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Abstract 

The application of neural networks for nonlinear control has been actively studied in the field of aeronautics. Suc-
cessful techniques have been demonstrated to achieve improved control performance in simulation using deep-
reinforcement learning. To transfer the controller learnt in the simulation of real systems, domain randomization 
is an approach that encourages the adaptiveness of neural networks to changing environments through training 
with randomized parameters in environments. This approach applies to an extended context, with changing work-
ing environments, including model configurations. In previous studies, the adaptive performance of the domain-
randomization-based controllers was studied in a comparative fashion over the model variations. To understand 
the practical applicability of this feature, further studies are necessary to quantitatively evaluate the learnt adaptive-
ness with respect to the training conditions. This study evaluates deep-reinforcement-learning and the domain-rand-
omization-based controller, with a focus on its adaptive performance over the model variations. The model variations 
were designed to allow quantitative comparisons. The control performances were examined, with a specific highlight 
of whether the model variation ranges fell within or exceeded the randomization range in training.
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Introduction
In aeronautics, neural network(NN)-based controllers 
that utilize machine learning have the potential to replace 
existing controllers in terms of improving the efficiency 
of control system construction and responding flexibly 
to disturbances. Supervised learning is often applied to 
replace the role of existing controllers and is expected 
to provide benefits such as more efficient gain schedul-
ing and smoother control [1]. In contrast, deep reinforce-
ment learning is expected to be viable when a teaching 

controller does not exist or to improve the performance 
beyond that of the existing one [2, 3].

The application of NNs for nonlinear control has been 
actively studied in robotics and aeronautics. Particularly, 
simulations have demonstrated techniques that enable 
complex tasks such as trajectory planning [4], aircraft 
landing under wind-induced disturbance [5], swarm 
flight [6], aerobatics [7], and fixed-wing aircraft attitude 
control [8] by optimizing the NN through deep reinforce-
ment learning.

However, it is necessary to design an appropriate 
approach to transfer the controllers learnt in the simula-
tions to real systems. This is because deep reinforcement 
learning generally optimizes the NN for a single environ-
ment represented by the simulator, and the theoretical 
control performance is often not achieved when the real 
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environment differs from the simulation (Reality gap), 
such as friction or time delay [9]. Sim-to-real transfer is 
an approach that applies a simulation-generated control-
ler to a real-world environment without compromising 
its performance, and has been actively studied, specifi-
cally in the field of robotics [10]. Domain randomization 
is one of the approaches in the sim-to-real transfer tech-
nique. For example, domain randomization randomly 
changed the appearance [11, 12] and dynamics [13, 14] of 
objects from episode to episode in the simulation during 
training. NN is optimized to adaptively control the agent 
in these changing environments. In aeronautics, there 
have been examples of domain randomization in multi-
rotor flight control [15] and attitude control using thrust 
vectoring [16–18].

Generally, domain randomization is used to maintain 
theoretical control performance in the real world; how-
ever, its feature of making controllers adaptive can be 
utilized to an extended application, where working envi-
ronments, including model configurations, change. In 
previous studies, sim-to-real transfer was applied to the 
flight control of uncrewed aerial vehicles (UAVs), which 
took multiple forms of model configurations [17, 18]. 
The control performance of the domain-randomization-
based controllers has been successfully studied in a com-
parative fashion over the multiple model variations with 
different physical characteristics [17, 18]. Moreover, it 
will also be essential to evaluate the “working range” to 
what extent the controller can apply to changes in the 
environment. The relationship between the range of ran-
domization in training and the learnt tolerance to envi-
ronmental variations should be examined quantitatively. 
These understandings would be a practical guideline for 
the application of domain-randomization-based control-
lers to a real situation, where a certain degree of uncer-
tainties is expected, such as payload variations as well 
as UAV failure or damage. The aim of this research is to 
apply deep-reinforcement-learning and the domain-ran-
domization- based controller to aircraft control systems. 
In the development of aircraft control systems, it is dif-
ficult to construct a precise model of the entire aircraft 
due to turbulence and increasingly complex systems, and 
furthermore, verification through experiments is costly 
and carries high safety risks. Therefore, if it becomes 
possible to develop control systems based on simulators 
without the need for precise models, there is an expec-
tation that it could lead to cost reduction and shortened 
development time, among other benefits. As a first step, 
This study evaluates deep-reinforcement-learning and 
the domain-randomization-based controller, with a focus 
on its adaptive performance over the model variations. 
The model variations were designed to allow quantitative 
comparisons. The attitude control system for UAV based 

on thrust vectoring, which was constructed in our previ-
ous research [16], was utilized. The weight, inertia, and 
the location of the center of gravity(CoG) of the model 
were varied. The control performances were examined 
with a specific highlight of whether the model variation 
ranges fell within or exceeded the randomization range 
in training.

UAV with thrust vectoring
UAV with thrust vectoring and experimental system
Figure 1 shows a developed UAV with thrust vectorings 
and Fig. 2 shows the system configuration. The UAV has 
four control outputs, which are two Electric Ducted Fans 
(EDFs)(JP Hobby, 120 mm and 14 CELL Motor 673 KV) 
and two actuators (FUTABA, HPS-A700) for thrust vec-
toring to deflect the thrust directions of each EDF. Two 
11.1 V batteries (MATRIX, LiPo 6  s-5100 mAh 35 C) 
were connected in series for each of these EDFs to pro-
vide a 22.2 V power supply. The maximum thrust per 
EDF was 7.25 N and the maximum run time was 5 min. 
The operating range of thrust vectorings is ±25◦.

The UAV is controlled by a Raspberry Pi 3 Model B and 
Pixhawk 4. The Pixhawk senses the UAV states (position, 
attitude, etc. ) and controls the actuators. The Raspberry 
Pi performs control operations using NN. First, all sensor 
information measured by Pixhawk is sent to Raspberry 
Pi. Next, the NN that is implemented in the Raspberry Pi 
calculates the control outputs for the actuators based on 
the sensor information from the Pixhawk, which are sent 
again to the Pixhawk. The operating cycles of Pixhawk 
and Raspberry Pi are 200 Hz and 50 Hz, respectively.

Moreover, to enable the verification of the response of 
the control system to changes in the CoG, weights can 
be mounted outside of the fuselage. The weight, center 
of gravity, and moment of inertia of the UAV can be var-
ied by changing the number and mounting position of 
the weights. These control devices, batteries, and control 
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Fig. 1 Developed UAV with thrust vectoring (3D CAD model)
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equipment are fixed to a plastic fuselage created by a 3D 
printer. Consequently, the total weight of the UAV with-
out the additional weights is 7.0 kg.

The experimental system is shown in Fig.  3. It system 
consists of the UAV and a uniaxial rotation experimental 
device. The UAV is attached to the experimental device so 
that it can only rotate around the pitch ( Yb ) axis. If the UAV 
is not weighted, the distance between the CoG and axis of 
rotation is +49  mm in the X-axis direction and +28  mm 

in the Z-axis direction. The behaviors of the two EDFs 
and thrust vectors are set to be the same, which sufficed 
the control task where the UAV only rotated around the 
pitch axis Therefore, the control output is effectively two 
variables.

Theoretical model
Since this experiment is a uniaxial rotation test without 
translational movement, the experimental system of the 
UAV is modeled in the XZ plane in the global coordinate 
system. The rotational motion model in the XZ plane is 
shown in Fig.  4, and the equation of rotational motion 
around the Yb axis is shown below.

(1)
Iyyθ̈ = mgRG sin(θ + θG)− FxRT cos θT − FzRT sin θT ,

(2)RG =

√

x2G + z2G ,

(3)RT =

√

x2T + z2T ,

(4)θG = tan
−1

(

xG

zG

)

,

(5)θT = tan
−1

(

xT

zT

)

,
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Fig. 2 System configuration
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where Iyy is the fuselage moment of inertia around the Yb 
axis of the aircraft body coordinates, m is the mass of the 
entire aircraft, g is the gravitational acceleration, Fx and 
Fz are the forces that divide the thrust F in the XZ plane, 
G(xg , zg ) is the position of the COG of the UAV with 
respect to the center of rotation in the XZ plane. Because 
the center of rotation of the experimental setup does not 
coincide with the center of gravity of the UAV, RG , RT , 
θG , and θT were defined and transformed as in Eqs. (1-5).

Second, since there is a time delay between the com-
mand input and the generation of thrust force in the 
EDF, the thrust generated by the EDFs is also mod-
eled. It is noted that the counter torque of the EDF is 
ignored because it does not affect the motion of the 
UAV in this experiment. Thrust response measurement 
experiments are conducted to evaluate the relationship 
between the throttle commands and thrust force. The 
thruster is connected to a force sensor, and the throt-
tle command and the generated thrust are measured 
in time series. The measurement results are shown in 
Fig.  5. The first axis shows thrust and the second axis 

shows throttle opening, and the solid line indicates the 
result of measurement by the force sensor, the dashed 
line indicates the result of filtering the measured values, 
and the single-dot dashed line indicates the throttle 
opening. As a result of the analysis of the measurement 
results, the transfer function of the thruster is approxi-
mated by a first order lag model as follows,

where R(S) is the transfer function from throttle signal 
to thrust force, A is the gain for converting the throttle 
signal to thrust, which was obtained from experimental 
results by system identification, Td is the dead time, and τ 
is the damping time constant. In this EDF units, A is 0.58, 
Td is 0.08 s and τ is 0.19 s.

Next, the response of the vectoring servo to the input 
was modeled. With a vectoring nozzle attached to the 
servo, a command (pulse width modulation signal) 
was applied using a step signal spanning from –  50% 
to +50%, and the resulting servo angle response was 
measured. In this servo, the servo rotates – 25 ◦ when 
the command is set to -50%, and the servo rotates +25 
◦ when the command is set to +50%. Furthermore, sys-
tem identification was performed based on the meas-
urement results, and the response of the servo was 
modeled as a first order lag system. The model of the 
servo is shown in Eq.(7).

where G(s) represents the transfer function from the 
servo command signal to the servo angle (in radians), Ks 
denotes the gain with a value of 1.024, and τs represents 
the damping time constant with a value of 0.109.

(6)R(s) = e−sTd

(

A

τ s + 1

)

,

(7)G(s) =
Ks

τss + 1
,
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Comparison of experimental systems and theoretical model
The differences between the experimental system and 
theoretical model are evaluated. The constructed theo-
retical model is implemented in a dynamics simulator 
developed in python to simulate the rotational motion 
of the UAV. In the two models, the models were released 
from the initial pitch angle and oscillated without exter-
nal forces. The free vibration response is shown in Fig. 6.

Figure 6 shows that the responses of the experimental 
system and theoretical model are different. The solid and 
broken lines depict the experimental system and theoret-
ical model vibrations, respectively. The vibration period 
is 6.7% faster for the simulation and the damping ratio is 
32% higher for the simulator. This difference is the typi-
cal reality gap. In the domain randomization approach, 
rather than tuning the theoretical model towards higher 
fidelity, the controller is trained to be robust to the 
difference.

Generation of controller with deep reinforcement 
learning
The controller was generated with the NN structure 
shown in Fig.  7. The inputs (State) to the NN is “pitch 
angle”; “difference between the pitch angle and tar-
get pitch angle”; “pitch angle velocity”; “thrust vector-
ing angle”; and “thrust”. Here, the two EDFs and the 
two thrust vectorings are set to have the same behavior; 
therefore, the “thrust vectoring angle,” and “thrust” are 
one element each. Moreover, the “pitch angle” and “differ-
ence between pitch angle and target pitch angle” are sep-
arated into sine and cosine components so that they have 
smooth value transitions within ±1 , resulting in a total of 
seven input components. The controller outputs are the 
“thrust vectoring angle” and “thrust force”; however, the 

NN outputs were designed as the rate of thrust vectoring 
and force, which are the differences between the next and 
current states. By this definition, the NN outputs were 
directly used in a penalty function as described later.

The long short-term memory (LSTM) layer is set in 
the NN for effective learning when using domain rand-
omization [13, 14, 19]. Under domain randomization, 
the Markov decision process is not necessarily guaran-
teed. Therefore, it becomes essential to use memory-aug-
mented policies [13, 14, 20], or  input time series of states 
to policies [21, 22]. This study employs the approach of 
using LSTM by following its recent success in domain 
randomizaiton [13, 14]. It is assumed that the LSTM 
layer enables adaptive control by implicitly recognizing 
changing dynamics from the stored histories of the sys-
tem’s inputs and outputs. The hidden layers other than 
the LSTM are with the exponential linear unit (ELU) 
activation function, the output layer of the policy func-
tion is with the hyperbolic tangent (tanh) activation func-
tion, and the output layer of the value function is with the 
linear activation function.

During the NN training, the simulation is conducted at 
50 Hz for 5 s, that is, one episode of 250 steps. Different 
initial conditions (initial attitude, initial angular velocity, 
etc.), dynamics, and data processing delay time are given 
for each episode. Initial conditions are generated by uni-
form random numbers, with ranges of ±25◦ for the target 
pitch angle, ±180◦ for the pitch angle, and ±18◦ for the 
pitch angle velocity, respectively. Particularly, the thrust 
vectoring angle and thrust force are generated in the 
range of ±25◦ and 8-66 N, corresponding to the range of 
motion of the actual UAV. The data processing delay time 
ranges from 50–300 ms, with a fixed value per episode.

The concept of the reward function is shown in Eq. 8.

where r is the reward. The aim of the reward function is 
to make the pitch follow the target angle by giving a pen-
alty for the error �θ between the pitch angle and target 
pitch angle. By penalizing the pitch angular velocity θ̇ and 
the control actions, which are the thrust rate aF and vec-
toring rate aT , the oscillatory motion of the actuator is 
suppressed to achieve smooth and lean motion. Further-
more, by penalizing the thrust F, the priority is designed 
so that the attitude is controlled by vectoring the opera-
tion rather than the change in the thrust. The weights 
were set by the coefficients c for the individual terms so 
that approximately 60% of the total penalty is contributed 
by �θ and the rest was evenly shared by others.

Proximal policy optimization (PPO) is applied as the 
learning algorithm [3, 14, 23], where the clip thresh-
old is 0.2 and the learning rates of the policy and value 
functions are 2e-4 and 5e-4, respectively. The dynamics 

(8)r =−(|�θ | + c1|θ̇ | + c2|aF | + c3|aT | + c4F),
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variables varied within the range of Table 1 in each epi-
sode during learning, and the controller was optimized to 
adapt to those variables.

Experiments and evaluations
Experimental conditions
The pitch control experiments were conducted using the 
trained NN controller. The initial pitch angle was where 
the UAV was at the equilibrium by its own weight, and 
the target pitch angle was given at 0 ◦ . As shown in Fig. 3, 
the upright state has a pitch angle of 0 ◦ , whereas the 
equilibrium state is tilted by approximately 110◦ under its 
own weight as shown in the photo labeled “0.1s” in Fig. 9. 
Four variations of the UAV model were prepared by dif-
ferent weights. The variations in the parameters are pre-
sented in Table 2. The same NN was used to control these 
models.

As shown in Fig.  3, Model 1 was the state with no 
weights added, namely, the state closest to the theoretical 
model. Weights were added to Model 1, and the weights 
were made heavier in the order of Model 2, 3, and 4. 
As a quantitative reference to the randomized range in 
training,, Model 2 was set at approximately 50% of the 
randomization range, Model 3 was set at approximately 

100% of the range, and Model 4 exceeded the range of 
randomization.

Experimental results and discussion
Figure 8 shows the experimental results and Figs.  9, 10, 
11, 12 show the behavior of the UAVs during the experi-
ment for each model. In Fig.  8, from left to right, the 
pitch angle, vectoring angle, and total thrust of Models 
1, 2, 3, and 4 are shown in time series, respectively. The 
time series of the experimental results for 6  s (8  s for 
Model 4 only) is shown, with experimental time t = 0 s at 
0.1 s before the start of control.

Figures  8a and 9 showed that in Model 1, the pitch 
smoothly transitioned to the target pitch angle of 0 ◦ as 
soon as the control started, and that the pitch remained 
static after the target attitude was reached. The thrust 
increased to approximately 80 N at the initial start-up, 
but it remained at approximately 50 N in the static state. 
However, the vectoring angle was manipulated rapidly 
in the range from – 25 ◦ to 20 ◦ during the initial start-
up, and it was adjusted agile during the subsequent static 
state. This behavior of maneuvering with vectoring more 
than thrust indicated the successful effect of the thrust 
penalty. Additionally, it was reasonable because the 
thrust operation included the uncertainty in the time 
constant, which should discourage the quick control of 
the thrust force.

In Models 2 and 3, the attitude control is as success-
ful as in Model 1, despite the addition of more weights 
than in the Model 1 situation. The thrust and vectoring 
angle responses behaved similarly to Model 1; however, 
comparing the maximum thrust, the rise in thrust at the 
start of the experiment increased to 80, 100, and 130N as 
the weight increased for Models 1, 2, and 3. These experi-
mental results suggest that the NN adapts to changes in 
the model and adjusts its output during control.

In Model 4, a case that exceeded the training range, 
the pitch angle did not reach the target angle, as shown 
in Fig. 12. Figure 8d showed a repetition of the action of 
trying to raise the pitch to the target attitude but failing 
to reach it and falling back. This behavior is an exam-
ple of control failure when the physical model deviates 
from the domain randomization range. The thrust did 

Table 1 Range of dynamics variables in domain randomization

Variables Range

m ±10%× default

xG ±20mm+ default (49 mm)

zG ±20mm+ default (28 mm)

xT ±10mm+ default (41 mm)

zT ±10mm+ default (-29 mm)

Iyy ±20%× default

Fc ±20%× default

Fz ±20%× default

τ ±0.1s+ default (0.2 s)

Thrust angle offset ±3.0
◦+ default (0.0 ◦ )

128 
LSTM cells

128 
LSTM cells

128 
neurons

128 
neurons

128 
neurons

128 
neurons

Policy

Value

State

Input layer Hidden layer Output layer

· pitch (sin/cos)
· error pitch (sin/cos)
· pitch angular velocity
· vector angle
· thrust

· vector angle
· thrust

Fig. 7 Controller with neural network

Table 2 Model differences

Model Weight, COG, Inertia Iyy

m (xG , zG)

Model 1 – - –

Model 2 +6.1 % (+ 3.8, + 7.5) mm + 11%

Model 3 +10 % (+ 6.4, + 13) mm + 20%

Model 4 +15 % (+ 9.6, + 17) mm + 28%
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Fig. 8 Experimental result of Model 1-4

0.1 [s] 0.2 [s] 0.4 [s] 1.2 [s] 3.3 [s] 5.7 [s]

Pitch = 110°

Pitch = 0°

Fig. 9 Sequential photo of the experiment of Model 1

0.1 [s] 0.5 [s] 1.0 [s] 2.2 [s] 5.5 [s] 7.5 [s]
Fig. 10 Sequential photo of the experiment of Model 2

0.1 [s] 0.4 [s] 1.0 [s] 1.6 [s] 3.4 [s] 7.1 [s]
Fig. 11 Sequential photo of the experiment of Model 3

0.1 [s] 1.1 [s] 2.1 [s] 4.2 [s] 6.0 [s] 7.8 [s]
Fig. 12 Sequential photo of the experiment of Model 4
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not reach the maximum nor even the value observed in 
Model 3. It was reckoned that the thrust penalty discour-
aged the controller to explore the control scenario using 
higher thrust in training. It was noted that even though 
the thrust was not sufficient, the vectoring was controlled 
to maximize the pitching moment, which was reasonable 
to reach the target pitch.

These experiments showed that by including the 
uncertainties of the model in training, it was possible to 
generate an NN controller that could work in the real 
environment. The successful control was observed for 
the model variations when the variations fell in the range 
assumed in the training. These results indicate the pos-
sibility of providing a robust control system for pilots in 
aircraft with a high ratio of fuel to airframe weight, such 
as small aircraft and flying cars, even if the aircraft’s COG 
changes due to the amount of remaining fuel, resulting in 
changes in control performance. Notably, as a nature of 
deep reinforcement learning, the lessons learnt from the 
results tend to be case-specific, specifically for the failure 
behavior for Model 4. The results show the possibility of 
building a controller that can use the limits of the control 
devices (control surfaces and thrusts) to bring the current 
value close to the target value without breaking control, 
even for system that are difficult to control due to their 
physical characteristics.( In other words, like humans, 
they could have demonstrated the possibility of avoid-
ing a crash by using available control devices in response 
to airframe damage or controller failure.) More detailed 
evaluations of the relationship between the randomiza-
tion range, the model variations and the control perfor-
mance are awaited to gain a generalizable understanding.

Conclusion
In this study, deep reinforcement learning utilizing 
domain randomization was applied to the pitch con-
trol of the UAV to demonstrate a control technique that 
adapts to changes in the physical model. First, the UAV 
equipped with EDFs and thrust vectorings was devel-
oped, and the theoretical model was constructed. Sec-
ondly, the NN with the LSTM layer was designed and 
optimized by deep reinforcement learning with domain 
randomization. Finally, the control tests were conducted 
using the same NN on multiple models with different 
COG positions, inertia and weights. These experimental 
results showed that control succeeded for model vari-
ations within the randomization range in training. The 
control failed for the model of which the variation was 
exceeded the randomization range. Through the results, 
the work range of the controller trained by domain rand-
omization was successfully depicted.

In the future, we aim to expand the control target from 
one axis of pitch to six degrees-of-freedom. In such an 

extended control task, in addition to the variation of 
mass, other factors such as delay and thrusts uncertain-
ties should possibly be investigated to verify the control 
performance in reality. Furthermore, the future research 
could look into a control technique for UAVs to perform 
complex tasks by controlling thrust vectoring and mul-
tiple control surfaces. The external disturbance such as 
wind could also be a factor to be considered.
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