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A proposal for adaptive cruise control 
balancing followability and comfortability 
through reinforcement learning
Nagayasu Maruyama*    and Hiroshi Mouri 

Abstract 

Adaptive cruise control (ACC), which is an extension of conventional cruise control, has been applied in many com-
mercial vehicles. Traditional ACC is controlled by proportional-integral-derivative control or linear quadratic regulation 
(LQR), which can provide sufficient performance to follow a preceding vehicle. However, they can also cause excessive 
acceleration and jerk. To avoid these excessive behaviors, we propose reinforcement learning (RL), which can consider 
various objectives to determine control inputs, as an ACC controller. To balance the performance of following a preced-
ing vehicle and reducing jerk, RL rewards are designed using unique thresholds. Additionally, to balance performance 
and robustness to the zero-order delay (dead time) of the controlled system, dead time is also considered by scattering it 
randomly in the learning phase. As a result of this study, an RL agent trained using the proposed RL method and two LQR 
units specialized for followability and comfortability were simulated using Simulink® (MATLAB®).
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Introduction
In recent years, advanced driver-assistance systems 
(ADAS) have been studied to enhance driving comfort, 
reduce driving fatigue and stress, reduce accident risks, 
increase traffic capacity, and reduce fuel consumption [1, 
2]. In particular, from the perspectives of driving fatigue 
and stress reduction, the adaptive cruise control (ACC) 
system is an important type of ADAS that has been 
deployed in commercial vehicles since 1995 in Japan [3]. 
ACC is an extension of the conventional cruise control sys-
tem, which could only maintain a vehicle’s preset velocity, 
whereas ACC maintains a vehicle’s preset distance from a 
preceding vehicle [4, 5]. ACC performs acceleration and 
deceleration for a driver based on information observed 
by various devices such as radar, sensors, and cameras. 
Even conventional control methods such as proportional-
integral-derivative control and linear quadratic regulation 

(LQR) [6], which have been used commonly for decades, 
provide sufficient performance to follow a preceding vehi-
cle. However, they can cause excessive acceleration and 
jerk, which can reduce driving comfort and increase fuel 
consumption [7]. To avoid these excessive behaviors, ACC 
should be improved to consider not only followability, but 
also comfortability (reducing jerk).

In addition, it is also known that these conventional 
control methods cannot consider the constraint saturated 
by performance’s limits, and it makes the control perfor-
mance worse. To avoid this deterioration, the model pre-
dictive control (MPC) is usually used [8–10]. However, the 
MPC’s control performance depends on the accuracy of 
modeling the controlled plant (the MPC determines con-
trol input by calculating with a modeled plant every sam-
pling time) [11].

To consider the robustness against the modeling accu-
racy and the disturbance, the fuzzy logic control (FLC) 
has been also studied for decades. This controller can deal 
the plant state fuzzily based on the linguistic control rules 
(LCR). However, this method cannot decide control input 
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smoothly due to the LCR, so the control input keeps con-
stantly on increasing and decreasing [12].

To solve this problem, in this study, reinforcement learn-
ing (RL), which can consider various objectives to deter-
mine control inputs, was considered for improving ACC. 
The RL can also consider the constraints. Additionally, 
to balance the performance of followability and comfort-
ability, an RL reward function was designed using unique 
thresholds. These thresholds vary depending on the speed 
of the host vehicle. When the difference between the target 
distance and measured distance from the host vehicle to 
the preceding vehicle becomes less than a certain thresh-
old, the RL agent collects rewards depending on the differ-
ence in distance. Another threshold for reducing jerk is set 
to help passengers feel “comfortable.” If jerk becomes less 
than a certain threshold, the RL agent collects rewards.

Additionally, it is assumed that there is zero-order delay 
(dead time) in the controlled system. Therefore, one of the 
goals of the proposed RL agent is to enhance robustness to 
dead time by learning random variations during the learn-
ing phase of RL.

Definition of ACC and the controlled vehicle model
Definition of ACC objectives and conditions
For this research, the ACC objectives were defined as 
listed below.

O1)	 To achieve the required performance to follow the 
preceding vehicle, the error between the reference dis-
tance and measured distance to the preceding vehicle 
should converge to zero.

O2)	 To achieve the required performance for following 
a preceding vehicle, the relative velocity between the 
host vehicle and preceding vehicle should converge 
to zero (this object is related to O1, so servo balance 
between O1 and O2 should be tuned experimentally.

O3)	 To achieve the required performance for driving 
comfort and fuel consumption, the acceleration and 
jerk of the host vehicle should converge to zero.

Additionally, to consider an ACC system implemented 
into an actual vehicle, the following conditions are defined.

C1)	 The host vehicle has dead time in the controlled 
system. Therefore, the host vehicle’s acceleration 
responds to a control command from the ACC system 
with a first-order delay and dead time.

C2)	 The reference distance which is the ACC system’s 
target is defined based on the policy of time headway 
(THW). The THW is the time the host vehicle takes 
to reach a point on the road passed by the preceding 
vehicle. This parameter is one of factor used by the 
driver to perceive the risk to close to the preceding 
vehicle, and its magnitude influences the stress level of 
the driver when following a preceding vehicle [12].

C3)	 Acceleration and deceleration are saturated by 
performance’s limits of powertrain, brake and road 
friction.

C4)	 States (vector) of the controlled plant, which is 
defined in “Definition of a vehicle model controlled by 
ACC​” section, are observable.

A scenario in which a host vehicle follows preceding 
vehicle using ACC is illustrated in Fig. 1

Definition of a vehicle model controlled by ACC​
According to C1, the host vehicle’s acceleration is defined 
under the first-order delay as follow:

ȧh =
1

τ
(u− ah).

Fig. 1  Scenario for ACC control
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Here ah is the host vehicle’s acceleration, u is the accel-
eration control command from the ACC system, and τ 
is the time constant of the first-order delay system. By 
the Laplace transform, this equation expressed as a time 
function is transformed to (1) with the Laplace operator 
s:

According to C2, the reference distance to preceding 
vehicle of the ACC system based on the THW policy is 
defined as (2)

where dr is the reference distance to preceding vehicle, ds 
is the safety distance based on the THW policy, thw is the 
THW, and vh is the velocity of the host vehicle.

Based on the calculated dr value, the error between the 
reference distance and measured distance to preceding 
vehicle are defined in (3). Additionally, the error between 
the host and preceding vehicle velocity is defined in (4).

Here, de is the error between the reference distance and 
measured distance, d is the measured distance to preced-
ing vehicle, ve is the error between the host vehicle veloc-
ity and preceding vehicle velocity, and vp is the velocity of 
the preceding vehicle.

The controlled plant state vector x and output vector y 
are defined in (5) and (6), respectively.

Based on the defined state vector x and output vector y , 
the state-space representation is defined in (7a) and (7b).

Here, ap is the preceding vehicle’s acceleration. The coef-
ficient matrices A,B , G , C , D , and Z in (7a) and (7b) are 
expressed as follows:

sah(s) =
1

τ
u(s)−

1

τ
ah(s)

(1)
ah(s)

u(s)
=

1

1+ τ s
.

(2)dr = ds + thwvh,

(3)de = d − dr = d − ds − tthwvh

(4)ve = vp − vh

(5)x =
[

d ve vh ah
]T

(6)y =
[

de ve ah u
]T

(7a)ẋ = Ax + Bu+ Gap

(7b)y = Cx +Du− Z

The reinforcement learning applied to an ACC 
controller
Algorithm for the reinforcement learning
In this study, the deep deterministic policy gradient 
(DDPG) [13] was used for learning ACC driving behavior 
to archive the objectives O1 to O3 under the conditions 
C1 to C4. The DDPG is a common RL method and deep 
learning is adopted in the actor-critic method. The con-
troller implemented into host vehicle to determine ACC 
driving behaviors based on learning results is called an 
“agent.” To design the agent and evaluate its performance, 
the RL toolbox (MATLAB®) was used to implement its RL 
as a controller.

Design of the actor network and critic network
For the DDPG, there are two networks called the actor 
network and critic network, each of which have different 
purposes. The agent observes the state (vector) from the 
environment surrounding the host vehicle and the actor 
network determines the best action based on the observed 
state. The critic network then receives the state from the 
agent and action from the actor, and returns the expected 
value of the total reward. Finally, after executing the action 
from the actor, the actor network is updated based on the 
calculated reward. A block diagram for an ACC system 
controlled by this logic is presented in Fig. 2. L in the figure 
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Table 1  Actor network structure

Network structure of actor

Name State path

InputLayer 7 × 1 × 1

FullyConnectedLayer fc11

ReluLayer relu11

FullyConnectedLayer fc12

ReluLayer relu12

FullyConnectedLayer fc13

ReluLayer relu13

FullyConnectedLayer fc14

TanhLayer tanh11

ScalingLayer scale = 2.5, bias =  − 0.5
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is the dead time and e−Ls is the dead time factor in the con-
trolled system.

The structures of the actor network and critic network 
are listed in Tables 1 and 2, respectively.

In the input and output layers, the number of neurons 
for the state input is four and the number of neurons for 
the action output is one. Additionally, each fully con-
nected layer contains 48 neurons. There are seven neurons 
in the input layer on the state path, and four neurons of 

them are represented as the plant’s output from vector y 
defined in (6) and three neurons are added to consider the 
environment precisely. In addition, there is one neuron in 
the input layer on action path, and it is represented as the 
acceleration command u defined in (1).

Design of the reward function
To archive O1 to O3, the reward function rt at time t is 
defined by (8).

(8)

rt = −w1d
2
et − w2v

2
et − w3u

2
t − w4j

2
t

− w5

t
∫

0

d2eT (T )dT +Mt

Fig. 2  Block diagram for an ACC system controlled by RL

Table 2  Critic network structure

Network structure of critic

Name State path Action path

InputLayer 7 × 1 × 1 1 × 1 × 1

FullyConnectedLayer fc21 fc51

ReluLayer relu21 –

FullyConnectedLayer fc22 –

AdditionLayer add2

ReluLayer relu22

FullyConnectedLayer fc23

ReluLayer relu23

FullyConnectedLayer fc24

Table 3  Initial state for host vehicle and preceding vehicle

State Value

Host vehicle Preceding vehicle

Initial distance 70 m

Initial vehicle velocity 20 m/s 25 m/s
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Here, w1 to w5 are weights, Mt is a reward value, and jt is 
the jerk.

The reward value Mt can receive a reward only when 
the error between the reference distance and measured 
distance to preceding vehicle or jerk become less than the 
corresponding thresholds, which are defined as follows. As 
shown below definition, the value of Mt depends on how 
much the measurement values exceed the referential val-
ues. The reward value of Mt is defined in (9).

(9)Mt = M1t +M2t

M1t =

{

0, if
∣

∣det
∣

∣ > 0.1
∣

∣drt
∣

∣

−
w6

0.12d2rt
d2et + w6, if

∣

∣det
∣

∣ ≤ 0.1
∣

∣drt
∣

∣

Here, M1t is a reward value that reduces the error 
between the reference distance and measured distance to 
preceding vehicle, and M2t is a reward value for reducing 
jerk. For these reward values, the weights are defined as 
w6 and w7 , respectively.

The purpose of M1t is to determine the control tar-
get depending on the host vehicle velocity. When the 
host vehicle velocity is high, the ACC controller wants to 
avoid approaching the distance to the preceding vehicle 
to reduce collision risk. In contrast, when the host vehi-
cle velocity is low, the ACC controller’s target is to close 
the distance to the preceding vehicle to increase traffic 

M2t =

{

0, if jt > 2.5
w7, if jt ≤ 2.5

Fig. 3  Logic of the reward value M1t ( d > dr)

Table 4  Conditions for ACC simulations

State Value

ds 10 m

thw 1.4 s

τ 0.5

Table 5  Tuned weights for the reward function for RL

State Value

w1 0.0003

w2 0.00001

w3 0.005

w4 0.05

w5 0.000002

w6 1.5

w7 1.3

Fig. 4  Simulation results for RL vs. LQR (L = 0.02 s)
(See figure on next page.)
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(a) Error between the reference distance and measured distance 

 
(b) Relative velocity 

 
(c) Acceleration of the host vehicle 

 
(d) Host vehicle jerk 

Fig. 4  (See legend on previous page.)
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capacity. To achieve the purpose of M1t , M1t should be 
calculated depends on host vehicle velocity. Thus, in this 
case, drt is used to calculate M1t because drt includes host 
vehicle velocity as one of factors. The logic of M1t is illus-
trated in Fig. 3. M1t is calculated only when the absolute 
value of det becomes less than 10% of the absolute value of 
drt ; In other case when the absolute value of drt becomes 
more than 10% of the absolute value drt , M1t becomes 
zero. The criteria value of 10% is tunable and it is defined 
experimentally in advance. The maximum value of M1t is 
w6.

The purpose of M2t is to control the ACC comfortably. 
To achieve the purpose of M2t , M2t becomes w7 only when 
the absolute value of the jerk becomes less than the thresh-
old of 2.5 m/s3. This value was selected because passengers 
feel uncomfortable if the jerk exceeds 2.5 m/s3 [7].

If the jerk is calculated from the measured acceleration, 
then there is a huge delay between the actuator and sensor 
due to sensing delay and the zero-order delay of data com-
munication. Therefore, in this study, jerk was calculated 
as the rate of change of the acceleration input during one 
sampling period, as shown in (10).

Here, Ts is the sampling period.

Definition of the linear quadratic regulation to be 
compared to the reinforcement learning
To evaluate the advantageous effect of applying an RL 
agent to an ACC controller, the results obtained using 
LQR is considered for comparison. The system in (7a) 
is expanded by defining jerk as the control input u′ [14] 
because the LQR should also consider to reduce jerk to 
be compared with the RL from the perspective of perfor-
mance and comfortability fairly. The model definition of 
(7a) is transformed into (11) as follows:

where the state vector x′ and coefficient matrices A′ , B′ , 
G′ are expressed as shown below.

The optimal control input for state feedback control is 
defined below. First, the evaluation function for state feed-
back control is defined in (12).

(10)jt =
ut − ut−1

Ts

(11)ẋ′ = A′x′ + B′u′ + G′ap,

x′ =

[

x
u

]

, A′ =

[

A B
0 0

]

, B′ =

[

0
1

]

, G′ =

[

d
0

]

Here, J  is the evaluation function, Q is the weight vector 
for the state, and r is the weight vector for the input. To 
minimize this evaluation function, the optimal control 
input is defined in (13).

Here, the matrix P is a symmetric matrix based on the 
algebraic Riccati equation.

For comparison to the RL control method, two weight 
combinations “Qd and rd” and “Qj and rj,” which are spe-
cialized for followability and comfortability, respectively, 
are defined as shown below.

1.	 Weight combination specialized in followability:

2.	 Weight combination specialized in comfortability:

Note that these weight combinations are chosen by 
parameter studies. Some of ACC simulation results which 
are studied to decide weight combinations are shown in 
“Appendix”.

Usually, the zero-order delay on communication can 
be changed fluently, so it is very difficult to consider it. In 
addition, the zero-order delay is very small value. Thus, 
the zero-order delay is often considered as one of a distur-
bance that can be deal with controller’s robustness. That’s 
why LQR doesn’t consider the zero-order delay on com-
munication here.

Evaluation of followability and comfortability
Through comparisons to the two controllers for LQR 
defined in “Definition of LQR to be compared to RL” sec-
tion, the controller for RL is evaluated based on simula-
tions in this section.

Conditions for simulations
The initial conditions for the host vehicle and preceding 
vehicle are listed in Table  3. In this simulation, the sam-
pling time was 0.1 s, simulation continued for 60 s, and the 
preceding vehicle performed repeated accelerations and 
decelerations during the simulation period.

(12)J =

∞
∫

0

(

x′TQx′ + ru′2
)

dt

(13)u′ = −f x′, and f = r−1B′TP

(14)PA′ + A′TP + r−1PB′B′TP +Q = 0

Qd = diag[ 5 100 0 40 0 ], rd = 60

Qj = diag[ 5 100 0 50 50 ], rj = 3000

(See figure on next page.)
Fig. 5  Simulation results for RL (with scattered initial preceding vehicle velocities)
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 (a) Error between the reference distance and measured distance 

(b) Relative velocity 

(c) Acceleration of the host vehicle 

(d) Host vehicle jerk 
Fig. 5  (See legend on previous page.)



Page 9 of 14Maruyama and Mouri ﻿ROBOMECH Journal            (2022) 9:22 	

Regarding C3, the acceleration and deceleration of the 
host vehicle were saturated between 2 and − 3 m/s2. The 
other conditions for conducting simulations are listed in 
Table 4.

The weights for the reward function for RL were tuned 
in advance and are listed in Table 5.

To improve the RL controller’s followability, the initial 
velocity of the preceding vehicle was randomly set between 
10 and 30  m/s in intervals of 1  m/s during the learning 
phase. In addition to improving followability, the control-
ler should be robust to the dead time of the controlled sys-
tem. Therefore, the dead time of the controlled system was 
also scattered between 0.01 and 0.10 s in intervals of 0.01 s 
randomly during the learning phase. By this method, the 
zero-order delay can be considered even if it is changed 
fluently, so this method requires engineers not to consider 
the value of the zero-order delay but also the range of the 
zero-order delay preliminarily. During the learning phase, 
rewards were returned in every sampling period (0.1  s) 
and the total rewards were considered as the accumulated 
results. The threshold for the total reward to stop learning 
is a tunable parameter because there is a tradeoff between 
performance and the time required for learning. Typi-
cally, after many learning episodes are completed, the total 
rewards converge and performance decreases with overfit-
ting and overtraining. Additionally, the value of the total 
reward depends on the definition of the reward function. 
Hence, the threshold to stop the learning is also tuned in 
advance depending to the definition of the reward func-
tion (for defined reward function, the criteria of the total 
reward to stop the learning is 1400). For RL, learning was 
completed when the total reward for an episode with 600 
steps reached 1614.3 and the total number of learning 
steps required to reach the goal was 446,819.

Simulations with one condition of preceding vehicle 
velocity and dead time
The simulation results when the zero-order delay is 0.02 s 
and the other conditions are as discussed in “Conditions 
for simulations” section are presented in Fig. 4. The results 
for LQR controllers prioritizing followability (to reduce 
error between the reference distance and measured dis-
tance to preceding vehicle) and prioritizing comfortability 
(to reduce jerk) are plotted as “LQR for followability” and 
“LQR for comfortability,” respectively. The graphs show 
the (a) error between the reference distance and meas-
ured distance to preceding vehicle, (b) relative velocity, 
(c) host vehicle acceleration, and (d) host vehicle jerk. As 
mentioned above, jerk is considered as the change rate of 

the acceleration input during one sampling period in the 
controller. On the other hand, actual jerk which driver 
feels should be calculated as the change rate of measured 
acceleration, so jerk discussed in the graphs is defined (15).

jtmeasured is measured jerk which is calculated by meas-
ured acceleration, and it is represented as “Jerk” in below 
graphs only.

According to the simulation results, our considerations 
are separated in two perspectives of followability and 
comfortability.

Followability perspective
The error between the reference distance and measured 
distance to preceding vehicle controlled by RL converges 
faster than that controlled by LQR. Additionally, in the 
steady state [after the host vehicle speed reaches the pre-
ceding vehicle speed at approximately 16  s in graph (b)], 
the relative velocity’s overshoot controlled by RL is equal 
to or better than the overshoot controlled by LQR. The 
main reason why RL controls with less relative velocity’s 
overshoot than LQR is that RL learns to handle the dead 
time properly during the learning phase.

Comfortability perspective
An RL agent with a reward function for suppressing the 
absolute value of jerk to less than 2.5  m/s3 can reduce 
overshoot more effectively than LQR. In fact, the jerk 
controlled by LQR exceeds 2.5  m/s3. However, the fol-
lowability controlled by LQR is clearly worse than RL’s fol-
lowability even though the jerk is almost same. Graph (a) 
shows that RL can converge de more rapidly than LQR for 
followability and control jerk to be less than 2.5 m/s3. From 
these results, it seems that RL can consider the balance 
between followability and comfortability.

From these two perspectives, it can be concluded that 
RL can control with higher performance than LQR by bal-
ancing followability and controllability. The LQR is well 
known that it provides the optimal state feedback gain 
considering the infinite future prediction. However, it 
can work as the linear controller, so it is also known that 
it can work without considering the constraint. This cause 
deterioration of controller’s performance because the sat-
uration isn’t a scenario which is considered by the LQR 
controller.

(15)jtmeasured =
at − at−1

Ts

Fig. 6  Simulation results for RL (with scattered dead time)
(See figure on next page.)
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(a) Error between the reference distance and measured distance 

(b) Relative velocity 

(c) Acceleration of the host vehicle 

(d) Host vehicle jerk 
Fig. 6  (See legend on previous page.)
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Simulations with scattered initial preceding vehicle 
velocities
In this section, the RL agent’s behavior is evaluated when 
the initial preceding vehicle velocity is scattered. The pur-
pose of this confirmation is to check whether unexpected 
behaviors are caused if the initial preceding vehicle velocity 
is outside the learned conditions. ACC using RL was simu-
lated when the initial preceding vehicle velocity was scat-
tered from 15 to 55 m/s in 5 m/s intervals and the results 
are presented in Fig. 5. The other conditions are same as 
simulation conducted in “Simulations with one condition 
of preceding vehicle velocity and dead time” section.

In the simulation results, it appears that when the ini-
tial preceding vehicle velocity increases, followability 
performance decreases. The reason for this performance 
decrease is that the acceleration and deceleration of the 
host vehicle are saturated between 2 and − 3  m/s2, as 
defined in “Conditions for simulations” section. Therefore, 
even if RL controls with high performance by balancing 
followability and controllability, followability performance 
still decreases. From a comfortability perspective, even 
when the error between the reference distance and meas-
ured distance to preceding vehicle is large [e.g., when the 
initial preceding vehicle velocity is 45  m/s or 55  m/s in 
graph (a)], jerk is controlled under the threshold of 2.5 m/
s3 mostly. As a result, it seems that RL can control for vari-
ous initial preceding vehicle velocities properly and there 
is no unexpected behavior (e.g., accelerating unexpectedly 
or crashing to preceding vehicle), even if the initial preced-
ing vehicle velocity exceeds the learned conditions.

Simulations with scattered dead time variably
In this section, the RL agent’s behavior is evaluated when 
the dead time is scattered. Similar to “Simulations with 
scattered initial preceding vehicle velocities” section, the 
purpose of this confirmation is to check whether unex-
pected behaviors occur if the dead time is not within the 
learned conditions. ACC using RL was simulated when 
the dead time in the controlled system was scattered from 
0.02 to 0.20 s. The other conditions are same as simulation 
conducted in “Simulations with one condition of preced-
ing vehicle velocity and dead time” section. The results are 
presented in Fig. 6.

In the simulation results, it appears that there is a very 
small impact on followability if the dead time is scattered 
over the learned range from 0.01 to 0.10  s. When the 
error between the reference distance and measured dis-
tance to preceding vehicle is overshot at approximately 
2  s, the maximum gap is 1.0 m (3%). In contrast, from a 

comfortability perspective, more dead time increases jerk. 
When the jerk is overshot, the maximum value of jerk is 
2.1 m/s3. These gaps are caused by the balance of the tuned 
weights in the reward function for RL. It can be concluded 
that there is no excessive behavior in terms of followabil-
ity, even if the dead time exceeds the learned conditions. 
Additionally, when the dead time is doubled from the max-
imum value in the learned conditions, the comfortability 
(value of jerk) is almost the same as the result achieved by 
LQR for comfortability with the dead time of 0.02 s. Addi-
tionally, after the second overshoot of the jerk at approxi-
mately 6 s, the ACC results controlled by RL are almost the 
same, even when the dead time is scattered.

Conclusions
In this study, RL was applied to ACC and a unique reward 
function with reward value was defined to consider the 
balance between followability and comfortability.

To evaluate RL performance, the simulation of ACC 
was conducted using a trained RL agent and two types of 
LQR controllers (for followability and comfortability). The 
simulation results revealed that the LQR controllers can 
control ACC with high performance for either followabil-
ity or comfortability through proper tuning. However, it is 
difficult for LQR to balance followability and comfort. In 
contrast, RL can balance followability and comfortabil-
ity because RL considers the balance between followabil-
ity and comfortability, as well as dead time. Additionally, 
when the initial preceding vehicle velocity and dead time 
in the controlled system were scattered, RL performance 
was evaluated. The simulation results confirmed that 
there is robustness to the initial preceding vehicle veloc-
ity and dead time in the controlled system. Based on these 
results, it can be concluded that the RL method with a 
unique threshold can ideally control followability and 
comfortability.

Appendix: Simulation results with the linear 
quadratic regulation weight combinations
As mentioned above, to decide LQR weight combinations, 
parameter studies are conducted. Here, some of simula-
tion results with weight combinations are shown. The 
simulation results when the zero-order delay is 0.02 s and 
the other conditions are as discussed in “Conditions for 
simulations” section are presented. The Fig. 7 shows tun-
ing results specialize in followability and Fig. 8 shows tun-
ing results specialize in comfortability. The marked result 

(See figure on next page.)
Fig. 7  Simulation results of tuning specialized in followability
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(a) Error between the reference distance and measured distance 

(b) Relative velocity 

(d) Host vehicle jerk 
Fig. 7  (See legend on previous page.)



Page 13 of 14Maruyama and Mouri ﻿ROBOMECH Journal            (2022) 9:22 	

as “Result of represented weight combination” in each is 
chosen for comparison with RL above.
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