states of the car and the pedestrian. Using this 
information, our algorithm can initiate deceleration in the real scenario in time to avoid collision. The method’s safety 
is proven theoretically, and its efficiency is shown in simulations with randomly moving pedestrians.

Keywords Collision avoidance, Intelligent control, Game theory, Optimization

Introduction
The development of self-driving cars, which must oper-
ate in the presence of pedestrians, brought an increasing 
focus to the problem of collision-free autonomous move-
ment [1–3]. To ensure guaranteed safety, it is often con-
venient to assume that the pedestrians are adversarial, 
meaning that they seek to collide with the vehicle. While 
this is, obviously, a worst-case assumption, dense urban 
intersections like the famous Shibuya Crossing (Fig. 1) or 
cars leaving parking lots after major sport events create 
conditions that closely approximate it. In the adversarial 
scenario, collision avoidance can be formulated as a pur-
suit-evasion differential game [4].

In this paper, we introduce the Emergency Braking 
Game (EBG) and a novel game-theoretic formulation 
of a strategy for a vehicle avoiding multiple pedestrians. 
Inspired by the suicidal pedestrian game [5], EBG pro-
poses that the primary action available to the vehicle to 
avoid a collision is to decrease its velocity (brake) while 
retaining its direction of movement. The primary advan-
tage of this strategy is that the actions calculated for the 
avoidance of different pedestrians can be combined in a 
convenient way. In contrast, when the vehicle uses swerv-
ing as an avoidance strategy [6], the algorithm might 
recommend incompatible turning directions for the 
avoidance of different pedestrians.

As in several other techniques that consider an adver-
sarial relationship between the vehicle and pedestrians 
[7, 8], we divide the scenario into one-on-one games. 
In contrast to several previous studies, where pedestri-
ans were assumed to adhere to predetermined routes or 
utilized crosswalks for traversing [9–11], we consider a 
scenario where the pedestrians can have arbitrary trajec-
tories. The objective of the game is to guarantee safety by 
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avoiding collision, with the pedestrians’ secondary objec-
tive being to minimize the miss distances.

The primary contributions of this paper can be summa-
rized as follows:

• We define the Emergency Braking Game (EBG) as a 
model of a particular solution class for the problem 
of a vehicle navigating a dense pedestrian area. We 
provide an analytic solution to the problem under 
specific assumptions.

• We build a collision avoidance strategy based on 
EBG.

• We study the behavior generated by the EBG-based 
collision avoidance in a simulation scenario with 
randomly moving pedestrians and compare its per-
formance with two recent collision avoidance algo-
rithms.

The remainder of the paper is organized as follows. Sec-
tion  2 discusses related work in the domain of reactive 
motion planning algorithms. In Sect.  3, we present the 
kinematics of the agents present in the game. Later on, 
in Sect.  4, we define the Emergency Braking Game and 
describe an analytic solution for the simple case. We 
describe an evasion algorithm built on this solution in 
Sect.  5. In Sect.  6 we describe the baseline algorithms, 
with Sect.  7 containing simulation results and analy-
sis. We provide conclusions and describe future work in 
Sect. 8.

Related work
Techniques for collision avoidance by a vehicle in the 
context of dynamic obstacles have been the subject of 
several research projects in recent decades [13–16]. The 
difficulty of this task is largely determined by the amount 
of knowledge we have about the obstacle movement.

The majority of algorithms [17] assume that the obsta-
cles’ paths are known, or at least well predicted. This is 
also the assumption underlying one of the most fre-
quently used dynamic motion planning algorithm fami-
lies, Velocity Obstacles (VO) [18, 19]; as well as other 
methods such as the one proposed in [20]. VO has been 
adapted to various scenarios, such as differential-driven 
robots [21, 22], ships [23], multi-robot collision avoid-
ance [24–26], and unmanned aerial vehicles [27].

A further assumption that can be made is that the 
obstacles are holonomic, this being a good approximation 
for the case of human pedestrians. With this assumption, 
we can define the reachable set of the obstacles. In prac-
tice this can be done by expanding the future positions of 
the vehicle with the distance the obstacles can cover in 
the corresponding time interval. This creates a dynamic 
envelope [28] with the following interpretation: if the 
dynamic obstacle is initially present inside this envelope, 
it is possible for it to collide with the vehicle on its prede-
fined path. In contrast to this forward approach, we can 
also work backward from collision states and define dan-
gerous sets that need to be avoided by the vehicle [29]. 
The backward approach has the advantage that it is often 
less computationally demanding.

Another popular method, the Dynamic Window 
Approach (DWA), can quickly generate solutions in real-
time and is capable of taking nonholonomic constraints 
into account, such as limited turning ability [30, 31]. 
The DWA algorithm can also be used in dynamic envi-
ronments to produce collision-free paths. Recent work 
applied DWA to motion planning for the Forklift Auto-
mated Guided Vehicle [32].

In the techniques above, the motion planning algo-
rithm explicitly considers the velocities of the obstacles. It 
is possible to develop path planning algorithms that only 
rely on the changing locations of the obstacles, without 
explicitly requiring the velocity vectors. An example of 
this class of methods is that of Artificial Potential Fields 
[33–36] (APF), where obstacles exert a virtual repelling 
force on the vehicle while the goal exerts an attractive 
force. The movement is then defined by the resultant of 
these forces. The method is straightforward to imple-
ment, has a low computational demand, and can be effec-
tive against slow-moving obstacles. Although APF was 
originally designed for use in static environments, it has 
also been adapted to handle dynamic obstacles, such as 
those encountered in robot soccer [37].

Pedestrian avoidance dynamics
Let us now consider the problem of obstacle avoidance in 
the setting of a vehicle aiming to traverse an area where a 
number of pedestrians are moving unpredictably.

Fig. 1 Shibuya Crossing is one of the busiest pedestrian crossings 
in the world [12]
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We assume that a pedestrian (P) implements a simple 
holonomic motion, described by the equations

where x and y are planar coordinates, the 0 index refers 
to initial values, and w is the (constant) speed of the 
pedestrian. The control input is the movement direction 
φ which the pedestrian can alter instantaneously.

The vehicle (E) is described by the state variables of 
the planar coordinates x, y, the heading ψ , and velocity 
v. The state variables are subject to the constraints of a 
minimal turning radius R and a maximal acceleration/
deceleration amax:

where the control inputs are uψ ,uv ∈ [−1, 1] . The veloc-
ity of the vehicle is constrained between 0 and vmax.

In case we only need the relative position of a pedes-
trian and the vehicle, it is useful and customary [4, 5] 
to transform their coordinates to a reduced space. In 
the reduced space, the vehicle permanently resides in 
the origin, facing the positive y-axis, as shown in Fig. 2. 
Then, the full state is described by the relative x and y 
coordinates—without the P subscript—of the pedes-
trian and the velocity v. The transformation can be 
given by

with the usual rotation matrix

The initial values in the reduced space are

(1)

xP(0) = xP,0

yP(0) = yP,0

ẋP(t) = w cosφ(t)

ẏP(t) = w sin φ(t)

(2)

xE(0) = xE,0

yE(0) = yE,0

ψ(0) = ψ0

v(0) = v0

ẋE(t) = v(t) cosψ(t)

ẏE(t) = v(t) sinψ(t)

ψ̇(t) = uψ(t)
v(t)

R

v̇(t) =







0 if v(t) = 0 and uv(t) < 0

0 if v(t) = vmax and uv(t) > 0

uv(t)amax otherwise

[

x
y

]

= R(π/2− ψ)

([

xP
yP

]

−

[

xE
yE

])

R(•) =

[

cos(•) − sin(•)
sin(•) cos(•)

]

and the relative dynamics—similarly to [5], but with the 
sign of uψ oppositely defined—are

where φ̃ is understood in the rotated frame, hence 
φ + π/2− ψ = φ̃ . Since the pedestrian is holonomic, 
this rotation doesn’t affect its capabilities, and thus, in the 
remainder of this paper, the tilde will be omitted.

The Emergency Braking Game
The Emergency Braking Game is an abstract formula-
tion of a continuous-time optimization problem with one 
player, closely related to the Suicidal Pedestrian Problem 
[5]. Let’s consider a pedestrian and a vehicle described 
in the natural space. The vehicle performs the follow-
ing movement: it starts from the origin, moves along the 
y-axis, and slows down from its initial speed of vmax to a 
complete stop with a deceleration of −amax . The coordi-
nates of the vehicle will change as follows:

[

x(0)
y(0)

]

=

[

x0
y0

]

= R(π/2− ψ0)

([

xP,0
yP,0

]

−

[

xE,0
yE,0

])

v(0) = v0

ẋ(t) = w cos φ̃(t)+ uψ(t)
v(t)

R
y(t)

ẏ(t) = w sin φ̃(t)− uψ(t)
v(t)

R
x(t)− v(t)

v̇(t) = uv(t)amax

xE(τ ) = 0

yE(τ ) =
amax

2
T 2 −

amax

2
(T − τ )2 = S −

amax

2
(T − τ )2

τ ∈ [0,T ]

Fig. 2 Relation of the natural and reduced spaces. The heading 
of the vehicle coincides with the relative ’y’ axis. The pedestrian’s 
movement direction is explicitly shown
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where T = vmax/amax is the duration of the process. The 
distance covered is denoted as S. The time in this abstract 
program is represented by τ to differentiate it from the 
real-world time t.

The player of the game is a “suicidal pedestrian”, whose 
motion is described in Eq. (1). The aim of the pedestrian 
is to collide with the vehicle as soon as possible. If the 
pedestrian cannot reach the vehicle before it comes to a 
stop, it aims to approach the still-moving car as close as 
possible. If it finds the optimal control for the scenario, 
φ∗(·) , the pedestrian approaches the moving vehicle at a 
distance V, as described by

If this value is greater than the radius of the circle 
describing the size of the vehicle, the vehicle will stop 
before hitting the pedestrian, even when the pedestrian 
applies optimal minimizing control.

EBG cases
For every possible initial position of the pedestrian, we 
want to provide the eventual miss distance V and the 
optimal controls. First, we display V as a function over 
the x,  y coordinates of the pursuer by plotting contour 
lines with equal V value.

To do this, we draw a circle with radius V + wτ around 
each point along the car’s path. In practice, we do this for 
a sample of these points. Starting from a point on such a 
circle, the holonomic pedestrian can get to the distance V 
from the vehicle at time τ . The hull of these circles con-
tains the locations from which the pedestrian can get to 
the distance V at some point in time. Such a hull is similar 
to the dynamic envelope described in [28].

Figures  3, 4 and 5, show the hull and its generating 
circles for V = 0 , as well as only the hulls for other V 

V = min
φ(·)

min
τ∈[0,T ]

√

xP(τ )2 + (yP(τ )− yE(τ ))2

values. The three subfigures were drawn with three dif-
ferent speed parameters. The red line marks the vehi-
cle’s path, starting from the triangle, around whose 
points the circles are drawn.

The figures show that in some cases (Figs.  4 and 5), 
the hull is a circle, significantly simplifying the solution 
in the case when the collision is not possible. Optimiz-
ing for a collision speed remains complicated for the 
case with collision. Figure 5 shows a borderline exam-
ple where the hull is a circle. In Fig. 3, where we have 
a lower pedestrian speed, the hull has a more complex 
shape. The necessary and sufficient condition for this 
simplification is that the circle with radius wT for V = 0 
drawn around the [0, S]T  end-position of the vehicle 
contains the origin:

from where

wT ≥ S =
vmaxT

2
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Fig. 3 Contour lines of the optimal V function of the EBG. Parameters: 
vmax = 5m/s , w = 2m/s , amax = 2m/s2
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Fig. 4 Contour lines of the optimal V function of the EBG. Parameters: 
vmax = 5m/s , w = 3m/s , amax = 2m/s2
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Fig. 5 Contour lines of the optimal V function of the EBG. Parameters: 
vmax = 5m/s , w = 2.5m/s , amax = 2m/s2
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An equivalent condition is that the distance covered 
by the vehicle takes less time for the pedestrian to run: 
S
w ≤ T  . Also, in this case, the optimal control of the 
pedestrian is to aim for the final position of the vehicle. 
In the remainder of this discussion, we will assume the 
velocity of the pedestrian to be at least vmax/2 . If the 
pedestrian is slower, this approximation is conservative 
and, therefore, does not violate safety regarding collision 
avoidance.

The solution to the simple case
If the speed constraint of Eq. (3) is satisfied, the solu-
tion for the optimization task involves the pedestrian 
aiming for the final coordinates of the vehicle [0, S]T  , 
with the miss distance being:

This value depends on the initial relative coordinates of 
the pedestrian (x and y) and the vehicle’s initial velocity 
v. This formula remains valid throughout the game, using 
the remaining time and distance dependent on the cur-
rent speed: T(v), S(v).

To develop the evasion algorithm, we need a closed-
form expression of the gradient of the function V in an 
arbitrary state. Let us introduce the expression

Then, after elementary operations

Using that T (v) = v/amax and S(v) = v2/2amax , we can 
write

from where

(3)2w ≥ vmax

V (x, y, v) =

√

x2 + (y− S(v))2 − wT (v)

d(x, y, v) =

√

x2 + (y− S(v))2

∂V

∂x
=

x

d
∂V

∂y
=

y− S

d

∂V

∂S
=

S − y

d
∂V

∂T
= −w

dT

dv
=

1

amax

dS

dv
=

v

amax

Evasion strategy
In this section, we develop an evasion strategy for the 
vehicle based on the EBG. The following theorem makes 
the connection between the abstract optimization prob-
lem, the EBG, and the maneuvering task. In particular, 
the solution and V function of the EBG can be used to 
guarantee safety in the main scenario.

Theorem 1 If, at a time instant t, for all of the (point-
like) pedestrians’ reduced coordinates and the speed of the 
(pointlike) vehicle, it is true that V (x, y, v) > 0 , then the 
vehicle is guaranteed to not collide with any pedestrians 
while coming to a full stop in a straight line decelerating 
with amax.

Proof
The origin of the reduced coordinate system is positioned 
to coincide with the vehicle, and the vehicle momentar-
ily travels on the positive y-axis. Fixing the frame now 
to this point instead of the vehicle, the stopping maneu-
ver is identical to that in the EBG. For any pedestrian, if 
initially V (x, y, v) > 0 , then the pedestrian cannot reach 
the vehicle before it stopped. As the movement of the vehi-
cle doesn’t depend on the pedestrians, if the condition 
V (x, y, v) > 0 holds for all of them, none can reach the 
vehicle before it has stopped.  �

Remark 1
In reality, the agents are not pointlike. Their extent can be 
incorporated into Theorem 1 by requiring the value to be 
greater than the sum of the radii of the circumscribed cir-
cles: V (x, y, v) > rcar + rpedestrian . Then, the midpoint of a 
pedestrian’s circle cannot come closer to the midpoint of 
the vehicle’s circle than this value; hence the bodies cannot 
touch.

Remark 2
Collision avoidance is guaranteed only while the vehicle is 
moving. Pedestrians may bump into the stopped vehicle.

The key point of our evasion algorithm is to keep 
all Vi values corresponding to N pedestrians Pi above 
a safety level Vsafe . Unless there is a critical situation, 
the lowest Vi value is increased through turning while 

∂V (x, y, S(v),T (v))

∂v
=

∂V

∂S

dS

dv
+

∂V

∂T

dT

dv

=
S − y

d

v

amax

−
w

amax
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keeping the maximal velocity of the vehicle. If any of 
the Vi values fall below the safety threshold, the vehicle 
brakes; this is the critical case. Deceleration is always 
implemented in a straight line (for the acceleration, this 
is not always true). From the previous results, it fol-
lows that when decelerating with the maximal allowed 
−amax value, none of the Vi values can decrease. In the 
worst case, when the critical pedestrian is indeed trying 
to collide, its corresponding Vi is constant.

Change of the EBG values
Starting from the variables x, y, v of the reduced state 
of the realistic problem, the change of the V value with 
respect to the control inputs of the vehicle can be writ-
ten as follows:

which can be divided into parts controlled by the vehicle 
and parts that are not influenced by it:

Using Isaacs’ circular lemma [4], we find that the “opti-
mal” (minimizing) movement direction of the pedes-
trian is antiparallel to the w[x/d, (y− S)/d]T vector of 
the terms corresponding to the pedestrian. Given that 
[x/d, (y− S)/d]T is a unit vector, the pedestrian’s effect 
on V̇  is −w , which makes the vehicle-independent part

The vehicle’s influence is

It is noteworthy that V̇ = 0 when uψ = 0 and uv = −1 . 
This aligns with our expectations: when the vehicle is 
braking in a straight line, and the pedestrian is attempt-
ing a collision, the expected miss distance in the EBG 
remains unchanged, as they are exactly playing the EBG.

V̇ (x, y, v) =
∂V

∂x
ẋ +

∂V

∂y
ẏ+

∂V

∂v
v̇

=
x

d

(

w cos φ̃ + uψ
v

R
y
)

+
y− S

d

(

w sin φ̃ − uψ
v

R
x − v

)

+

(

S − y

d

v

amax
−

w

amax

)

uvamax

V̇ (x, y, v) = V̇ (x, y, v | uψ)+ V̇ (x, y, v | uv)

+ V̇ (x, y, v | −)

V̇ (x, y, v | −) =
S − y

d
v − w

V̇ (x, y, v | uψ) =
xy− xy+ Sx

d
uψ

v

R
=

Sxv

Rd
uψ

V̇ (x, y, v | uv) =

(

S − y

d
v − w

)

uv

Algorithm
Up to this point, every expression was formulated in 
continuous time. However, in practice, the algorithm 
operates in discrete time. We discretize using the Euler 
method, given knowledge of the sampling time �t.

Let us write the actual V as

and subsequent V ′ values of the emergency braking 
games of Pi ( i ∈ {1, ...N } ), dependent on the control 
inputs:

The error of the Euler method, due to the changing gradi-
ent of the value, is neglected from hereon.

The vehicle tries to travel as fast as possible. The 
acceleration it can apply is constrained by the maximal 
acceleration and it may not increase speed above the 
allowed maximum in the the next sampling interval:

Applying this control is only permissible if retaining the 
maximal speed or accelerating to it will not cause any of 
the N game outcomes below the safety level threshold 
Vsafe . We apply this condition without considering steer-
ing, hence we predict the V values of the next cycle by 
substituting uψ = 0 and uv = uv,max into Eq. (4), denoting 
the index of the considered pursuer with i and the accel-
eration to the maximal speed with the “acc” subscript.

There are two possible scenarios: if, for all i ∈ {1, ...N } , 
V ′
i,acc > Vsafe , the vehicle accelerates to the maximum speed 

and evades the most critical pedestrian by turning. However, 
if this condition fails for any of the pedestrians, the vehicle 
proceeds straight and typically decelerates. As the value 
V ′
i,acc is calculated with the maximum possible acceleration, a 

lesser acceleration may be permitted even in the critical case.

Critical case
In any situation where an EBG’s Vi value falls below 
Vsafe , the vehicle, adhering to our strategy, will continue 
in a straight line and either decelerate or accelerate less 
intensely than the maximum.

Vi =

√

x2i + (yi − S)2 − wT

(4)
V ′
i (uψ ,uv) ≈ Vi +�t

(

S − yi

di
v − w

)

+�t
Sxiv

Rdi
uψ +�t

(

S − yi

di
v − w

)

uv

(5)uv,max = min

(

1,
vmax − v

amax�t

)

(6)V ′
i,acc = Vi +�t

(

S − yi

di
v − w

)

(1+ uv,max)
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From Eq. (6), we can derive the allowable acceleration by 
substituting the V value from the next cycle with the safety 
level. The prescribed acceleration coefficient then becomes

This also includes the lower constraint, in cases when 
numerical effects cause Vsafe < Vi and thus ũv < −1.

If multiple pedestrians are in a critical situation, the 
above equations select the smallest of the acceleration 
coefficients, implying the most intensive deceleration. 
This is safe in all scenarios since, if 

(

S−yi
di

v − w
)

< 0 , a 
stronger deceleration increases V ′

i  , and if 
(

S−yi
di

v − w
)

> 0 , then V ′
i > Vi because of Eq. (6). Note 

that even though the smallest Vi would approach Vsafe 
based on the previous equations, in practice, Vi will 
increase when the pedestrian is not attempting to collide.

In the critical case, the vehicle does not turn: uψ = 0.

Non‑critical case
If no pedestrians are in a critical situation, the vehicle 
accelerates to the maximum velocity and increases the 
smallest V ′

i,acc by turning. Hence, we need to choose uψ 
such that mini V

′
i  is maximal. This can be formulated as a 

linear program using the auxiliary variable ξ:

This linear program always has a solution since the con-
straints of uψ are trivial, and ξ is only constrained from 
above. Hence it always provides the value for uψ . While 
the linear program does not provide a solution for uψ 
if v = 0 , in practice, this is not a problem, because the 
steering of a standing vehicle does not influence the 
dynamics.

In the non-critical case, the acceleration coefficient is 
uv = uv,max as defined in Eq. (5).

Incorporating the target
Using the previously defined rules and equations, the vehi-
cle can maintain a safe distance from the pedestrians or 
stop if that is not possible. However, the vehicle also need 
to progress towards its target location. We incorporate this 
goal into the algorithm in the following way. In this subsec-
tion, we will work in the natural space coordinates.

(7)
ũv = min

i∈{1,...N }





Vsafe − Vi

�t
�

S−yi
di

v − w
� − 1





uv = max(ũv ,−1)

(8)

max
uψ ,ξ

ξ

s.t. ξ ≤ V ′
i,acc +�t

Sxiv

Rdi
uψ ∀i ∈ {1, ...N }

−1 ≤ uψ ≤ 1

The prescribed movement direction is defined as the 
direction from the vehicle E to the goal G. Any deviation 
from this direction is denoted by

This deviation is scaled to represent a distance that can 
be compared to the miss distances of the EBG. We intro-
duce two new terms that need to be maximized:

We note that the minimum of these terms is maximal if 
�ψ = 0 and VN+1 = VN+2 = V  . The parameters V > V  
define the relation to the Vi values of the previous sec-
tions. Above a miss distance V  the importance of the 
pedestrians is negligible compared to keeping the direc-
tion, as min(VN+1,VN+2) ≤ V  . On the other hand, if, 
for some pedestrian Pi , Vi < V  , the movement direction 
is of negligible interest compared to evasion from Pi , as 
min(VN+1,VN+2) ≥ V .

While technically the direction could be controlled by 
a single minimizing term describing the absolute value of 
the deviation, this could lead to oscillation if the deviation 
changed in each computational cycle. Maximizing the 
minimum of the two terms alleviates this oscillation by 
reaching the prescribed direction exactly in one step. The 
two linear terms also fit well into the previously defined 
linear programming scheme.

The vehicle-dependent part of the temporal change of 
VN+1 , using Eq. (2) and (9), is

and analogically for VN+2 , with a negative sign. In sum-
mary, for the non-critical case, we extend the linear pro-
gram of Eq. (8) as follows:

The extended linear program always has a feasible 
solution, for the same reason as  Eq. (8). Note that the 

�ψ = ∠
−→
EG − ψ �ψ ∈ [−π ,π)

(9)
VN+1 = V −

�ψ

π
(V − V )

VN+2 = V +
�ψ

π
(V − V )

∂VN+1

∂ψ
ψ̇ =

V − V

π

v

R
uψ

(10)

max
uψ ,ξ

ξ

s.t. ξ ≤ V ′
i,acc +�t

Sxiv

Rdi
uψ ∀i ∈ {1, ...N }

ξ ≤ VN+1 +�t
(V − V )v

πR
uψ

ξ ≤ VN+2 −�t
(V − V )v

πR
uψ

−1 ≤ uψ ≤ 1
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movement direction is neglected in the critical case. The 
appropriate choice for the parameters is V > V ≥ Vsafe.

Summary of the algorithm
Let us summarize our algorithm in pseudo code. Inputs 
are the current velocity of the evader agent and the rela-
tive positions of the pursuers. Output is the two control 
variables of the evader.

Algorithm 1 EBG‑based maneuvering algorithm

Two baseline algorithms
As we discussed in the related work section, the research 
literature contains a large number of different path plan-
ning algorithms that consider mobile obstacle avoidance 
as part of their specification. In order to evaluate the per-
formance characteristics of the EBG algorithm, we briefly 
describe two recent approaches that will be used as com-
parative baselines: Gaussian artificial potential fields and 
safety velocity obstacles.

Baseline 1: Gaussian artificial potential fields
As our first baseline, we implemented a generic Gaussian 
artificial potential field method that controls the direc-
tion as well as the speed of the vehicle. It applies the com-
mon considerations of all APF approaches [33–36].

The APF algorithm has two main steps: first, it sums 
the attractive force of the goal and the repulsive forces 
of the pursuers and then calculates the acceleration and 
turn coefficients from the resultant force. The attractive 
force exerted by the goal is

Ftarget =

−→
EG

�
−→
EG�

γt

where 
−→
EG is the line connecting the vehicle’s position 

with the goal, and γt is the weight (importance) of head-
ing towards the goal.

The repulsive forces exerted by the N pedestrians are

Fi =
−→
PiEe

−

(

�
−→
PiE�
ρ

)2

i ∈ {1, ...N }

with 
−→
PiE connecting the positions of the pedestrians and 

the vehicle, and ρ serving as a tuning parameter.
The resultant force is

the direction of which is the prescribed movement direc-
tion of the vehicle. This direction can either be achieved 
in one sampling interval, or the vehicle can implement 
the sharpest possible turn:

while applying the following acceleration

where γa is the third parameter of the reference strategy, 
serving as an acceleration coefficient.

As the APF method requires the tuning of the values 
of three parameters, during our simulation study we 
experimented with several parameter sets.

F = Ftarget +

N
∑

i=1

Fi,

ũψ =
(∠F − ψ)R

v�t

uψ = min(max(−1, ũψ), 1)

ũv = cos(∠F − ψ)||F ||γa

uv = min(max(−1, ũv), 1)
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Baseline 2: Safety velocity obstacles
Another reference algorithm, used in robotics and 
autonomous systems, is the Safety Velocity Obstacles 
(SVO) technique [38, 39] an extension of the Velocity 
Obstacles algorithm [18]. The goal of SVO is to choose 
the velocity vector of the vehicle such that it avoids col-
liding with any obstacle in its environment. The algo-
rithm requires the position and velocity information of 
these obstacles to be known or to be precisely measur-
able at the time of decision-making.

Consider an environment with N obstacles Bi , 
i = 1 . . .N  , and a vehicle A. The velocity obstacle cone 
VOi encompasses all possible velocity vectors for A that 
would lead to a collision with obstacle Bi at some point 
in the future.

In this equation, the position and velocity vectors of the 
agent and the obstacles are represented by pA , vA , pBi , 
and vBi , respectively. The sets of points in the workspace 
occupied by the vehicle and obstacle i if their positions 
are p are represented by A(p) and Bi(p) . It is assumed 
that both the vehicle and the obstacles have a disk shape 
and that their velocities remain constant until time t. 
Additionally, it is assumed that there are no collisions 
between the obstacles during their motion.

The comprehensive velocity obstacle, VO, is formed 
by unifying all the individual velocity obstacle cones 
VOi.

The set of reachable velocities, RV, contains all veloc-
ity vectors vA that can be achieved by the vehicle within 
the specified sampling time. The crucial step in the VO 
method is to determine the reachable avoidance veloci-
ties set RAV, which can be calculated by subtracting the 
VO set from RV. These are the velocity vectors that the 
vehicle can select to ensure a collision-free path. A com-
mon approach is to discretize the RAV set by dividing it 
into a grid-like structure.

Figure 6 illustrates the approach in a scenario where a 
vehicle is navigating through a setting containing both 
stationary and moving obstacles.

In the SVO, the velocity selection of the vehicle is 
influenced by two components: speed and safety. These 
aspects can be simultaneously considered by using an 
objective function.

The speed component (GO) serves as a metric for 
evaluating the progression toward the target position 
(goal):

(11)VOi = { vA | ∃t : A(pA + vAt) ∩ Bi(pBi + vBit) �= 0}

(12)VO =

N
⋃

i=1

VOi

where vmax represents the peak velocity the agent can 
attain while considering the limitations imposed by its 
kinematic properties. �θi = θrg − θrvi is the difference 
between the angle of the goal ( θrg ) and the angle of the 
velocity vector ( θrvi ) while ri =|| vi ||.

The safety aspect (SA) of the objective function assesses 
the potential for collision. It is sufficient to consider only 
the nearest Velocity Obstacle (VO). Additionally, if the 
robot is unable to reach the closest obstacle within the 
specified time frame, it is considered to be completely 
safe, and further distance would not enhance the safety. 
Based on these considerations, the following expression 
is obtained:

where Tmax is a known parameter representing the maxi-
mum time interval considered during the motion of the 
vehicle.

Finally, the velocity and safety components of the 
objective function (OF) are combined as a weighted aver-
age, where the parameter α represents the significance of 
safety. The main goal of the SVO algorithm is to select 
the velocity vector for the vehicle that maximizes the 
objective function.

The parameter α plays a critical role in determining the 
outcome of the velocity selection process. During the 
testing phase, we evaluated various combinations of 
parameters to assess their effect on the results. We also 

(13)GO(vi) =
ri cos�θi

vmax

(14)SA(vi) = min



1,

min
vVO∈VO

�vi − vVO�

vmax · Tmax



,

(15)

OF(vi) =

{

α SA(vi)+ (1− α) GO(vi) if vi ∈ RAV
0 otherwise

pB1

pB2vB1

pA

B1

B2

VO1

VO2

vB1

Fig. 6 An illustration of the VO method for a vehicle at position 
pA navigating an environment consisting of a static obstacle at pB2 
and a moving obstacle (pedestrian) at pB1 with velocity vB1
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introduced a bang-bang control into the SVO algorithm, 
where the fastest solution ( α = 0 ) can be selected if the 
obstacles are further from the vehicle than a predeter-
mined distance parameter [38]. Otherwise, the safest 
solution ( α = 1 ) is selected.

Experimental study
In this section we describe a series of experimental stud-
ies, performed in simulation that compare the EBG-
based vehicle strategy with the two baselines described in 
Sect. 6.

The examined scenario assumes a vehicle following the 
kinematic equations of (2) starting from the origin with 
zero speed and heading towards the location [150, 0]Tm . 
The kinematic parameters of the vehicle are vmax = 5m/s , 
amax = 2m/s2 and R = 5m . The sum of the radii of the 
vehicle and a pedestrian (the “collision distance”) is 
dc = 2m . The goal of the vehicle is to arrive at dc distance 
from the target point; in an environment without obsta-
cles, it would take 30.85s.

To create a scenario that tests the ability of the algo-
rithms to maneuver in a dense crowd, we positioned 
N = 30 pedestrians between the vehicle and the goal, 
with the initial coordinates sampled from a uniform dis-
tribution with x ∈ [10m, 50m] and y ∈ [−20m, 20m] . 
The pedestrians initial movement directions were ran-
dom, and their speed was w = 2m/s . The pedestrians 
move along straight stretches, changing direction after 
random time intervals.

The frequency of direction changes was governed by 
an approximate discrete Poisson process. In each com-
putation cycle, each pedestrian changes direction with a 
p = 0.033 probability independently of other pedestrians 
and previous computation cycles. The new direction was 
also a uniformly random independent variable. The aver-
age duration of one straight stretch is �t/p = 3s , with 
simulation’s sampling time as �t = 0.1s.

The simulation run terminates if the vehicle reaches the 
goal or collides with a pedestrian. In this simulation, a 
collision is defined as a state where the distance between 
the vehicle and the pedestrian is less than the collision 
distance dc , while the vehicle is heading towards the 
pedestrian: | ψ − ∠

−→
EP |≤ 90◦.

Analyzing individual simulation runs
To understand the strategy deployed by the different 
algorithms, it is useful to analyze individual simulation 
runs in detail. To facilitate this analysis, the following 
visual notations will be used in the subsequent discus-
sion. The trajectories of pedestrians will be depicted as 
lines of various colors, with a black point at the end of 
each line indicating the final position. The motion of 
the vehicle will be presented through a series of figures, 

each capturing a time interval of [0, 0.2T), [0.2T, 0.4T),..., 
[0.8T, T], where T represents the length of the simulation 
run. Lastly, a summary figure portrays the entire motion 
(0 to T) for both the vehicle and the pedestrians.

Figure 7 shows the simulation run for the APF method. 
This run concludes with a collision at T = 30.9s . Figure 8 
shows the simulation run for the SVO method. In this 
case as well, the vehicle fails to reach the goal, with the 
simulation run ending due to a collision at T = 12.3s . The 
only approach that had successfully reached the goal in 
this scenario is the EBG method which reached the goal 
at T = 85.5s , as depicted in Fig.  9. Figure  10 shows the 
complete paths of several specific pedestrians along with 
the motion of the vehicles controlled using the different 
algorithms.

In Figs.  7–10 we see a scenario where the EBG out-
performs the baseline agents. However, there is a down-
side to applying the EBG algorithm. As Fig.  11 depicts, 
the method is prone to oscillation, causing discomfort to 
passengers and putting strain on the mechanics and elec-
tronics of the robot. This will have to be amended prior 
to application of the algorithm by introducing smoothing 
to the control outputs. The effect of such lenient controls 
on safety may have to be countered by increasing the 
safety distance.

Experimental results
To perform a fair comparison between the algorithms, we 
tested them over 100 scenarios with randomly generated 
pedestrians. We ran the APF algorithm with 18 different 
parameter sets and the SVO method with 4 different α 
parameters. As the EBG parameters can be directly spec-
ified from first principles, they were chosen as follows: 
Vsafe = 2dc = 4m , V = 4dc = 8m , and V = 10dc = 20m.

The effectiveness of the algorithms was evaluated based 
on the average running time and the number of acci-
dents that occurred during the simulation runs. Table 1 
shows the number of runs that resulted in a collision, 
and, for the runs that terminated successfully, the aver-
age time needed to reach the goal. We found that the 
EBG algorithm always avoids collisions. For the base-
line algorithms, the parameters had a significant impact 
on the number of collisions. For the APF algorithm, the 
best parameter choice resulted in 19 collisions, but cer-
tain parameter settings had as many as 81 collisions out 
of 100 trials. The SVO method peformed significantly 
better, with the number of collisions ranging from 8 to 
20, depending on the value of the parameter α . Com-
paring the SVO and EBG methods, we found that while 
SVO generated faster solutions, it could not guarantee 
collision-free target-reaching in all scenarios due to its 
dependence on the velocity vector of the pedestrians, 
which could only be calculated between the last two 
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steps. Hence, sudden changes in the velocity vector of 
the closest pedestrian could lead to collisions even if the 
vehicle performed an emergency braking maneuver, as 

shown in Fig. 8. The best solution with the SVO method 
was achieved using the bang-bang control in the param-
eter set, resulting in eight collisions. However, overall, the 

0 50 100 150

x [m]

-60

-40

-20

0

20

40

y 
[m

]

APF

0 50 100 150

x [m]

-60

-40

-20

0

20

40

y 
[m

]

APF

0 50 100 150

x [m]

-60

-40

-20

0

20

40

y 
[m

]

APF

0 50 100 150

x [m]

-60

-40

-20

0

20

40

y 
[m

]

APF

0 50 100 150

x [m]

-60

-40

-20

0

20

40

60
y 

[m
]

APF

0 50 100 150

x [m]

-60

-40

-20

0

20

40

60

y 
[m

]

APF

Fig. 7 The motion of the vehicle using the APF method. In this scenario, the goal cannot be reached because of a collision
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Fig. 8 The motion of the vehicle using the SVO method. In this scenario, the goal cannot be reached because of a collision
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EBG algorithm was the most effective in achieving colli-
sion-free target-reaching tasks.

In a real-world scenario, we care not only about 
avoiding accidents but also the safety of the vehicle’s 
movement. To investigate this, for the EBG and the best-
performing APF and SVO parametrizations, we collected 
all time instants from all collision-free runs where the 
closest pedestrian is closer than 10m. In Fig. 12, we dis-
play the frequencies of such moments depending on the 
distance and the speed of the vehicle. In the figure, the 
color of a speed-distance category corresponds to the 
logarithm of the number of occurrences.

We find that when using the APF algorithm (left), 
zero and maximal vehicle speeds are the most frequent, 

with the histogram showing an approximately uniform 
distribution. For the SVO algorithm (center), we find 
that the vehicle tends to select large velocity vectors 
to execute evasive maneuvers to avoid collisions, and 
it never comes to a full stop. However, as previously 
shown, the SVO method does not always guarantee 
collision-free motion. In the case of the EBG algorithm 
(right), we see a curve corresponding to maximal decel-
eration. This curve is fuzzy because the pedestrians are 
not following the EBG-optimal direction. It is impor-
tant to note that the non-zero points in the EBG case 
are much farther from the high velocity / low distance 
(upper right) corner of the figure compared to the two 
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Fig. 9 The motion of the vehicle using the EBG method. In this scenario, the goal was reached, resulting in the only collision‑free solution

0 50 100 150

x [m]

-60

-40

-20

0

20

40

y 
[m

]

APF

0 50 100 150

x [m]

-40

-20

0

20

40

60

y 
[m

]

SVO

0 50 100 150

x [m]

-60

-40

-20

0

20

40

60
y 

[m
]

EBG

Fig. 10 The motion of the evader agent using the three different methods. The whole path of some of the obstacles can be seen
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baseline algorithms, meaning that even the most criti-
cal situations are significantly less dangerous.

All collision avoidance algorithms must strike a bal-
ance between safety and the time to reach the obstacle. 

We study the tradeoffs made by the different algorithms 
in Fig. 13.

The comparison includes the EBG algorithm, the APF 
algorithm with parameters γt = 0.01 , ρ = 2dc , γa = 2 
and the SVO algorithm following the bang-bang strategy. 
Only successful (collision-free) runs are examined. The 
SVO agent reaches the goal significantly faster than both 
the APF and the EBG, with the time to goal being below 
40 s in the majority of situations. On the other hand, the 
EBG agent never finishes faster than 40  s. The elapsed 
times of all three agents are consistent, with a few high 
outliers. The EBG agent’s improved safety, comes at the 
cost of degraded navigation performance.

Sensitivity to obstacle parameters
We challenged the collision avoidance methods by put-
ting a number of dynamic obstacles between the start 
and goal positions. We have identified three main fac-
tors influencing the performance of the agents: the num-
ber of pedestrians, the speed of the pedestrians, and the 
unpredictability or randomness of their movement. In 
the following, we analyze the sensitivity to these factors 
to explore our methods’s applicability and find worst case 
situations.
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Fig. 11 Acceleration and velocity of the EBG agent in the example 
simulation run. Heavy oscillation can be seen between cycles 396 
and 416.

Table 1 Average run times and number of accidents depending on the APF and SVO parameters

The best parameter set is highlighted in bold

γt ρ/dc γa α Average time Accidents

APF 0.1 4 1 – 107.44 35

0.1 4 0.5 – 110.22 23

0.1 4 2 – 105.07 34

0.1 2 1 – 60.81 35

0.1 2 0.5 – 66.55 35

0.1 2 2 – 59.46 42

0.1 1 1 – 42.64 81

0.1 1 2 – 37.46 78

0.01 4 1 – 111.10 31

0.01 4 0.5 – 112.40 29

0.01 4 2 – 110.06 41

0.01 2 1 – 86.34 27

0.01 2 0.5 – 95 25

0.01 2 2 – 82.61 19
0.01 1 1 – 104.61 63

0.01 1 2 – 79.19 64

0.01 6 2 – 126.98 56

0.01 6 1 – 127.87 52

SVO – – – 0.2 31.34 20

– – – 0.5 31.65 13

– – – 0.8 34.04 13

– – – BB 38.95 8
EBG ‑ – – – 81.53 0
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First, let us vary the switching time, the average dura-
tion of straight stretches in the pedestrians’ movement, 
while keeping all other parameters unchanged. We 
expect that more predictable pedestrians are easier to 

avoid, leading to better performance. Fig.  14 confirms 
this expectation: APF and SVO agents have fewer colli-
sions and both the APF and EBG algorithms reach the 
target in a shorter time. Note that the average time in 
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Fig. 12 Heatmap of near‑collision states for the different algorithms: (left) APF, (center) SVO and (right) EBG. Brighter colors depict higher 
frequencies. Dark blue corresponds to zero occurrences
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Fig. 13 Histograms of the time to target over 100 simulation runs, with only the successful runs plotted. The optimal time, with no pedestrians 
present is 30.85s. (left) APF, (center) SVO, (right) EBG
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Fig. 14 Results dependent on the average duration of straight stretches in the pedestrians’ paths. (left) Number of collisions, (right) Average 
and median time to reach the goal
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case of an EBG agent increases for a switching time of 
10 s, but the median time decreases. This is due to outlier 
scenarios where a pedestrian approaches the target area 
and thus prevents the agent from reaching it,

With regard to speed, slower pedestrians are less dan-
gerous. This is confirmed in Fig.  15: fewer collisions 
happen with slower pedestrians. Interestingly, for the 
APF and EBG agents, the time taken to reach the goal 
increases greatly when the obstacle speed is reduced. 
This effect can be explained by pointing out that these 
two agets often stop and wait for a pedestrian to pass, 
whereas the SVO leans more on swerve maneuvers. A 
slow pedestrian can be bypassed easily, but one has to 
wait longer for it to pass.

The number of pedestrians has an obvious effect on 
performance. Fig.  16 shows that increasing the number 
of obstacles leads to more collisions, and longer elapsed 
times. It is still worth noting, that the influence on time 

is much greater in the case of the EBG than the other two 
agents. Once more this can be attributed to the EBG’s 
conservativeness.

Let us note two important observations. First, the EBG 
agent moves collision-free, regardless of the simulation 
parameters. Second, the worst case for our algorithm is 
when obstacles are moving slowly; then, the handicap 
regarding efficiency is greatest.

Conclusions
In this paper, we introduced the Emergency Braking 
Game and, based on it, an algorithm that allows a vehi-
cle to avoid collisions when navigating through a dense 
crowd of pedestrians, even accounting for worst-case 
pedestrian behavior. Analyzing the technique under 
some simplifying assumptions, we provide a formal proof 
of its safety. In an experimental study comparing it to two 
baseline algorithms, we validated the safety proof, and 
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Fig. 15 Results dependent on the speed of the pedestrians. (left) Number of collisions, (right) Average and median time to reach the goal
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Fig. 16 Results dependent on the number of pedestrians. (left) Number of collisions, (right) Average and median time to reach the goal
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found that the baseline techniques had a significant num-
ber of collisions.

The next step in the development shall be the elimina-
tion of oscillating controls. Future research will addition-
ally focus on omitting the simplifying assumptions we 
have made in this work. In particular, it will involve han-
dling observation uncertainties and partial observation, 
actuator noise, as well as incorporating static obstacles 
and the boundaries of the usable space.
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