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Abstract 

This paper proposes a method to deform a continuum robot into a complex shape with distributed curvature using 
a single motor drive. This continuum robot can be deformed to a desired shape by placing tendon guides at appro-
priate intervals. We used several target shapes, including clothoid and sin curves, as well as a circular curve of con-
stant curvature and confirmed that the deformed shapes match them both in the simulation and prototype. This 
paper proposes two models of continuum robots. One is the Plain Model in which the tendons are parallel to the rod 
and the Penetration Model in which the tendon penetrates to the rod. By placing the penetrating position(s), this 
continuum robot can be deformed into a shape with inflection point(s). We designed a mathematical model to simu-
late the deformed shape of the prototype to obtain the proper placement of the guides and penetration point(s). 
Through the optimization, it was able to find the parameters that, in most cases, result in the error of less than 4% 
between the target and deformed shapes on simulation. We applied these conditions to the prototype and evaluated 
the errors, which were approximately 10% , the same as the related works that use a conventional constant curvature 
model. We think that the results of this paper can be applied to reduce the number of actuators required and the size 
and weight of continuum or biomimetic robots.
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Introduction
The advantages of continuum robots include mechani-
cal flexibility and interactivity with their surroundings. 
Snake-like robots [1, 2] are similar in the shape and have 
a long history; however, the features of continuum robots 
can extend the application fields. In the medical field, 
these robots are used mainly in minimally invasive sur-
gery [3, 4]. Medical robots are responsible for examining 
and treating the affected areas while flexibly deforming 
their bodies to avoid damaging the patient’s body tis-
sues. As a disaster response robot, it is practical to locate 

objects in collapsed debris [5, 6]. This mechanism is also 
used as a manipulator with high grasping capability. They 
are expected to operate in particular environments, such 
as underwater and space [7–9]. Such continuum robots 
are widely modeled as constant curvature models. These 
robots have infinite degrees of freedom [10, 11] and con-
tinuum part(s), whose curve can be approximated with 
continuous tangent vectors [12, 13].

Tendon drive is one of the typical drive mechanisms 
for continuum robots. Many such continuum robots 
employ flexible rods threaded with tendons through 
multiple guides (e.g., [14–16]). The guides are placed at 
regular intervals. The deformation of the rods between 
the guides is assumed to be a circular curve of constant 
curvature [17].

Designing the deformation shape of the entire mech-
anism, rather than focusing only on the end-effector’s 
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position, will enhance the application value of con-
tinuum robots. The shape that is interacting with the 
environment does not have constant curvature in many 
cases. Therefore, the continuum robot can further flex-
ibly adapt and perform tasks such as searching and 
grasping by deforming itself to suit its surrounding 
environment and a grasped object. However, with the 
traditional constant curvature model, it is necessary 
to use multiple actuators to have the deformed shape’s 
curvature distribution. This will increase the weight 
and size of the entire prototype.

There are previous works that use a single actuator to 
obtain multiple curvatures. For example, Oliver-Butler 
et  al. [18] obtained changeable curvature by varying 
the distance between the routed tendon and rod. In 
this study, the distance is given by a linear equation. 
Pogue et  al. [19] achieved this by a magnetically-actu-
ated locking mechanism, which requires the applica-
tion of an external magnetic field. This study requires 
additional parts (magnets, motors) for more complex 
deformations.

This paper proposes a continuum robot that can 
deform along non-constant-curvature shapes (e.g., 
clothoid curve, lemniscate, and omega shape) driven by 
a single motor. This can be realized by designing segment 
lengths separated by guides. The proposed tendon-driven 
continuum robot configuration is a model in which the 
tendon is threaded through the guides to be parallel to 
the rod (Plain Model). To simulate the complex deforma-
tion, we developed a mathematical model. This model is 
used to optimize segment lengths and the winding ten-
don so that the deformed shape matches the target shape. 
Based on the parameters obtained from the optimization, 
we drove the prototype and confirmed that the shapes 
matched with the desired shapes. This method can also 
be applied with the tendon penetrating the rod (Pen-
etration Model). Since the methods can complicatedly 
deform with a single drive, designing smaller and lighter 
continuum robots for complex deformations is possible.

Proposed method
This section describes the components of the prototype 
and the proposed method for producing complex defor-
mations. In the first subsection, we illustrate the robot 
components. The second subsection explains the mod-
els that we tested. The third subsection consists of three 
parts: the first explicates the mathematical modeling 
of the robot components, the second explicates how to 
simulate the deformed shape, and the third describes 
the optimization procedure to make the deformed shape 
match the target shape. The variables and constants are 
defined in Table 1.

Continuum robot design
The continuum robot in this study is mainly composed 
of circular discs as the tendon guides (Fig. 1a), a flexible 
rod (Fig. 1b), two tendons, and a tendon pulling mecha-
nism with a single motor (POLOLU-3078) that winds the 
tendons (Fig. 1c). The flexible rod is made of TPU (Ther-
moplastic Polyurethane resin, TPU95A, Ultimaker) and 
fabricated by a 3D printer (Raise3D E2, Raise3D Tech-
nologies Inc). The solid discs were made using chopped 
fiber CFRP (nylon/CCF material, Onyx, Markforged) as 
the material and were fabricated them using a 3D printer 
(Mark Two, Markforged). The rod has a circular cross 
section with a diameter of 4 mm and has a 1.3 mm × 0.4 
mm groove in the axial direction across the entire rod 
(Fig. 1b, left). The discs are secured in position along the 
rod by fitting their protrusions into other circumference 
grooves placed at regular intervals in the rod (Fig.  1b, 
right). The discs are 3 mm thick (Fig. 1a). The holes in the 
center of the discs are used for passing the rod. In addi-
tion, several holes (here in after called ‘guide holes’) are 
drilled in the discs to thread the tendons through.

The distance between the discs can be adjusted freely, 
and the rod is deformed by pulling a tendon through the 
discs. The rod and discs are assembled such that the pro-
trusion part of the discs can fit into the rod grooves, so 
that the discs do not rotate around the rod. The tendon 
is threaded through the guide holes. The disc placed at 
the endpoint of the rod is secured to one endpoint of 
the tendon by Fixture 1 (Fig. 1d). The other endpoint of 
the tendon is secured to the pulley (Fig.  1f ). Fixture 2 
(Fig.  1e) constrains the positional relationship between 
the rod and the motor. The rod is deformed by winding 

Fig. 1  The parts that make up the prototype and appearance 
of the prototype. a, b The disc and rod’s cross-sectional shape 
and the rod’s side. c Driving motor. d Fixture 1 for attaching 
to the end of the rod and securing the tendon. e Fixture 2 that holds 
the motor and rod in place. f Pulley for winding the tendon. g Driving 
the prototype
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the tendon using the motor (Fig. 1g). The design assumes 
that the tendons do not sag when the rod deforms.

Another tendon is placed antagonistically in the same 
way, and a single motor drives these two tendons to 
deform the rod in opposite directions. When restoring 
the shape of the rod, it is necessary to wind one tendon 
and feed another tendon simultaneously. Therefore, as 
shown in Fig. 1f, a pulley with a partition was designed to 
prevent the tendons from tangling with each other.

Proposed wiring methods
Plain model
As shown in Fig. 2a, the Plain Model is a simple model 
with two tendons stretched parallel to the axial direction 
of the rod.

Penetration model
To realize S-shape deformation, we propose the Penetra-
tion Model in which the tendons penetrate the rod as 
shown in Fig.  2b. In this model, we make one or more 
holes in the rod so the tendons can be passed through. 
This can be mathematically modeled by modifying the 
Plain Model.

Procedures for the rod’s shape simulation and optimization
We propose a mathematical simulation that considers 
tendon tension differences between the rod segments, 
making it possible to search for conditions under which 
the deformed shape matches the target shape. The tar-
get shape can be not only a circular curve with constant 
curvature but also a complex deformation. Grasshopper, 
a modeling support tool of Rhino 6, a 3DCAD software 
with a parametric design feature, is used for realizing 
the simulation. In addition, the physics simulator plug-
in Kangaroo2 and optimization plug-in Octopus are also 
used.

Mathematical model of the rod segment and tendon
We modeled the rod segment with linear and torsion 
springs. In this study, the rod is modeled with three linear 
springs and two torsion springs per 10 mm. The tendon 
section is modeled as linear springs, as illustrated in Fig. 3a. 
The discs of the prototype are modeled as a spring, a 
damper, and “two” torsion springs, as shown in Fig. 3b. The 
disc model can be attached to the rod at the connection 
points (Fig. 3(a)) of any rod’s linear springs, and the tendon 
is attached to the connection points of the disc model’s.

The discs are not deformable. We define the disc-mod-
el’s linear springs are sufficiently stiff and their length is 
R. Precisely, the disc part (in Fig. 3) should be defined as a 
rigid body to constrain the relative positions of the rod and 
disc (i.e., tendon). However, the discs are defined as stiff 
springs (Fig. 3b) to simplify the simulation model. The tor-
sion spring on the rod side constrain to be at a right angle 
between the rod and the discs. Meanwhile, weak torsion 
springs are installed to simulate the bending stiffness of the 
tendon around the disc-models.

We determined the tendon’s linear spring constant ( kL,t ) 
and the rod’s torsion spring constant ( kT,r ) to simulate the 
prototype’s deformation as follows. The linear springs were 
assumed to be sufficiently stiff ( kL,t = 2 · 104 N/m). kT,r 
was approximately defined from the classical cantilever 
beam deflection equation [18] and the relation between the 
torsion spring constant and torque:

where I is the sectional secondary moment of the rod, E 
is Young’s modulus of TPU and L is the total length of 
the rod (Fig. 4a). We determined the appropriate value to 
simulate the bending of the prototype’s rod.

The entire continuum mechanism is modeled as a series 
of segments (Fig. 3d) separated by the discs. The entire con-
tinuum mechanism is modeled as N segments, which are 
divided by N + 1 discs. The natural length of the tendon at 
the nth (1 ≤ n ≤ N ) segment is Ln , and the actual length of 
the tendon after deformation is ln . This value corresponds 
to the tendon length between the discs on deforming the 
prototype (Fig.  4b). When simulating the Plain Model 
(Fig. 3(a)), we define Ln(t = 0) = (1− w/L)dn , where dn is 
the natural length of the rod in the nth segment. This value 
can also be the length between the disc and disc (Fig. 4a). 
w is the length of the tendon winding. When simulating 
the Penetration Model (Fig. 3c), we define j as the segment 
number to be drilled. The Lj(0) is calculated as:

and the tendon’s center point is anchored at the connec-
tion point of the center of the jth segment. The sum of 

(1)kT,r =
3EI

L
,

(2)Lj(t = 0) = (1− w/L)
√

d2j + (2R)2,

Fig. 2  How to thread the tendons and the shape after deformation 
of each model. a Plain Model. b Penetration Model
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Ln plus w equals the total length of the rod. Ln is shorter 
than the natural length of the rod in the nth segment.

Simulation of the deformed rod shape
When the motor pulls the tendon, the tendon is tense due 
to the difference between the actual and natural lengths 

of the tendon. This causes each segment to deform in 
a bow-like shape (Fig.  3e). Hooke’s law can be used to 
calculate the tension in the tendon between the guides 
(discs in the prototype).

In the case of an actual tendon, the tendon moves 
across the discs. Also, for all segments, the tension in the 
tendon eventually reaches the same value, i.e., there is an 
equilibrium between segments. However, in the simula-
tion model, there will be a difference in tension between 
adjacent segments. To remove the gap between the actual 
tendon and simulation, we propose to redistribute the 
natural length of the tendon between adjacent segments 
according to the difference in tension. The redistribution 
algorithm should change the natural length of segment 
tendons at the next time step so as to decrease the ten-
sion difference between neighboring segment tendons. 
Specifically, in the recursive algorithm, Ln(t) is the Ln at t, 

Fig. 3  Mathematical model of the rod deformation and deformed-shape optimization. a We define the rod as linear and torsion springs for each 
interval separated by the disc. b The connection points of the tendon and segment are restrained with torsion springs of different strengths. c 
Mathematical model of the Penetration Model. The connection points of the tendon are constrained at the center of the segment. d The segments 
are parts of the rod between the discs. e The rod deforms like a bow for each segment, and the tendon’s linear springs are stretched to generate 
different tensions

Table 1  List of valuables and parameters used in the 
mathematical models

dn [mm] Rod segment’s length 
between the nth disc 
and the n+ 1 th disc.

Ln [mm] Natural length of the tendon 
between nth disc and n+ 1 th disc.

ln [mm] Actual length of the tendon 
between nth disc and n+ 1 th disc.

Tn [N] Tension generated in the tendon 
between nth disc and n+ 1 th disc.

w [mm] Length of the tendon to be wound.

L [mm] Total length of the rod.

R [mm] Radius of the disc.

E [N/mm2] Young’s modulus of the rod.

I [mm4] The rod’s cross-sectional secondary 
moment.

N + 1 Number of discs.

M Number of representative points 
and target points.

kT,r [N·m/rad] Torsion spring constant of the rod.

kL,r [N/mm] Linear spring constant of the rod.

kL,t [N/mm] Linear spring constant of the ten-
don.

Fig. 4  a The prototype design variables. b Correspondence 
between the simulation and the prototype. c Difference in deformed 
shape of the prototypes. (i) In case the disc is placed at regular 
intervals. (ii) In case the disc is not placed at regular intervals
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Ln of the next step is Ln(t +�t) , and the tendon tension 
is Tn(t) can be written as follows:

where T0(t) = T2(t) , TN+1(t) = TN−1(t) , and τ is a time 
constant. The recursive algorithm terminates when the 
tension difference is sufficiently slight for each segment 
(concretely, when tension difference ≤ 1.0 · 10−4 N).

Optimization of the rod’s deformation shape
The prototype can deform into a complex shape with 
diverse dn (Fig. 4c). We optimize the position of the disc 
to make the deformed shape closer to the target shape. 
Figure 5 shows the flow chart of the optimization. We 
simulate the rod’s deformation by considering the ten-
sion difference in the tendon between each segment.
M representative points (Fig.  6, red points) are 

arranged to equally divide the total length of the rod 
into M + 1 parts. Target points (Fig.  6, yellow points) 
are arranged at equal intervals on the target shape. The 
distance between adjacent representative points must 
equal the distance between the target points along 
the curve. Let (xm, ym) be the coordinates of the mth 
(1 ≤ m ≤ M) representative point and (xt,m, yt,m) be the 
coordinates of the corresponding the target point. In 
this study, optimization by a genetic algorithm is per-
formed to minimize the following objective function:

where the input is the coordinates of the target point 
(xt,m, yt,m) . The genes are dn and w. We calculate the fit-
ness from Eq. (5).

We evaluated the errors of the simulation’s deformed 
shapes for the total rod length, L. We used the root mean 
square (RMS) of the distance between the target and the 
representative point pair. The shape’s error evaluation 
formula, E(z), can be expressed as shown in Eq. (6).

The optimization algorithm terminates when the value of 
Eq. (5) is below a threshold value ( z ≤ 1 ) and the genera-
tion number is above a threshold value (generation num-
ber ≥ 100 ). This method can simulate a deformed shape 
of a tendon-driven continuum robot when the tendon 
tension can be calculated.

(3)
Ln(t +�t)− Ln(t) =− τ (Tn(t)− (Tn−1(t)+ Tn+1(t))/2)

(4)Tn(t) =− kL,t(Ln(t)− ln(t))

(5)z =

M
∑

m=1

{(xm − xt,m)
2 + (ym − xt,m)

2},

(6)E(z) =

√

z

ML2
.

Fig. 5  Flowchart of the shape optimization

Fig. 6  The representative points and target points. The distance 
between the point pairs gets closer with time evolution
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Result
For the Plain Model and the two different Penetration 
Models, we optimized the winding length of the ten-
don, w, the segment lengths, dn , and the segment num-
ber to be drilled, j, so that the deformed shapes of the 
rod approach the target shapes. We selected three target 
shapes for each model.

We used Eq. (6) to evaluate the error between the 
deformed shape and the target shapes. We used a fixed 
camera and image processing software (Click Measure 
[20]) to measure the distances between the target points 
and representative points on the prototype. Note that the 
error does not contain the in- and out of direction of the 
design plane (xy-plane in Fig. 6)

Plain model
We used the curves shown in the upper row in Fig. 7 as 
the target shapes. The first is a circular curve (the top plot 
in Fig. 7a). This is often used to approximate the shape of 
a continuum mechanism in the constant curvature model 
in related works. The second is a clothoid curve (the top 
plot in Fig.  7b) with a curvature that increases propor-
tionately to the curve length from the starting point. This 
curve is expressed as κ = As , where κ is the curvature, s is 
the curve length, and A is an arbitrary constant. The third 

is a lemniscate curve (the top plot in Fig. 7c) with a curva-
ture that is a nonlinear function. This curve is expressed 
using a polar equation as r2 = a2 cos 2(θ − π/4) , where a 
is an arbitrary constant.

Optimization setup of plain model
The total length of the deformed rod part is 180 mm. 
The target shapes are similarly enlarged so that the curve 
length is the same as the rod. We define N = M = 6 (i.e., 
set six representative points on the simulated rod and tar-
get points on the target shape). We also set the minimum 
segment length to 5 mm, the maximum to 90 mm, and 
the increment to 5 mm. For the winding tendon length, 
we set the minimum to 1 mm, the maximum to 125 mm, 
and the increment to 1 mm.

Simulation results of plain model
Table 2 shows the parameter values (the wound length of 
the tendon, w, and the initial length value between each 
segment, dn ) obtained by the optimization. The middle 
row in Fig. 7 shows the simulation results. Figure 8 (blue, 
Target-Simulation) shows the errors between the target 
shapes and the simulated deformed shapes. The values 
were calculated using Eq. (6). The results show that the 
errors between the target shapes and the simulations are 

Fig. 7  Target shapes and deformed shapes of simulations and prototypes. Deformed shapes are achieved by optimization of Plain Model. a Circular 
curve. b Clothoid curve. c Lemniscate
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less than 6% . Especially when the clothoid curve is the 
target shape, the error is less than 2%.

Prototype results of plain model
We drove the prototype based on the parameters 
obtained from the optimization and observed the defor-
mation. The bottom row in Fig. 7 shows the prototype’s 
shapes after deformation. We evaluated the prototype in 
the same way as the simulation. Figure 8 shows the exper-
imental results, i.e., the errors between target shapes 
and prototype deformations (orange, Target-Prototype). 
The errors are generally the same for the three curves, 
remaining less than 9%.

Penetration model (i)
Next, we used curves whose curvatures are reversed 
once, such at the S-shaped curve and sinusoidal curve 
at the target shapes. The curves shown in the upper row 
of Fig. 9 are the target shapes. The first is a curve con-
sisting of two half circles (the top plot in Fig. 9(a)). The 
second is a sin curve (the top plot in Fig. 9(b)), which 
uses the shape of a curve with one period. The third is 
a curve that is an extension of a sin curve (the top plot 
in Fig. 9(c)) [21]. This expression, hf (x) , can be written 
as follows:

(7)hf (x) = (c1x + c2x
2) sin(kx).

We drill the hole in the center of the segment where the 
tendon penetrates the rod.

Optimization setup of penetration model (i)
The optimization determines the jth segment to be 
drilled, w, and dn . We define N = 6 guides and M = 9 
representative points. We also set the minimum seg-
ment length to 5 mm, the maximum segment length to 
50 mm, and the increment to 5 mm. For the winding 
tendon length, we set the minimum to 1 mm, the maxi-
mum to 75 mm, and the increment to 1 mm. Other 
conditions are the same as in the optimization of the 
Plain Model.

Simulation results of penetration model (i)
Table  3 shows the parameter values (j, w, and dn ) 
obtained by the optimization. The tendon penetrates 
the rod at an inflection point on the target shapes.

Prototype results of penetration model (i)
The bottom row in Fig.  9 shows the prototype’s shapes 
after deformation. Figure  10 shows the experimental 
results, i.e., the errors between the target shapes and 
prototype deformations (orange, Target-Prototype). The 
errors are larger than that in the simulation results, yet 
they remain less than 12%.

Table 2  Optimization result of the Plain Model

Unit [mm] w d1 d2 d3 d4 d5 d6

(a) Circular curve 37 50 15 20 25 30 40

(b) Clothoid curve 26 15 15 15 25 30 80

(c) Lemniscate 59 10 25 35 50 35 25

Fig. 8  The error comparison between the target and deformed shapes (simulation and prototype). The value is calculated from Eq. (6)
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Penetration model (ii)
We verified the effectiveness of the proposed method for 
the target shapes where the curvature is reversed twice. 
In other words, we observed the deformed shape when 

the rod had two holes where the tendon penetrates. We 
used the target shapes obtained from the approximation 
given in a previous work[22] (Fig. 11, upper row). There 
are two reasons for adopting these curves. First, we can 

Fig. 9  Target shapes and deformed shapes of simulations and prototypes. Deformed shapes are achieved by optimization of Penetration Model 
(i). The point indicated by the arrow is the inflection point of the simulations and prototypes. The blue points are the inflection points of the target 
shapes. a Circular curve. b Sin curve. c hf (x)

Table 3  Optimization result of Penetration Model (i)

Unit [mm] j w d1 d2 d3 d4 d5 d6

(a) Circular curve 4 49 45 15 20 30 20 50

(b) Sin curve 4 25 45 10 20 50 30 25

(c) hf (x) 2 16 40 50 10 35 20 25

Fig. 10  The error comparison between the target and deformed shapes (Penetration Model (i))
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obtain different curves by changing a single parameter. 
The second is that this curve always has two reversal 
points of curvature. The approximation used is proposed 
as a mathematical model of a flexible beam with linear 
elasticity and is given by

where b is an arbitrary constant. By changing the value of 
b, we can obtain all target shapes used in this study while 
keeping the same curve length.

Optimization setup of penetration model (ii)
We optimized the parameters (w and dn ) so that the 
deformed shapes match the target shapes at b = 0.912 , 
0.606, 0.3 in Eqs. (8) and (9). In this experiment, we 
drilled holes in the second and fourth segments ( j = 2 , 
4). The total length of the deformed rod part was 150 
mm. We defined N + 1 = M = 6 . Other conditions 
of w and dn were the same as in Penetration Model (i) 
optimization.

(8)
x =

∫ t

0

cos(B sin(2πs))ds

y =

∫ t

0

sin(B sin(2πs))ds, (0 ≤ t ≤ 1)

(9)

B = 2.22− 0.281b

− 4.533b2 + 6.385b3 − 3.494b4, (0.3 ≤ b ≤ 0.912)

Simulation results of penetration model (ii)
Table 4 shows the parameter values (w and dn ) obtained 
by the optimization. The middle row in Fig. 11 shows the 
simulation results. Figure  11 (blue, Target-Simulation) 
shows the errors between the target shapes and the simu-
lation’s deformed shapes. Although the errors are larger 
than that in Penetration Model (i), they are still less than 
4%.

Prototype results of penetration model (ii)
The bottom row in Fig. 11 shows the prototype’s shapes 
after deformation. Figure  12 shows the experimental 
results, the errors between the target shapes and pro-
totype deformation (orange, Target-Prototype). For the 
deformed shape with b = 0.3 , the maximum value of w 
is selected.

Discussion
The errors in the simulations were generally less than 4% . 
The distance, dn , between the discs tended to be longer 
when the curvature of the target shape was more signifi-
cant. The shape’s error increased for shapes with larger 
deformation (e.g., Fig. 7 (c)).

All the prototype error values exceeded the simulation’s 
error rates. We confirmed larger errors between the target 
points and the representative points along the rod toward 
the rod’s tip. The friction between the tendon, disc, and 
rod was not considered in the simulation, which may have 
caused the increased error value in the prototype.

Fig. 11  Target shapes and deformed shapes of simulations and prototypes. Deformed shapes are achieved by optimization of Penetration Model 
(ii). a b = 0.912 . b b = 0.606 . c b = 0.3
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The range of lengths of dn becomes narrower as the 
number of disc is increased, and the total length of the 
rod remains the same. In this case, the deformed shape of 
the continuum robot is close to the shape approximated 
by the constant curvature model. This limits the vari-
ation of the target shape that can be fitted. Meanwhile, 
decreasing the number of discs reduces the segments 
that can be partially fitted to the curvature of the target 
shape. Therefore, the optimal number of discs depends 
on the target shape and the total length of the rod.

An even greater variety of behaviors can be achieved by 
increasing the number of actuators and tendons. When 
the users set multiple target shapes, they need to perform 
the optimization process in this paper for each shape. 
Each deformed shapes can be made closer to the target 
shapes. We can combine those target shapes by adjusting 
the amount of tendon winding for each actuator.

Conclusion and further work
In this paper, we proposed a method for a complexly 
deforming continuum robot that cannot be represented 
by the conventional constant curvature model using a 
single motor drive by adequately positioning the discs on 
the rod. We achieved this by using the proposed math-
ematical model and a genetic algorithm to search for 
the parameters (winding length of the tendon, w, seg-
ment lengths, dn , and segment number to be drilled, j) to 
deform the rod close to the target curve. We simulated 

complex deformations by taking into account the ten-
don tension equilibrium. The average error for total rod 
length was less than 4% in the simulation and approxi-
mately 10% in the prototype.

The approximation errors were less than or equal to 
that of the constant curvature model obtained in previ-
ous studies (e.g., [23, 24]). The solution obtained by the 
optimization was adapted to prototypes. It was con-
firmed that deformations close to the target shape were 
obtained.

When the target shapes are known, the results 
obtained in this study provide optimal configurations of 
continuum mechanisms along the shape. For example, 
to explore complex environments, the continuum robot 
not only deforms passively in response to the environ-
ment but also actively along the path to enable the tip 
to access its destination readily. When grasping an 
object, the continuum mechanism actively deforms to 
the object shape, which is the target shape. For surface 
irregularities, the continuum mechanism deforms pas-
sively for fitting. The two types of deformation enable 
the grasping of an object.

Another application would be to design soft robots 
that mimic organisms that exhibit specific deformed 
shapes. For example, it is known that a clothoid curve 
can approximate the shape of a plant vine [25]. When 
making a robot hand that imitates this curve, it is pos-
sible to give it a configuration in which the deformed 

Table 4  Optimization result of penetration model (ii)

Unit [mm] w d1 d2 d3 d4 d5

(a) b = 0.912 24 35 15 45 35 20

(b) b = 0.606 55 25 25 45 35 20

(c) b = 0.3 75 35 10 45 40 20

Fig. 12  The error comparison between the target and deformed shapes (Penetration Model (ii))
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shape is close to this curve. It can also be used to build a 
robot that mimics the gait of a caterpillar [26]. By using 
the deformed shape of the actual caterpillar’s body as 
the target shape, it is possible to reproduce the shape 
partially [22, 27]. In this paper, the rod was deformed by 
a DC motor. If a small actuator (such as an SMA actua-
tor) can control the position of the disc dynamically, we 
can switch multiple target shapes. The overall size and 
weight of the robot can be reduced while maintaining 
the same degree of freedom and workspace.
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