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Abstract 

Dexterity training helps improve our motor skills while engaging in precision tasks such as surgery in the medical field 
and playing musical instruments. In addition, post‑stroke recovery also requires extensive dexterity training to recover 
the original motor skills associated with the affected portion of the body. Recent years have seen a rise in the usage of 
soft‑type actuators to perform such training, giving higher levels of comfort, compliance, portability, and adaptability. 
Their capabilities of performing high dexterity and safety enhancement make them specific biomedical applications 
and serve as a sensitive tools for physical interaction. The scope of this article discusses the soft actuator types, char‑
acterization, sensing, and control based on the interaction modes and the 5 most relevant articles that touch upon 
the skill improvement models and interfacing nature of the task and the precision it demands. This review attempts to 
report the latest developments that prioritize soft materials over hard interfaces for dexterity training and prospects of 
end‑user satisfaction.
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Introduction
This review provides a systematic summary of the most 
recent applications of soft-actuated wearables used for 
dexterity training. The rest of this section consists of two 
parts that will serve as background information for the 
following areas of this review. The first part of this sec-
tion focuses on briefly introducing manual dexterity. It 
is to be noted that most of the papers included in this 
review are related to recovery or improvement of hand 
dexterity, used components, and some disorders capable 
of causing an impairment that deteriorates dexterity. The 

second part of this section presents soft actuators, types 
of soft actuators currently used, and some applications.

Manual dexterity
Most activities of daily living (ADLs) demand a certain 
degree of manual dexterity to be successfully executed. 
Manual dexterity refers to the “ability to grossly handle 
objects using the hand” [1], which, in turn, includes the 
synchronization between arm, wrist, hand, and fingers 
to manipulate the object. This motor skill implies a com-
bination of many factors such as reaction time, sensibil-
ity, nerve conduction, grip strength, and mobility [2]. In 
addition, manual dexterity relies on both the propriocep-
tive system to track hand movements and touch sensory 
systems to send information about the objects in contact 
with [3]. Due to the importance and impact that manual 
dexterity has on the quality of life, many ways of quantify-
ing it had been developed. Two of the most common tests 
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are the Box and Blocks Test (BBT) and the Jebsen-Taylor 
Test of Hand Function (JTTHF). In BBT, the patient must 
change one at a time, the most possible wooden cubes 
from one side to another in a one-minute lapse [4]. In 
JTTHF, the results of the hand functions evaluated are 
obtained by simulating seven different scenarios from 
activities of daily living [5].Yancosek et al. in 2009 present 
a detailed review of dexterity assessments in [6]. Due to 
the involvement of neural, muscular, and skeletal mecha-
nisms in manual dexterity, many disorders, and diseases 
can lead to impairments in this ability, thereby, resulting 
in a reduction of the overall quality of life. Patients with 
multiple sclerosis are frequently affected with impaired 
manual dexterity [7]; individuals with diabetic peripheral 
neuropathy also suffer from reduced hand dexterity [8]; 
hand motor impairment is also a very common conse-
quence of stroke [9]; spinal cord injury [10] also makes 
patients prone to suffering from manual dexterity disabil-
ities. Treatment for recovery of manual dexterity depends 
on the type of impairment. However, common therapy 
includes assisted repetitive task practice (RTP), which is 
oriented to train actions that resemble those of activities 
of daily living and, if possible, strength training.

Emergence of soft actuators
Soft actuators are responsible for motion production 
in a soft robot. Soft actuators can be defined as “highly 
deformable materials or composites that can be acti-
vated by external stimuli to generate desired motions 
and forces/torques” [11]. Most of the time, bidirectional 
actuation is achieved by using a biologically inspired ago-
nist–antagonist arrangement of soft actuators [12]. Soft 
actuators have distinctive advantages against the tra-
ditional rigid actuators in the sense that involve lower 
manufacturing costs, are lighter, more compliant, and 
more efficient in terms of power to weight ratio (PWR) 
[13, 14]. Regarding dexterity training, rehabilitation, and 
assistance purposes, soft actuators stand out by provid-
ing a broader range to support complex motions, are 
highly adaptable to the environment where they inter-
act, and have a safer interaction with the user [15]. 
Some types of soft actuators currently used are [15]: 
fluid powered (either pneumatic or hydraulic), electrical 
motor-driven plus cable power transmission, enabled by 
chemical reaction, and soft actuators made from active 
materials. Active materials can be actuated by receiv-
ing external stimuli such as photons, thermal, magnetic, 
or electric field, depending on the material [14]. Some 
active materials used in soft actuators are shape mem-
ory alloys (SMAs), dielectric elastomers, magneto-active 
elastomers (MAEs), liquid crystalline elastomers (LCEs), 
hydrogels, and actuators made from piezoelectric mate-
rials. In recent years, soft-actuated wearables have been 

used to impart dexterity training, either for rehabilitation 
or for specialized skill development purposes. Figure  1 
shows the number of publications per year consider-
ing the selected keywords and time period in this review 
[16]. It can be noted that the keywords ’Actuators AND 
Wearables’ show the sharpest upward trend over the past 
5 years.

The main contributions of this paper can be summa-
rized as follows: 

1 To provide a broad overview of the state-of-the-art 
soft-actuated wearables used for dexterity training 
by making an extensive search across different data-
bases. Search methodology and selection criteria are 
also presented.

2 To report the five most relevant applications 
reviewed in the selected research area.

3 To present our findings about studies with great 
potential that did not fulfill all the search require-
ments but are related to the review topics, e.g., non-
wearable devices for assistance or non-dexterity 
training soft wearables.

The remainder of this work is organized as follows: 
Methodology section determines the criteria for search-
ing, excluding, and selecting the papers summarized in 
this review. The "State-of-the-art" section review for the 
selected period and reports the five most relevant studies 
at the end of the section. The "Inferences" section sum-
marizes our findings of this review study. Finally, "Con-
clusion" section provides the conclusions of this review.

Materials and methods
This section reports the search methodology and selec-
tion criteria used for this review.

Search strategy
As mentioned in Fig.  1, the search keywords for this 
review were actuators ‘and’ haptics, actuators ‘and’ wear-
ables, dexterity ‘and’ assist, dexterity ‘and’ simulation, 
dexterity ‘and’ soft wearables, and dexterity ‘and’ weara-
bles. We covered the following databases for an extensive 
search: PubMed, MDPI, Google Scholar, ACM, Frontiers, 
Advanced Robotics, Jstage, JSME and Scientific Reports. 
The databases were also searched for specific names 
of dexterity soft wearables along with the mechanical 
features containing novel and basic construction level 
of actuators. Finally, the obtained studies were exam-
ined in order to assess additional articles to include in 
this review. Data such as size, gender, population, study 
details, analysis, and statistical outcome were extracted 
and entered as a matrix to provide a comprehensive over-
view of dexterity simulations. We have considered many 
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metrics to define the data base classification which will 
be detailed in the next subsection.

Selection criteria and PRISMA chart
As mentioned in the PRISMA chart shown in the Fig. 2, 
research articles are scrutinized carefully to include 
88 pieces to ensure the insertion of different categories 
of research, as structured in this review chapter. The 
PRISMA chart also depicts the various inclusion and 
exclusion criteria followed during the screening process 
and they were also explained in the Table  1. The figure 
depicts the relevant library journal databases identifying 
similar research on the soft actuator development and 
their applications. The classification was based on the tar-
geted disorder, types of sensors and interaction modes, 
wearability characteristics and VR utilization. Research 
related to the soft wearable simulations, and a latest trend 
done so far is also detailed in this review. There are sev-
eral uncovered amount of data in this review, the follow-
ing narrative is an overview of dexterity simulations and 
its statistical findings were also detailed in this review

State of the art review
This section reports the various selected papers catego-
rized into relevant sections.

Soft actuators—types and characteristics
As the title suggests, we have intended to define a com-
prehensive evaluation of the several articles which utilize 
soft wearable fabricated with actuators for developing 
various dexterity training applications and soft robotics. 
Soft actuators are originally manufactured to reproduce 
biological structures that can be physically adaptive and 
multi-operative. Many parameters influence the develop-
ment of soft actuators to enhance the performance cri-
teria, which are more compliant in both industrial and 
medical/surgical applications. In this article, we have tab-
ulated the detailed description of the vital actuators and 
their properties in the Table 2.

Soft actuators possess the characteristics and mate-
rial properties which have been successfully used in sev-
eral fields of rehabilitation and assistive devices for both 
lower and upper limbs. The overview of the types of actu-
ators used in the relevant studies have been categorized 
from the summary.

Upper limb‑based soft actuators utilized during the dexterous 
training
The term dexterity mainly implies the motor skill-sets 
obtained in the individual’s hands. Quite a few applica-
tions have been advanced to strengthen and efficiently 

Fig. 1 Number of publications for the searched keywords during the selected period [16]
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assess the functioning of the upper limbs. This part of 
the soft actuator section includes a brief discussion of 
the soft actuators widely employed for accessing various 
parts of the upper extremity. Grasping is identified as a 
significant activity and evaluation of this motion is highly 
recommended as it involves independent motor control 
relevant to the arm motions. The extra-finger algorithm 
proposes an integration of bimanual tasks based on con-
trol applied with EMG signals obtained from the cap-
based design. It introduces the manipulation of five tasks 
to stimulate the patient’s paretic limb, making it possi-
ble to sustain the available motor ability [17]. Vibrotac-
tile feedback-based glove enhances the dexterity of four 
fingers in the upper arm wherein it incorporates the VR 
games to improve motivation during rehabilitation [18]. 

The soft actuator composition also covers the artificial 
pneumatic gel muscles (PGMs) utilized to examine the 
muscle loading and unloading effects for all motions of 
the upper limb [19]. Some research utilizes soft robots 
during fluoroscopy and x-ray examinations, including 
pneumatic flexible microactuator (FMA)-based towel or 
pillow controlled with different air pressures to examine 
the conditions of the patient’s stomach [20, 21]. A study 
explores discrimination levels of the fingers and wrist 
movements while utilizing pneumatic actuators in the 
form of assistive gloves. In this study, the EMG signals 
drive the actuators for different DOFs of hand motions 
where a high discrimination rate is confirmed and mutual 
movements of both fingers and wrist is crucial for the 
users with dexterity problems [22]. A similar study 

Fig. 2 Preferred Reporting Items for Systematic Reviews and Meta‑Analyses (PRISMA) flow diagram. The PRISMA chart details the search and 
selection strategy employed during the work

Table 1 An outline of the classification criteria considered in the methodology

Muscles Inclusion Exclusion

Publication Type Peer‑reviewed, full text, English language articles dated till 
2021

Non‑English articles, Editorials, review articles, letters, practice 
guidelines, conference abstracts, new articles

Study design The study includes dexterity and soft wearables functionali‑
ties or assessments are included

Study in which claims are not relevant, the purpose, scope, and 
experimental setup not relatable or wearables were excluded

Conditions of Interest Haptics, soft wearables, VRapplications are included N/A

Outcome Study emphasizes the dexterityclinical outcomes are widely 
covered

N/A
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proposes the development of 2-DOF based multi-articu-
lated soft robotic finger that uses PWM-PID control for 
actuation [23]. A controller design enhances the system 
dynamics for the grasping mechanism from a rigid to 
soft manipulations avoiding slipping of the objects [24]. 
The sit to stand motion enables better performance of 
an orthosis patient and such movement requires a sys-
tem to reduces muscle activity and generates high joint 
torque. A group of elastic actuators were used in the form 
of adjustable tendons performing the recommended sit 
stand motion [25].

Lower limb‑based soft actuators utilized during the dexterous 
training
Few researches address the primary cause for neuro-
logical deficits occurs mainly concerning motor and psy-
chological factors. Neurological rehabilitative therapy 
focuses on the recovery of motor functions, cognitive 
performance, and proper working of the sensory and 
cardio-respiratory functions after stroke survivors. The 
lower limb-based dexterous applications were very few 
compared to the upper limb dexterous training. One 
study proposes the orthosis survivors rehabilitation sys-
tem, especially in the ankle with the development of a soft 
wearable robot by Kwon et al. in 2019 [26]. The design is 
concerned with the bending motions of the ankle using 
the pneumatic artificial muscles (PAMs) to assist the 
dorsiflexion (DF) and plantarflexion (PF) motions. The 
subject showed improved gait with the use of soft actua-
tors along with the bio-mechanics of the leg movements. 
The study [27] reports that the perturbations can support 
the evaluation of the postural control, which presents 
a balance exercise suit composed of PGMs. The IMUs 
and solenoid valves ensure the control command for the 
artificial muscles and prove that the exercise suit signifi-
cantly affects producing disturbances.

A similar article was proposed by Bae et al. in 2018 [28] 
that introduces a soft exosuit that assists DF and PF for 
the paretic ankle. The actuator block consists of 2-DOF 
based driving motor unit with gear combinations. A 
novel control strategy was established to analyze the 
gait motion, including ankle movement’s peak force and 
motor power consumption ratio. The kinematics of ankle 
was well studied with better compliance and more signif-
icant potential in detecting the swing phase of the ankle 
motions. The electrical muscle stimulation (EMS) based 
feedback actuation units are more reliable and easy to see 
the repetitive and abstruse gait motions. Hassan et al. in 
2018 [29] proposed an EMS-based actuation model inte-
grated with the force sensing resistors (FSR) fabricated as 
a shoe insole. Heel stepping is one of the motions con-
sidered and shown better results in coordinating the calf 

muscle group.The research developed a powered ortho-
sis using a soft actuator for body weight support on the 
treadmill. This study confirms the improvement in the 
stiffness of the hip and knee joints [30]. It is required to 
study the loading and unloading effects of the actuators 
and research proposes an experimental evaluation of the 
characteristics of the pneumatic actuator while develop-
ing a lower limb power suit [31].

Interaction modes and feedback types
This article focuses on soft wearables with actuators 
for dexterity training as one of the most common skill 
enhancement tools in soft robotics. Skill recovery is often 
integrated with an interactive environment that may 
involve different information exchange and assistance 
modes. Therefore, it is necessary to mention the most 
commonly observed types and feedback methods to clar-
ify the significant soft robot actuator approaches. Con-
sidering the said period and search keywords, we have 
found the most frequently used feedback modes: audi-
tory, visual, haptic, and multimodal. Figure 3 shows the 
main components of the skill recovery systems presented.

Haptic feedback
The haptic field explores the areas of touch and sens-
ing modalities, which can be further combined with 
force feedback through various actuators, mainly aid-
ing in flexion and extension motions of fingers with 
robotic glove-type modules [41]. A functional magnetic 
resonance-based wearable suit uses force cues in hand 
rehabilitation with task-specific exercises [37]. Hand dex-
terity during finger rehabilitation with the stretch strain 
motions of flexion and extension is proposed in the arti-
cle [51] which is a form of force feedback [52]. A simi-
lar study enhances skin stretch feedback enabling error 
augmentation for reducing the entropy during postural 
control [53]. Multimodal haptic feedback in [54] was 
highly recommended and studied for enhancing grip 
force reduction in robotic surgery. The study proposes 
haptic feedback in the form of sensing, kinaesthetic force, 
vibration-based cues and the study [53] introduces force 
feedback with grip control. Conductive Zebra fabric 
(HITEK) sensor exerts haptic control and sensing in [32] 
while piezoresistive EeonTex LG-SPLA fabric, IMU unit 
(MTi-3, XSens, Netherlands) were utilized for gait detec-
tion [28] and Phantom haptic Device and four 3D cam-
eras (3 Kinect v1 and 1 Kinect v2) in [50]. The feedback 
exerted from a glove fabricated with a stack of 5 flex bend 
sensors plays a vital role [55] and pancreas model-based 
force sensing calibration was introduced in [56]. Finger 
flexion and thumb abduction motions were studied with 
the actuation from soft pneumatic actuators enhancing 
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the vibrotactile feedback [57]. The other kind of haptics 
mode, the electro tactile feedback obtained from the 
EMG electrodes to actuate the soft robotic sixth finger, 
was proposed in [17].

Multimodal feedback
Multimodal feedback is mainly involved in ADLs such 
as interaction with a virtual environment that combines 
auditory, visual and haptic feedback which is utilized in 
the articles [58] where the study is based on the biman-
ual coordination. The subject interacts with virtual space 
powered by CHAI3D with multipoint contact tools and 
haptic interaction was done through the same CHAI3D 
with a single-point contact tool called Omega 7.

 (i) Haptic and visual feedback: In [46], deep-sea explo-
ration of biological organisms was done by obtain-
ing haptic feedback from the flexible sensors in the 
form of discrete actuations and a camera installed 
inside the pressure vessel serves as visual cues for 
identifying the motions of deep-sea organisms. The 
perturbation-based dexterity was established with 
both visual feedback in the form of human eyes 
observation and force feedback applied through the 
force from brushed DC motors [59]. Some studies 
examined the coordination and independency of 
finger movements. Training includes modulation 
of grip strength by pressure sensors and glove con-

trol mechanism by flex sensors providing assistive 
haptic sensation. On the other hand, the therapeu-
tic circumstances have training in augmented real-
ity with visual illusion [60, 61]. Insoles-based stud-
ies contribute primarily to tracking motions and 
analyzing impact forces using pressure sensors and 
vibration motors and minimal use of motion track-
ing systems providing visual feedback [62]. Visuo-
haptic feedback was introduced in [47], which is in 
the form of deceptions from vibrotactile actuators, 
and the Vive head mount display (HMD) has pro-
vided a virtual reality (VR) experience with haptic 
illusions.

 (ii) Auditory and visual feedback: Object grasping con-
figuration using decision-making algorithm was 
proposed in [63] through the stereo vision systems 
to produce virtual 3D image and depth sensors give 
depth map which helps enhance the algorithm. 
Serious games have a significant role in improving 
dexterity training utilizing a virtual reality environ-
ment. Commercially available exergaming models 
use the leap motion controller for training patients 
during rehabilitation. Patients must provide per-
ceptional feedback through questionnaires [64]. 
The article [65], which proposes pre-programmed 
gameplay for hand dexterity with different levels of 
assessment and gameplay dynamics, is similar to 
the berg balance test (BBT).

+

Skill recovery 
therapy

Interactive environments

AR

10 m

VR

Auditory Visual Haptic Multimedia

MR

Feedback

Fig. 3 Main components of the skill recovery systems presented in this work
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Sensors—types and use cases
Sensors allow the system to capture the values from the 
required parameters to control the sequence, speed, and 
force necessary to impart the dexterity training. For dex-
terity training purposes, variables such as angles between 
joints, force, velocity, acceleration, angular velocity, and 
orientation are measured.

Research to make sensors wearable devices dates back 
at least to the 1960 s [66]. Recent advances in the design 
and manufacturing of sensors made integrating many 
types of sensors into wearable devices possible. These 
advances also allowed lower prices. Sensors made for 
wearables must fulfill some features, including small size, 
lightweight, high sensibility, low power consumption, 
and low cost. The use of sensors in wearable devices has 
the advantage of capturing data from the user’s natural 
environment, and thus, more meaningful data for the 
solution of the problem [67].

Electroencephalogram (EEG), electromyogram (EMG) 
and capacitive sensors perform touch-related interfaces 
and sensing. Electrical sensors with electrode-based 
interfaces and optical and chemical wearable sensors for 
measuring vital signs [66]. Table  3 describes the most 
used sensors in dexterity training applications.

Sensors typically used in dexterity training systems

1 Inertial measurement unit (IMU) sensor: This type 
of sensor is usually used for motion detection and 
joint-angle measurement. It is comprised of an accel-
erometer, a gyroscope, and sometimes, a magnetom-
eter. Once the acceleration and angular velocity data 
are fused, the orientation of the rigid body can be 
determined. Regarding wearability, it is common to 
use IMUs based on Microelectromechanical Sys-
tems (MEMS), which are ideal for wearable applica-

Table 3 Summary on the sensors utilization during dexterity simulation‑based training

Type of sensor SIP (system in pack 
age) configuration

Fabrication type Characteristics/
Specifications

Applications Applications

Inertial measure ment 
unit (IMUs)

3‑axis gyroscope, 3‑axis 
accelerometer and 3‑axis 
magneto‑ meter

1. IGlove for three fingers 
2. Exosuit

1. MPU‑9250 from Inven‑
Sense 2. Bosch Sensortec 
BNO055’s

Manual dexterity for 
upper limb

[8, 68]

N/A Exosuit MTi‑3, XSens, Nether‑
lands

Paratic ankle assistance [28]

N/A Hip assistance MPU‑9150 from In 
venSense

Skin stretch evaluation [69]

3‑axis with barometric 
pressure sensor

Wrist worn IMU Resense with 10‑DOF Assess arm assistance [70]

N/A EMS based IMUs at 
tached to the hand

9‑DOF per finger point Finger dexterity [35]

N/A Exoskeleton for elbow N/A Elbow rehabilitation [48]

Accelerometer and flex 
sensor

Exosuit for thumb 9 DOF (Bosch BNO055, 
breakout board by 
Adafruit)

Application evaluation [34]

Force sensing 
resistors(FSRs)

N/A Shoe insoles Supports foot pronation 
and supination

Foot strike assistant [29]

Vibrotactile force sensor Desk‑fixed mounting Honey‑well FSS1500 In‑hand dexterity [47]

Wearable hard prototype MW‑AHRS, NTRexLAB 
and Flex force, Tekscan

Training of ankle foot 
Orthosis pa tients

[26]

Flexforce sensor Dexk‑fixed mounting Tekscan Grip force application 
during robotic sugery

[54]

Flexbend sensor Dexterity glove N/A Post‑stroke rehabilit‑ 
ation

[55]

Triaxial accelerometer 
and strain sensor

Nail attachment Contact Force sen sor 
HapLog (Kato Tech Co., 
Ltd., Kyoto, Japan)

Finger dexterity [71]

Pressure sensor N/A Finger socket‑based 
fabrication

MPX5500DP, Freescale, 
USA)

Hand rehabilitation [37, 41]

N/A Shoe type fabrication Collect pressure data 
from the critical points

Improving lower limb 
points

[62]

N/A Stacked array type fab 
ricated glove

pressure‑sensitive 
polymer (VelostatTM , 3M, 
Maplewood, MN USA)

Control of prosthetic 
limbs

[61]
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tions and precisely cost effective. The main advantage 
of this kind of sensor is that measurements are not 
affected by an external magnetic field [72]. Hence it 
is possible to attach it to muscles with some medical 
equipment that includes some ferromagnetic mate-
rial. On the other hand, IMUs have the disadvantage 
of being prone to drift and drag: Drift is the continu-
ous change in measurements and if the sensed target 
is static, it can be fixed by calibrating the sensor. Lag 
refers to the presence of delay in measures, whose 
impact will be determined by the application of the 
sensor. The investigation on the swing phase detec-
tion during gait enables the use of pneumatic artifical 
muscles (PAMs) with different stride length condi-
tions. The study confirms the variation in the walking 
speed of the user with and without the use of PAMs 
[73].

2 Force sensing resistors (FSRs): Piezoresistive sensors 
can indirectly measure force through changes in the 
conductivity of the sensor’s material, which changes 
its resistance if stressed. Given the zone to measure 
in healthcare applications (big muscles or groups of 
muscles), more than one sensor is required to gen-
erate a measurement map. The advantages of FSRs 
relay in the capability of being adapted to form a sen-
sor network, lower costs, and conditioning circuits 
are regularly easy to implement and robust against 
noise [74]. The most significant drawbacks when 
using this kind of sensor are: that precision could be 
lower, hysteresis, repeatability, non-linearity, issues, 
and drift are also present. The development of lower 
limb assistive suits is increasing to reduce muscle 
exertions while augmenting human motions to carry 
out various functions [75, 76]. Such a development 
process uses FSRs to detect the different phases of 
the gait motion. Upon detection, it enables the con-
trol to activate and deactivate the artificial muscles 
assisting the movements. The development of VR-
based applications with AR tools has increased where 
a study uses negative pressure to control the fingertip 
force display device in virtual reality. The research-
ers tried to create a haptic illusion with fingers on the 
virtual wall while the force, motion and pressure sen-
sor provided command signals for the valve to pro-
duce the negative pressure required. These studies 
could establish a better applications for finger reha-
bilitation [77].

3 Pressure sensor: Because pressure can be used to 
measure other variables (piezoresistance, capaci-
tance, etc.,) indirectly, this type of sensor is widely 
used in many domains, ranging from refrigeration to 
robotics and medical devices. The principal percep-
tion mechanisms currently used for building pressure 

sensors are piezoresistivity, capacitance, and piezo-
electricity, as well as optical and MEMS based sen-
sors. The type of sensing principle will depend on the 
requirements of the product to build. Nevertheless, 
the flexible pressure sensor is the most common type 
of pressure sensor. Its high sensitivity, rapid response 
time, and flexibility make them ideal for many appli-
cations, including wearable applications [78]. The 
evaluation of the mechanical features of the soft 
actuators is crucial, which established an experimen-
tal verification of developing pneumatic cylinders 
reducing the demands for portable compressed air 
tanks. The researcher developed control strategies by 
applying four control feedback while using a pressure 
sensor to enhance the future ICT application [79].

VR vs non‑VR scenarios
Virtual reality (VR) is a widely recommended visual feed-
back technology consisting of a high-end user-computer 
interaction that enables real-time assessments and evalu-
ation through visual and auditory feedback. This environ-
ment creates enhanced communication with a different 
sense of presence, such as immersive, non-immersive, 
mixed, and augmented VR. In our study, we considered 
some exciting articles that improve dexterity skills. The 
model of V-Realm builder, software that produces three-
dimensional (3-D) objects to increase the patient motiva-
tion for self-rehabilitative process [18]. Here the VR space 
creates prompts in the forms of vibration and visual cues 
increasing the vibrotactile and acoustic stimulation dur-
ing gaming conditions. The study [80] investigates that 
force feedback presented with artificial muscles can 
improve the illusion intensity through visual needs from 
VR. The research incorporates VIVE PRO HMD, HTC 
Co., Ltd., New Taipei City, Taiwan, for detecting foot 
motions through trackers. The illusion created a force 
sensation of climbing stairs and showed significant syn-
chronization. The assessment of lower limb parameters 
emphasizes a crucial soft actuator development utilizing 
VR for ensuring home-based rehabilitation. For instance, 
[81, 82] investigates the lower limb assessment through 
exercise-based games involving squat motions. The out-
comes of the preliminary evaluation and the exergames 
were fed to the artificial neural network (ANN) to predict 
the performance accuracy to assure adaptive capabilities.

The same gaming condition was proposed with Unity-
integrated Oculus and leap motion for creating an 
immersive virtual environment. This study ensures the 
detection of a collision between the virtual hand and the 
virtual spring rendering haptic force feedback in [83]. In 
the study, [68], the development of inertial measurement 
unit (IMUs)- based augmentation of wearable exosuit is 
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showing good efficacy and better impact in the medi-
cal fields. Adding VR-based interaction can produce a 
potential resource for users to improve their dexterity 
skills. Some studies introduce a new technique of grasp-
ing configuration by integrating the VR to track the finger 
motions and create a 3D image for enhancing the robotic 
dexterity [44] and [63]. The degree of wearability depends 
on the factors of acceptance and realism in terms of aug-
mentation. In that way, the integration of VR to move the 
virtual objects with gloves made of artificial muscles will 
enhance the muscle activity [38]. Due to the evolution of 
advancing haptic products, it is necessary to obtain touch 
sense evaluation during production. For this, the study 
[47] proposed haptic illusions for grasping and releasing 
an object by using Vive controllers as the trigger option 
[65]. Figure 4 shows some of the general advantages and 
disadvantages existing in VR systems.

Inferences
This section provides overall inferences drawn from the 
conducted review.

Reporting 5 top relevant studies
The goal of this review paper is to create and develop 
a dexterity soft wearable system that helps mankind 
with modern technological means. Therefore, the top 
5 best and most relevant studies were summarized in 

the Table 4. Based on this, the mode of application and 
design considerations so far developed will give the 
upcoming researchers an overview of this field to incor-
porate new technologies. It can also be useful in impro-
vising the mechanisms utilized.

Wearable vs non‑wearable
The most used wearable actuators comprise electrical 
muscle stimulation (EMS), shape memory alloy (SMA), 
pneumatic, piezoelectric, vibrotactile, and silicone rub-
ber whereas non-wearable actuators that have been put 
to use for dexterity training include haptic interaction 
modules such as Phantom, SPIDAR, and other hand-held 
devices for both kinaesthetic and cutaneous feedback 
[47]. Such non-wearable modules are quite commonly 
used in VR environments. Only recently, sensing is also 
being implemented using wearable materials such as 
E-SKIN, conductive fabric, and so on. Full body assis-
tive suit proposes a master and slave system together in 
one prototype employs pneumatic rotary actuators for 
assisting both upper and lower limb movements [84]. It 
is also necessary to learn the mechanical features of the 
soft robots where the research have studied the static 
control on the robot’s stability and confirmed the rela-
tionship between the mechanical structure and stability 
equivalent [85]. Similar research investigates the inspir-
ing the animal models developing octopus shaped soft 

Virtual Reality Environments:
Pros and cons

Cost of the device is expensive, this can
be an entry barrier.

Enhanced communication: different sense of 
presence by providing a high detailed simulation.

Allows the integration of different sensory cues
(visual, auditory, vibration, etc.).

Usability issues for some groups of 
people.

For some activities, a big space is
required.

Keeps the user motivation while increases 
engagement.

Fig. 4 General advantages and disadvantages existing in the VR systems
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robots reducing rigidity and strong control on the degree 
of stiffness. This study will encourage the researchers to 
develop some gait control robots for challenged individu-
als [86]

Top 5 articles and its design approaches
The general design approach involves several stages for 
the development from the user needs to production. The 
verification and validation pathways are common meth-
ods to improve the efficiency of the system. These top 5 
articles have followed design approaches that are help-
ful in understanding and creating further development 
possibilities.

Article 1 [41]: The novel PnueuNets-based actua-
tors are designed for hand-impaired patients to perform 
rehabilitation exercises. In this study, kinematic and grip 
strength were investigated. The Graphical User Interface 
developed as part of this research helps to choose desired 
rehabilitation exercises. The unique design of this system 
is that it can provide a smaller bend radius and higher 
force output at low pressure. Also, the flexion and exten-
sion antagonism relationship for controlling the stiffness 
and damping parameters was suitable for bidirectional 
motion and actuation.

Article 2 [37]: The MR Glove prototype developed in 
this study is made of soft pneumatic actuators and gener-
ates motion during bending tasks and eventually actuate 
the finger joints upon pressure. Flexiforce A201 sensor 
was used to evaluate the function of the hand and fingers. 
Force results indicate that the device can provide 41.0 
N grip force and actuate the finger joints with at least 
95.4% of active range of motion. This is the first study 
that proposed MR-compatible soft robotic assistive for 
hand rehabilitation. Also, it has some additional device 

functionalities such as portability, lower weight, and safer 
human-robot interactions.

Article 3 [43]: This proposed study provides alterna-
tive fabric reinforcement soft robotics actuation tech-
niques. The study’s results aimed to provide higher 
bending capability, reduced operating pressure, and 
compliance to multiple ranges of motion. This study 
also utilizes two stroke survivors’ data and the feasibil-
ity evaluation was carried out with activities of daily liv-
ing (ADL) tasks. Glove-assisted grip strength reported 
in the study was up to 8.4± 1.8 N for 75  mm diame-
ter and 5.8± 1.7 N for 50  mm diameter. The range of 
motion was 90% sufficient to carry out ADL tasks. This 
study demonstrates that it can perform rehabilitative 
therapy without voluntary muscle control.

Article 4 [28]: This preliminary study is for people in 
assistance during post-stroke overground walking reha-
bilitation programs. The actuation system was designed 
using a pulley cartridge limited to 2 DOF and a range 
of motion. This study was recorded in synchronization 
with Gait analysis. The gait event detection algorithm 
used in this study detects only paretic and non-paretic 
toe-offs and non-paretic mid-swings. The exosuit con-
troller design used in the study has both high and low-
level controllers to propel the actuation optimally. The 
results show that the soft exosuit promotes forward 
propulsion and ground clearance during the swing 
phase. At the current phase, the actuation unit can 
support up to 300 N as the maximum cable force and 
1.4 m/s as the maximum walking speed requirement.

Article 5 [47]: TORC device is a haptic virtual real-
ity-based controller used for sensing finger movements 
and also helps in virtual interaction. The design strat-
egy involved in this study is multi-sensory integration, 
grasping and manipulation. The main contribution of 

Table 4 Overview of 5 top research articles relevant to the current topic

Study Article 1 [41] Article 2 [37] Article 3 [43] Article 4 [28] Article 5 [47]

Disorder Stroke/Neural N/A Stroke/Neural Post stroke paretic ankle N/A

Actuator Fabric‑based actuator Pneumatic actuator Silicon rubber 2‑DOF actuator Voice coil actuator

Sensor type Pressure and EMG sensor Pressure and FBG sensor Actuator IMU sensor Vibrotactile force sensors

VR/MR N/A N/A N/A N/A N/A

Application Hand Hand Hand Ankle Hand

Study type Evaluation study (5 
healthy subjects, 2 stroke 
survivors)

Pilot trial (6 chronic stroke 
patients)

Prototype evaluation 
(1 healthy voluteer)

Prototype evaluation (3 
subjects)

Pilot trial (1: 17 users, 2:16 
users)

Wearability Yes Yes Yes Yes N\A

Softness Yes Yes Yes Yes Yes

Feedback type Haptic Force N\A Force Visual
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this study is to illustrate object compliance, force and 
proprioception. This study involves users giving force-
ful, light touch experiments between normal and tan-
gential thumb and finger movements. Also, this study’s 
ergonomic and hand ownership-based tasks help users 
feel their own hands.

Studies with high potential (include non‑wearable 
and non‑dexterity articles)
Achieving highly efficient and complex dexterity 
training is possible using the integration of cutting-
edge sensing and actuator technologies. Therefore, in 
this section, we report 5 selected papers that are not 
directly connected with human dexterity but have high 
potential if applied to this field.

1 Soft sixth-finger [17]: Useful for individuals with a 
weak grasp, this modular sixth-finger weighs 3.6  g 
only and is attached to the user’s wrist as a bracelet. 
It acts as an augmentation for bimanual tasks such as 
unscrewing of jars, opening cans, squeezing a tube 
over a toothbrush and so on. This work provides 
prospect of enhanced dexterity when there is low 
hope of recovering the original skill level.

2 Interactive hand-pose estimation using stretch-sen-
sor [87]: A 1.2 mm thick lightweight glove weighing 
50  g comprises capacitive stretch sensor arrays for 
real-time hand-pose estimation. Even though further 
research needs to be done for efficient reproduction 
of such gloves, comfortable, low cost, real-time and 
lightweight nature of the glove makes it promising for 
applicability in hand dexterity training.

3 Wearable grasping feedback in VR [44]: Performing 
complex tasks with high dexterity is still challenging 
inside VR environments. Offering force of up to 20 
N and weighing under 8 g, DextrES is a flexible and 
wearable haptic glove to promote dexterous manip-
ulation of VR objects utilizing electrostatic braking. 
Usage of piezoactuators help increase the grasping 
precision of the glove.

4 Sensory augmentation of prosthetic limbs [32]: Pro-
cover is a smart textile solution to perform prosthetic 
sensing. The sensing module comprises piezoresis-
tive, stretchable, and conductive fabric arranged in 
three layers. Such sensing technology can also be 
used for body tracking and are extremely helpful to 
increase confidence during training.

5 Wearable A-mode ultrasound finger motion recog-
nition [88]: A lightweight A-mode ultrasound trans-
ducer could be used for dexterous motion recogni-
tion for both online and offline scenarios. Achieved 

offline and online accuracies were 98.83% and 95.4% 
respectively. Such sensing is extremely useful if the 
hand itself should not be disturbed by sensors.

Conclusion
This review intended to report the recent advances in 
the field of dexterity training, with emphasis on soft 
materials or soft actuators. Authors took special care 
to include several hidden kinds of research with high 
potential yet lowly cited. This review will be helpful for 
researchers interested in the field of medicine as well 
as engineering research with a focus on dexterity skill 
training. We have given importance to the characteris-
tics of each reported paper such as actuator type, sen-
sors used, user study type, and so on.
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