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Abstract 

In the field of autonomous mobile robotics, reliable localization is important. However, there are real environments 
where localization fails. In this paper, we propose a method to estimate localizability based on occupancy grid 
maps. The localizability indicates the reliability of localization. There are several approaches to estimate localizability, 
we propose a method to estimate localizability as a covariance matrix of the Gaussian distribution using local map 
correlation. Our method can estimate the magnitude of the localization error and the characteristics of the error. To 
confirm the effectiveness of the proposed method, we constructed simulation environments that include representa‑
tive shapes of indoor environments. We conducted an experiment to investigate the characteristics of the distribution 
of local map correlation. Furthermore, we also conducted an experiment of our method to estimate localizability 
on occupancy grid maps. The simulation experiment results showed that the proposed method could estimate 
the magnitude of the localization error and the characteristics of the error on occupancy grid maps. The proposed 
method was confirmed to be effective in estimating localizability.
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Introduction
Autonomous navigation of mobile robots requires locali-
zation and mapping capabilities. This problem is called 
simultaneous localization and mapping (SLAM) and has 
been actively researched. These methods [1, 2] calculate 
the covariance matrix of the robot poses for the iterative 
closest point  (ICP)  registration. When the covariance is 
smaller, the localization uncertainty is smaller [3].

Reliable localization is important for autonomous 
mobile robots in tasks such as SLAM, navigation [4], and 
exploration [5]. Therefore, mobile robots are required to 
move based on the reliability of localization. However, in 

real environments, there are several environments where 
degeneration is likely to occur. The representative shapes 
of indoor environments are as follows:

• Complex shape environment is unlikely to degener-
ate because it can be distinguished from the sur-
rounding shapes.

• Simple shape environment such as a corridor is likely 
to degenerate because the surrounding shapes over-
lap in the longitudinal direction of the corridor.

• Circular arc shape environment is likely to degener-
ate in the rotational direction because the surround-
ing shapes overlap in the rotational direction.

• Repeating pattern shape environment is likely to 
degenerate because the surrounding shapes overlap 
at constant intervals.

• Larger shape environment than sensor measurement 
range is likely to degenerate because the sensor can-
not acquire surrounding shapes.
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In this paper, we propose a method to estimate localiz-
ability based on occupancy grid maps. The localizability 
indicates the reliability of localization. If the localizability 
is high, the ability to accurately estimate robot poses at 
that location is high. If the localizability is low, the abil-
ity to accurately estimate robot poses at that location is 
low. By estimating the localizability of the occupancy 
grid map, we can estimate the reliability of localization 
for each location on the map. For example, it can detect 
locations likely to lose robot poses due to degeneration 
problems.

There are several approaches to estimate localizability, 
and we previously proposed a method to estimate localiz-
ability as a covariance matrix of the Gaussian distribution 
using local map correlation [6]. However, the method 
does not consider the robot rotation. In this paper, we 
use a covariance matrix of the Gaussian distribution con-
sidering robot rotation and estimate localizability.

The contributions of this study are as follows:

• The algorithm of our method was constructed to 
estimate localizability as a covariance matrix of the 
Gaussian distribution using local map correlation.

• The characteristics of the distribution of local map 
correlation were shown for representative shapes of 
indoor environments.

• The estimation of localizability by our method for the 
whole area of occupancy grid maps is demonstrated.

Related work
Probabilistic localization methods, such as Bayes filters, 
estimate the distribution of robot poses [7]. A larger dis-
tribution implies a weaker belief, and a smaller distribu-
tion means a stronger belief. Therefore, we can determine 
the degree of confidence based on the distribution size.

There are other studies that seek to find the achievable 
accuracy of localization [8, 9]. The covariance of the esti-
mation is theoretically evaluated based on the Cramer-
Rao lower bound, which is the inverse of the Fisher 
information matrix.

A different approach, which explicitly models and esti-
mates the reliability of localization, has been researched 
[10]. Here, it is formulated in a localization graphical 
model with the reliability added as a hidden variable, and 
a rao-blackwellized particle filter (RBPF) is used to per-
form simultaneous robot pose and reliability estimation.

The proposed method is an approach to estimate local-
izability for the whole map area offline in advance, rather 
than simultaneously estimating reliability during online 
localization. Our method estimates localizability using 
only occupancy grid map data as input, without sensor 
measurement data. Several methods for estimating local-
izability have also been researched. Early research on 

localizability is based on information entropy [11]. The 
method [11] uses the entropy of the probability func-
tion to model the uncertainty of the robot poses. Apply-
ing the formulation of [8, 9] to probabilistic grid maps, 
the method [12] obtained the Fisher information matrix 
as a localizability matrix using a laser beam scan meas-
urement model. In contrast, our method does not scan 
the beam, but uses a correlation measurement model to 
directly obtain a covariance matrix. This has the advan-
tage of utilizing information of not only occupied space 
but also free space and unknown space. The method [13] 
uses lidar and UWB to estimate localizability for geomet-
rically featureless tunnel-like environments. In contrast, 
our method can estimate localizability for not only tun-
nel-like environments but also circular arc shape environ-
ments, repeating pattern shape environments, and larger 
shape environments than sensor measurement range. 
The proposed method and [12] estimate localizability 
for 2D maps, while some studies are for 3D maps. The 
method [14] computes localizability using constraints 
based on the surface normals of the 3D shape. In addi-
tion, method [15] performs segmentation of 3D point 
clouds and then obtains feature vectors from normals, 
eigenvalues, etc., and uses them to compute localizability. 
These methods [13, 14] and [15] is highly dependent on 
the environment and difficult to pre-determine in a reli-
able manner. To cope with this problem, [16] proposes a 
learning-based method for estimating localizability from 
a single lidar scan. The paper [17] also proposes a method 
for estimating localizability based on deep learning. 
Action selection and path planning using localizability 
have also been proposed by [18–20], and [21].

Our method uses a correlation measurement model to 
estimate localizability. Thus, it is similar in some respects 
to correlation-based localization methods. Correlation-
based grid localization [22] uses a histogram filter and 
a correlation model to estimate robot poses. Correlative 
scan matching [23] uses least squares and a correlation 
model to estimate robot poses. Compared to localiza-
tion, the proposed method estimates localizability for the 
whole map area, not the current robot pose.

Correlation of local maps for localizability 
estimation
Template matching methods
The proposed method uses local map correlation for esti-
mate localizability. Specifically, the distribution of local 
map correlation is calculated by template matching from 
template images and local maps. Template matching is a 
method that the template image is slided over the input 
image and calculates the correlation of each location on 
the input image [24]. In this paper, the template image is 
slided over the local map and calculates the distribution 
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of correlations. In addition, the template images are cre-
ated circular shapes based on a 2D lidar with a scanning 
angle: 360 [deg].

Figure 3 shows the distribution of correlation calculated 
by template matching from the Fig. 1 template image and 
the Fig. 2 local map. Figure 1 size is a circular shape with 
a radius of ± 6 [m] and Fig. 2 size is a ± 8 [m]. The slid-
ing range of the template images is ± 2 [m]/0.2 [m]. Here, 
Fig. 3 shows that the shape of the distribution of corre-
lations depends on the template matching algorithm. 

Therefore, an appropriate template matching algorithm 
should be selected.

The following template matching methods are available. 
The equations for each method are shown in Eqs. (1, 2, 3, 
4, 5, 6, 7) [24]. In Eqs. (1, 2, 3, 4, 5, 6, 7), M(x′ + x, y′ + y) 
represents the pixel values of the local map, and T (x′, y′) 
represents the pixel values of the template image.

• Sum of Squared Difference (SSD)
• Sum of Absolute Difference (SAD)
• Normalized Sum of Squared Difference (NSSD)
• Normalized Cross Correlation (NCC)
• Zero-mean Normalized Cross Correlation (ZNCC)
• Zero-mean Cross Correlation (ZCC)
• Cross Correlation (CC)
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Fig. 1 Template image

Fig. 2 Local map

Fig. 3 Distribution of correlation using Figs. 1 and 2 as a template image and a local map



Page 4 of 17Kondo et al. ROBOMECH Journal           (2023) 10:22 

(5)SZNCC(x, y) =

∑

x′,y′
(

T
(

x′, y′
)

− µz

)(

M
(

x′ + x, y′ + y
)

− µm

)

√

∑

x′,y′
(

T
(

x′, y′
)

− µz

)2
√

∑

x′,y′
(

M
(

x′ + x, y′ + y
)

− µm

)2

(6)

SZCC(x, y) =
∑

x′,y′

(

T
(

x′, y′
)

− µz

)(

M
(

x′ + x, y′ + y
)

− µm

)

(7)SCC(x, y) =
∑

x′,y′

(

T
(

x′, y′
)

M
(

x′ + x, y′ + y
))

Comparison in 1D sliding window
To select the best template matching method for estimate 
localizability, we performed a simple experiment. We 
used the template images of Figs.  4 and 7 and the local 
maps of Figs. 5, 6, and 8, respectively, in one-dimensional 
horizontal dimension. Figure 4 template image is a sim-
plified example, picking up only the free space. This is 
because the algorithm used when constructing the occu-
pancy grid maps does not assume a situation where only 
occupied space or unknown space exist. Figure  5 local 
map has free space on the left and occupied space on the 
right. Figure  6 local map has free space on the left and 
unknown space on the right. These are because Fig.  4 
template image is only free space and the local map is 
only unknown space or occupied space from the region 
of free space. Assuming a real environment, typical tem-
plate images and local maps are shown in Figs. 7 and 8. 
The template image size is 6× 6  [m] and the local map 
size is 15× 6 [m]. Next, the template image was slided by 
9 [m] / 0.05 [m] from the left edge of the local map to cal-
culate correlation. Correlation values were compared in a 
one-dimensional sliding window in the horizontal direc-
tion. Here, the pixel value of free space, occupied space, 
unknown space were, 254, 0 and 127, respectively.

Figure  9 shows the results of the correlations in the 
case of using Figs. 4 and 5 as the template image and local 
map. Figure 10 shows the results using Figs. 4 and 6. Fig-
ure 11 shows the results using Figs. 7 and 8.

Figure  9 shows that SSD, SAD, NSSD, NCC, and CC 
have constant correlation in the 0–1.5 [m] sliding range. 
This is because the free space of Figs. 4 and 5 overlap in 
the 0–1.5  [m] sliding range. On the other hand, ZNCC 
always has constant correlation peaks, and ZCC has cor-
relation peaks that are not stable. Thus, ZNCC and ZCC 
are considered inappropriate.

Figure  10 shows that SSD, SAD, NSSD, NCC and CC 
have constant correlation in the 0–1.5  [m] sliding range. 
This is because the free space of Figs. 4 and 6 overlap in the 
0–1.5 [m] sliding range. However, NCC in Fig. 10d has two 
correlation peaks. Thus, NCC is considered inappropriate.

Figure  11 shows that SSD, SAD, NSSD, NCC, and 
ZNCC have a correlation peak at 2 [m] sliding range. This 
is because the free space and occupied space of Figs.  7 
and 8 overlap at 2  [m] sliding range. In contrast, NSSD 
in Fig.  11c has constant correlation in the 3.75–9  [m] 
range, and CC always have constant correlation in the 
0–2 [m] and 5–7 [m]. Thus, NSSD and CC are considered 

Fig. 4 Template image of free space only

Fig. 5 Local map of free space on the left and occupied space 
on the right

Fig. 6 Local map of free space on the left and unknown space 
on the right

Fig. 7 Template image of free space on the left and occupied space 
on the right

Fig. 8 Local map of free space on the left, occupied space 
in the middle, and unknown space on the right



Page 5 of 17Kondo et al. ROBOMECH Journal           (2023) 10:22  

Fig. 9 Distribution of correlation using Figs. 4 and 5 as a template image and a local map

Fig. 10 Distribution of correlation using Figs. 4 and 6 as a template image and a local map
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inappropriate. Based on these results, SSD and SAD are 
considered to be the appropriate template matching 
methods. In response, we decided to choose, SAD as the 
correlation model used in this paper.

Estimation of localizability as covariance
We propose a method to estimate localizability as a 
covariance matrix using local map correlation by SAD. 
Figure 12 shows the localizability estimation algorithm of 
the proposed method. First, we trim the template image 
and the local map from the occupancy grid maps Next, 

the template image is slided over the local map and the 
distribution of correlation is calculated by SAD. There 
are several ways to express localization error in terms of 
probability distributions, typical methods is to use the 
Gaussian distribution. Therefore, in this paper we use 
local map correlation to estimate localizability as a covar-
iance matrix of the Gaussian distribution. As in the cor-
relation distribution in Fig.  12, if the correlation values 
in the grid have values corresponding to the weights, the 
expression of the covariance matrix of the Gaussian dis-
tribution is as in Eq. (8).

Fig. 11 Distribution of correlation using Figs. 7 and 8 as a template image and a local map

Fig. 12 Localizability estimation algorithm using correlation model on occupancy grid maps
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Here, wi,j,k in Eq. (8) is weights. We have conducted basic 
experiment on several patterns of how the correlation 
values obtained by SAD are converted into weights. The 
higher the similarity between the template image and the 
local map, the lower the correlation value for SAD, so the 
weights were determined as in Eq. (9).

In Eq. (8), xi , yj and θk are the positions of the weights in 
the distribution of correlation in Fig. 12, and µx,µy and µθ 
are the average positions of the weights. The denomina-
tor 

∑x′
i=0

∑y′
j=0

∑θ ′
k=0 wi,j,k means normalisation. The k in 

Eq. (8) is a parameter that determines covariance magni-
tude, called the noise level [25]. We determined the k so 
that the magnitude of the covariance was appropriate as 
a localization error. The k is a scalar value. It is also pos-
sible to express localizability in terms of scalar values by 
using the determinant of the covariance matrix as in Eq. 
(10).
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The localizability uncertainty value e represents the esti-
mated magnitude of the localization error. The �1 and the 
�2 and the �3 in Eq. (10) show the first and second and 
third eigenvalues of Eq. (8). We can visualize the localiz-
ability in terms of scalar values by calculating the local-
izability uncertainty value e. The covariance matrix is 
calculated for each cell on occupancy grid map to esti-
mate the localizability of the whole map area. In this way, 
we can estimate the magnitude of the localization error 
and the characteristics of the error of the occupancy grid 
maps.

Experiments
Distribution of correlation
To confirm the effectiveness of the proposed method, 
we construct simulation environments that include rep-
resentative shapes of indoor environments, and conduct 
experiments  for these environments: complex shape, 

(10)e :=
√

det(�SSAD) =
√

�1�2�3

Fig. 13 Simulation environment containing complex shape, simple 
shape, circular arc shape, and repeating pattern shape

Fig. 14 Simulation environment containing complex shape 
and larger shape than sensor measurement range
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simple shape, circular arc shape, repeating pattern shape, 
larger shape environment than sensor measurement 
range. The simulator is Gazebo. The built environment is 
shown in Figs. 13, 14. The mobile robot performed SLAM 
on these environments to obtain occupancy grid maps. 
Figure 15 shows a mobile robot running and performing 
SLAM. The resulting occupancy grid maps are shown in 
Figs. 16, 17. Here, the pixel value of free space, occupied 
space, unknown space were, 254, 0 and 127, respectively.

We conducted an experiment to investigate the char-
acteristics of the distribution of local map correlation for 
representative shapes of indoor environments. The envi-
ronments used complex shape environment (Fig.  16A), 
simple shape environment (Fig.  16B), circular arc 
shape environment (Fig.  16C), repeating pattern shape 
environment(Fig.  16D) and larger shape environment 
than sensor measurement range (Fig. 16E). The template 
image and the local map are trimmed from these envi-
ronments, and the local map correlation is calculated 
using SAD. The template images are created circular 
shape based on a 2D lidar with scanning angle: 360 [deg] 

Fig. 15 Mobile robot in a simulation environment

Fig. 16 Occupancy grid map containing complex shape, simple 
shape, circular arc shape, and repeating pattern shape

Fig. 17 Occupancy grid map containing containing complex shape 
and larger shape than sensor measurement range

Fig. 18 Location where the shape is complex and degeneration 
is unlikely to occur
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and detection distance: ± 6 [m]. The local map sizes are 
±  8  [m]. The sliding range of the template images are 
± 2 [m]/0.2 [m], ± 60 [deg]/10 [deg], and the correlation 
is calculated.

We confirmed the characteristics distribution of cor-
relation where complex shape environment and degen-
eration is unlikely to occur. First, the template image and 
local map were trimmed from Fig.  16  A. The trimmed 
template image and the local map show Figs. 18a and b. 
Figure  19 shows the results of the distribution of cor-
relation between the template image Fig.  18a and the 
local map Fig. 18b. Figure 19 shows that the correlations 
become smaller near the center. This means the high sim-
ilarity between Fig. 18a and b near the center.

Next, we confirmed the characteristics distribu-
tion of correlation where simple shape environment 
and degeneration is likely to occur. First, the template 
image and local map were trimmed from Fig.  16B. 
The trimmed template image and the local map show 
Fig.  20a and  b. Figure  20 shows the results of the dis-
tribution of correlation between the template image 
Fig.  20a and the local map Fig.  20b. Figure  21 shows 

(a) (b)
Fig. 19 Distribution of correlation x and y at the location where the shape is complex and degeneration is unlikely to occur

Fig. 20 Location where the shape is simple and degeneration 
is likely to occur

(a) (b)
Fig. 21 Distribution of correlation x and y at the location where the shape is simple and degeneration is likely to occur
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a valley of correlation in the longitudinal direction of 
the corridor. This means the high similarity between 
Fig. 20a and b in the longitudinal direction.

Next, we confirmed the characteristics distribution 
of correlation where circular arc shape environment 
and degeneration is likely to occur. First, the template 
image and local map were trimmed from Fig.  16C. 
The trimmed template image and the local map show 
Fig.  22a and b. Figures  23 and 24 show the results of 
the distribution of correlation between the template 
image Fig.  22a and the local map Fig.  22b. Figures  23 
and  24 show a valley of correlation in the θ direction. 
This means the high similarity between even if Fig. 22a 
is rotated around the center and Fig. 22b.

Fig. 22 Location where the shape is a circular arc and degeneration 
is likely to occur

(a) (b)
Fig. 23 Distribution of correlation x and θ at the location where the shape is a circular arc and degeneration is likely to occur

(a) (b)
Fig. 24 Distribution of correlation y and θ at the location where the shape is a circular arc and degeneration is likely to occur
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Next, we confirmed the characteristics distribution of 
correlation where repeating pattern shape environment 
and degeneration is likely to occur. First, the template 
image and local map were trimmed from Fig.  16D. The 
trimmed template image and the local map show Fig. 22a 
and  b. Figure 25 shows the results of the distribution of 
correlation between the template image Fig. 25a and the 
local map Fig.  25b. Figure  26 shows several correlation 
peaks at constant intervals in the longitudinal direction 
of the corridor. This means the high similarity between 
Fig.  25a and b at a constant interval in the longitudinal 
direction.

Next, we confirmed the characteristics distribution of 
correlation where larger shape environment than sensor 
measurement range and degeneration is likely to occur. 
First, the template image and local map were trimmed 
from Fig. 17E. The trimmed template image and the local 
map show Fig.  27a and b. Figure  27 shows the results 

of the distribution of correlation between the template 
image Fig.  27a and the local map Fig.  27b. Figure  28 
shows that the correlations are plotted at a constant 
value. This is because Fig. 27a has only free space, so slid-
ing Fig. 27a does not change the correlation.

Localizability for whole map areas
To estimate the localizability of the whole map area, we 
use the occupancy grid maps in Figs.  16 and 17. First, 
the correlation distribution is calculated for each cell 
on the occupancy grid maps. Here, we assume that the 
robot does not invade unknown or occupied space. Then, 
the distribution of correlation is calculated only for the 
points corresponding to the free space. The template 
images are created circular shape based on a 2D lidar 
with scanning angle: 360  [deg] and detection distance: 
± 6 [m] and ± 8 [m]. The local map sizes are ± 8 [m] and 
±  10  [m]. The sliding range of the template images is 

Fig. 25 Location where the shape is repeating patterns 
and degeneration is likely to occur

(a) (b)
Fig. 26 Distribution of correlation x and y at the location where the shape is repeating patterns and degeneration is likely to occur

Fig. 27 Location larger than sensor measurement range 
and degeneration is likely to occur
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± 2 [m]/0.2 [m], ± 60 [deg]/10 [deg], and the correlation is 
calculated. Next, the covariance matrix is calculated from 
the distribution of correlation. Figures  29 and 31 show 
the error ellipses, first eigenvectors, and standard devia-
tion of angle calculated from the covariance matrix. Here 
the error ellipses are plotted in blue, the first eigenvectors 
in black, and the standard deviation of angle in red. Fur-
thermore, Figs. 30 and 32 visualize the localization of the 
entire map area using the localizability uncertainty value 
e. Figures 30 and  32, the localizability uncertainty value 
e in the unknown and occupied spaces is set to 0. The 
localizability uncertainty value e in Fig.  32a and  b have 
limits of 100 and 20, respectively, because the maximum 
value is very high.

The results for the template image ± 6  [m] are shown 
in Figs.  29a, 30a, 31a, 32a, and the results for the tem-
plate image ± 8 [m] are shown in Figs. 29b, 30b, 31b, 32b. 
Comparing the size of the error ellipses in Fig. 29a and b, 
it can be seen that the error ellipse in Fig. 29b is smaller. 
Also, comparing the localizability uncertainty value e in 
Fig.  30a and b, it can see that Fig.  30b is smaller. Com-
paring the size of the error ellipses in Fig.  31a and b, it 
can be seen that the error ellipse in Fig.  31b is smaller. 
Also, comparing the localizability uncertainty value e in 
Fig. 32a and b, it can see that Fig. 32b is smaller. These 
results confirm that the larger the template image, the 
higher the reliability of localization.

Figure 29A shows that the complex shape environment 
have a smaller error ellipse than other environments. 
This indicates that degeneration is unlikely to occur. 
Also, Fig. 30 shows that complex shape environment have 
lower localizability uncertainty value e than other envi-
ronments. This means higher reliability of localization 

than in other environments. These results confirm that 
the proposed method can estimate the locations where 
degeneration is unlikely to occur from the occupancy 
grid map.

Figure  29B shows that the simple shape environment 
have a larger error ellipse in the longitudinal direction of 
the corridor than other environments. This indicates that 
degeneration is likely to occur in the longitudinal direc-
tion of the corridor. Also, Fig. 30 shows that simple shape 
environment have a higher localizability uncertainty 
value e than other environments. This means lower reli-
ability of localization than in other environments. These 
results confirm that the proposed method can estimate 
the location where degeneration is likely to occur in the 
longitudinal direction of the corridor from the occu-
pancy grid map.

Figure 29C shows that the circular arc shape environ-
ment have a larger standard deviation of angle than the 
other environments. This indicates that degeneration 
is likely to occur in the rotation direction. Also, Fig.  30 
shows that circular arc shape environment have a high 
localizability uncertainty value e. This means low reli-
ability of localization. These results confirm that the 
proposed method can estimate the locations where 
degeneration is likely to occur in the rotation direction 
from the occupancy grid map.

Figure  29D shows that the repeating pattern shape 
environment have a larger error ellipse than the error 
ellipse for the complex shape environment (Fig.  29A). 
This indicates that degeneration is likely to occur. Also, 
Fig. 30 shows that repeating pattern shape environment 
have a higher localizability uncertainty value e than the 

(a) (b)
Fig. 28 Distribution of correlation x and y at the location larger than sensor measurement range and degeneration is likely to occur
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Fig. 29 Localizability as covariance at sampled robot poses on the occupancy grid map containing complex shape, simple shape, circular arc 
shape, and repeating pattern shape



Page 14 of 17Kondo et al. ROBOMECH Journal           (2023) 10:22 

complex shape environment (Fig.  29A). This means low 
reliability of localization. These results confirm that the 
proposed method can estimate the locations where 
degeneration is likely to occur in the repeating pattern 
shape environment from the occupancy grid map.

Figure  31E shows that the larger shape environment 
than sensor measurement range have a larger error ellipse 
than the other environment. This indicates that degener-
ation is likely to occur. Also, Fig. 30 shows that the lager 
than the sensor measurement range shape environment 
have a higher localizability uncertainty value e than other 
environments. This means low reliability of localization. 
These results confirm that the proposed method can esti-
mate the locations where degeneration is likely to occur 
in the lager than the sensor measurement range shape 
environment from the occupancy grid map. The previous 
results confirm that it is effective to use the covariance 
matrix of the distribution of correlation by SAD using 
occupancy grid maps to estimate localizability.

Conclusion
In this paper, we proposed a method to estimate local-
izability as a covariance matrix of the Gaussian distri-
bution using local map correlation based on occupancy 
grid maps. First, an experiment was conducted to com-
pare several correlation models to select the best tem-
plate-matching method for localizability estimation. 
As a result, SAD was selected. The proposed method 
trims the template image and local map for each cell 
on the occupancy grid map and calculates the local 

map correlation by SAD. Using local map correlation 
by SAD, localizability is then estimated as a covariance 
matrix. To confirm the effectiveness of the proposed 
method, we constructed simulation environments 
that include representative shapes of indoor environ-
ments, and conducted experiments  for these environ-
ments: complex shape, simple shape, circular arc shape, 
repeating pattern shape, larger shape environment than 
sensor measurement range. We conducted an experi-
ment to investigate the characteristics of the distribu-
tion of local map correlation for representative shapes 
of indoor environments. The experiment results show 
that the correlation distribution characteristics dif-
fer depending on the environment shapes. Then, we 
conducted an experiment to estimate localizability on 
occupancy grid maps. The experiment results showed 
that our method could estimate the magnitude of the 
localization error and the characteristics of the error 
for complex shape, simple shape, circular arc shape, 
repeating patterns shape, and larger shape environ-
ment than sensor measurement range. The localizabil-
ity for the whole area of occupancy grid maps could 
then be estimated. Therefore, the proposed method was 
confirmed to be effective in estimating localizability.              
                 

As a future work, we would like to conduct experi-
ments using a real robot equipped with sensors and in 
outdoor environments.

(a) (b)
Fig. 30 Localizability map of Fig. 29: the localizability uncertainty value e represents the estimated magnitude of the localization error



Page 15 of 17Kondo et al. ROBOMECH Journal           (2023) 10:22  

Fig. 31 Localizability as covariance at sampled robot poses on the occupancy grid map of larger shape environment than sensor measurement 
range
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Abbreviations
SLAM  Simultaneous localization and mapping
ICP  Iterative closest point
SSD  Sum of squared difference
SAD  Sum of absolute difference
NSSD  Normalized sum of squared difference
NCC  Normalized cross correlation
ZNCC  Zero‑mean normalized cross correlation
ZCC  Zero‑mean cross correlation
CC  Cross correlation
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