
Yoshida et al. ROBOMECH Journal            (2022) 9:15  
https://doi.org/10.1186/s40648-022-00230-y

RESEARCH ARTICLE

Fruit recognition method for a harvesting 
robot with RGB‑D cameras
Takeshi Yoshida1*   , Takuya Kawahara2 and Takanori Fukao3 

Abstract 

In this study, we present a recognition method for a fruit-harvesting robot to automate the harvesting of pears and 
apples on joint V-shaped trellis. It is necessary to recognize the three-dimensional position of the harvesting target 
for harvesting by the fruit-harvesting robot to insert its end-effector. However, the RGB-D (red, green, blue and depth) 
camera on the harvesting robot has a problem in that the point cloud obtained in outdoor environments can be inac-
curate. Therefore, in this study, we propose an effective method for the harvesting robot to recognize fruits using not 
only three-dimensional information obtained from the RGB-D camera but also two-dimensional images and informa-
tion from the camera. Furthermore, we report a method for determining the ripeness of pears using the information 
on fruit detection. Through experiments, we confirmed that the proposed method satisfies the accuracy required for 
a harvesting robot to continuously harvest fruits.
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Introduction
There is an urgent need to develop labor-saving tech-
nologies for fruit production to cope with the significant 
decrease in the number of growers and aging of the grow-
ers in fruit production in Japan. To solve this problem, it 
is necessary to develop new work machines and robots 
that can be used for centralized management, such as 
harvesting.

Machine development for fruit cultivation needs to be 
done for each fruit type because the shapes are differ-
ent from one fruit tree to the other. This is a factor that 
makes it difficult to develop machines for fruit cultiva-
tion. Lined dense planting cultivation is a form of cul-
tivation in which fruit trees are arranged in rows. The 
development of lined dense planting cultivation enables 
the development of machinery that can be used com-
monly for several tree species. Lined dense planting cul-
tivation enables numerous work machines to work with 

a straight flow that they are skilled at [1]. By making the 
position where the fruit grows flat, lined dense plant-
ing cultivation makes it possible for workers or robots 
to work with higher efficiency. The purpose of this study 
is to automate harvesting with a fruit harvesting robot 
for joint V-shaped trellis, which is a type of lined dense 
planting cultivation. We have been conducting research 
on this tree shape using a harvesting robot [2]. Fig.  1 
shows an example of the joint V-shaped trellis.

For the harvesting robot to harvest the fruit, it first uses 
a red, green, blue, and depth (RGB-D) camera to detect 
the positions of the objects to be harvested in three 
dimensions, and then obtains the positions that the end-
effector will eventually reach. After solving the inverse 
kinematics of the robot arms for the final reaching posi-
tion, the harvesting robot inserts the end-effectors into 
the bottom of the fruit, and then harvests by twisting the 
aiming fruit. Currently, the RGB-D camera has a problem 
in that the position of the point cloud it acquires out-
doors is inaccurate. Therefore, in this study, we propose 
an effective fruit recognition method that uses not only 
3D information acquired by an RGB-D camera but also 
2D images and camera models. In addition, pears need 
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to be judged for harvestability based on their ripeness at 
the time of harvest. In this study, we also report a method 
to judge whether pears can be harvested or not by using 
information of fruit recognition.

Harvesting robot
Outline of harvesting robot
Figure  2 shows the components of the harvesting robot 
used in this study. The robot was designed to reach all 
fruits meeting the standard using two robot arms and 
two slide mechanisms. The robot also attempted to speed 
up the entire harvesting operation by harvesting using 
two arms simultaneously. The end-effectors at the tips of 
the robot arms were used to grasp the fruit. Four RGB-D 
cameras were used to detect the fruits to be harvested 
and were equipped in different directions to prevent 
leaves and branches from hiding the fruit. Each robot 
arm uses data from two cameras mounted on its base. 
However, the camera data is not integrated, and each 
camera data is used alternately. The autonomous vehicle 
at the head of the components moved through the field 
while towing the fruit-harvesting robot.

Robot hand
The harvesting robot uses a robot hand developed by 
DENSO Corporation as the end-effector to harvest 
the fruits (Fig. 3). This end-effector can open and close 
its fingers and rotate with a single servomotor using 
a spring and clutch. It also has three silicon fingers to 
harvest softly. At the time of harvesting, the center of 
rotation of the hand and the direction of the pedun-
cle of the fruit are aligned, and the peduncle is twisted 
by rotating the hand. It is necessary to grasp the fruits 
directly or slightly diagonally below them to twist them 
effectively.

Fig. 1  Joint V-shaped trellis

Autonomous vehicle

End effector
RGB-D camera

Robot arm

End effector

RGB-D camera

Robot arm

Fig. 2  Components of harvesting robot

Fig. 3  Robot hand for harvesting

IR Camera
IR Projector

RGB Camera

Fig. 4  Intel RealSense D435
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Camera
The Intel Realsense D435, shown in Fig. 4 was used to 
determine the 3D position of the harvest target. D435 
is equipped with two infrared cameras, an infrared 
projector, and an RGB camera. As a method to provide 
RGB-D information, it uses two infrared cameras as a 
stereo camera to provide the depth information and 
an RGB camera to overlay color information onto the 
depth information. Although it is difficult for normal 
stereo cameras to provide accurate depth information 
of areas with few features, D435 uses an infrared pro-
jector to improve the accuracy of the depth information 
by projecting a patterned image info featureless areas. 
However, there is a problem that the effect of improv-
ing accuracy cannot be obtained even if the pattern 
image is projected because the sunlight cancels most 
of the infrared patterns in a daytime outdoor environ-
ment. Figure 5b shows the point cloud extracted from 
the entire point cloud taken with D435, with the cor-
responding region in Fig. 5a. This figure shows that the 
surface of the point cloud is wavy and inaccurate even if 
the point cloud of the softball is almost spherical.

Related works
Various studies focus on fruit recognition. These studies 
can be divided into two categories depending on the sen-
sors they mainly deal with.

The first category mainly deals with 2D images. There 
are several studies in this category that do not deal with 
the acquisition of the 3D position of an object. Gao et al. 
proposed a multi-class apple detection method that con-
siders the use of a harvesting robot. The multi-class apple 
detection method labels four classes: non-occluded, 
leaf-occluded, branch/wire-occluded, and fruit-occluded 
fruits to avoid the robotic end-effector from being dam-
aged by the obstacles [3]. Arad et  al. proposed a robot 
for harvesting sweet pepper fruits in greenhouses [4] [5]. 
They proposed a Flash-No-Flash controlled illumination 
acquisition protocol to stabilize the effects of illumination 

for color-based detection algorithms. Their sweet pep-
per harvesting robot applies a visual servo that keeps the 
detected center of the fruit in a predetermined position 
in the camera image to lower the requirements for cam-
era calibration and 3D coordinates. Yu et  al. proposed 
a method for strawberry fruit target detection based 
on Mask Region-based Convolutional Neural Network 
(R-CNN) [6]. In addition, they performed a visual locali-
zation method for strawberry picking points by analyz-
ing the shape and edge features of mask images generated 
from Mask R-CNN. Yu et  al. also proposed a localiza-
tion algorithm to detect the picking point on strawberry 
stems with Rotational You Only Look Once (R-YOLO), 
which predicts the rotation of the bounding box of the 
fruit target [7]. Their harvesting robot measures the dis-
tance to the target fruit with a pair of laser beam sensors 
attached to the head of the fingers of the robot instead 
of detecting the depth of the target fruit. Fu et  al. pro-
posed an algorithm that can detect individual kiwifruits 
even if they are crowded using two types of lines [8]. The 
first type is a calyx line that connects together all the 
calyxes in one cluster. Another type of line is a separating 
line drawn between two closest contact points between 
adjacent fruits. Liu et  al. proposed a method to detect 
unevenly red apple fruits that include the green or yellow 
color with two features [9]. Simple linear iterative clus-
tering (SLIC) is adapted to segment images into super-
pixel blocks and determine candidate regions with color 
features. The histogram of oriented gradient (HOG) is 
adopted to detect fruits in candidate regions and locate 
the position with the shape feature. Feng et al. proposed 
an apple fruit recognition algorithm based on multi-
spectral dynamic images [10]. It is based on the fact that 
the fruit and the leaf can be identified easily because the 
surface temperature change of the fruit is slower than 
that of the neighboring leaves. Their proposed algorithm 
with multi-spectral dynamic images extracts texture fea-
tures using a gray-level co-occurrence matrix after sev-
eral pre-processing steps. It then classifies objects by a 
linearly separable support vector machine. Sa et al. pro-
posed approaches for a vision-based fruit detection sys-
tem with a field farm dataset, maintaining fast detection 
and a low burden for ground truth annotation [11]. Their 
approaches are the novel use of RGB and Near Infra-
Red (NIR) multimodal information within early and late 
fusion networks that provide improvements over a single 
deep convolutional neural network.

The second category mainly deals with 3D informa-
tion obtained by RGB-D cameras and stereo cameras. 
Nguyen et  al. proposed an algorithm for the detection 
and localization of red and bicolored apples on trees 
in an orchard based on color and range data captured 
with an RGB-D camera under a light shield blocking 

(a) Photo (b) Point cloud
Fig. 5  Example images taken by RealSense D435
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direct sunlight [12]. Their algorithm estimates the loca-
tion and diameter of each fruit by applying the random 
sample consensus (RANSAC) algorithm to the clustered 
apple point cloud. Lin et  al. proposed a global point 
cloud descriptor that integrates the shape, angular, and 
color features of the object of interest [13]. This descrip-
tor is used to distinguish between fruits and non-fruits 
using a support vector machine. The potential fruits 
are detected from the clustered point cloud using the 
M-estimator sample consensus based 3D shape detec-
tion algorithm. Lin et al. proposed a vision sensing algo-
rithm that can detect guava fruits on trees and obtain 
promising 3D pose information with an RGB-D sensor 
[14]. They applied Euclidean clustering to obtain all of the 
individual fruits from the fruit point cloud correspond-
ing to segmented fruits on the image and estimated the 
pose of the fruit relative to its mother branch. Yaguchi 
et  al. proposed a tomato fruit recognition method for a 
harvesting robot. First, color-based point cloud extrac-
tion was applied to a 3D point cloud from a stereo cam-
era. Second, distance-based clustering was applied to 
separate the candidate point cloud into tomato clusters. 
Thereafter, the harvesting robot inserts its end-effector 
into the fruit position, which is decided with sphere fit-
ting using RANSAC. Yoshida et  al. proposed a method 
for detecting cutting points on tomato peduncles using 
an RGB-D camera mounted on a harvesting robot [15] 
[16]. In their approach, several types of Region Growing 
were used to construct a directed acyclic graph. Subse-
quently, using the Mahalanobis distance defined based on 
statistical information, they detected appropriate cutting 
points on the peduncles. Tao et al. proposed an improved 
3D descriptor with the fusion of color and 3D geometric 
features to help a fruit-picking robot’s recognition ability 
[17]. They also proposed a method to automatically rec-
ognize apples, branches, and leaves using a support vec-
tor machine optimized by a genetic algorithm.

In this study, we combine the properties of both the 
aforementioned categories in that we effectively use the 
information in the 2D image against the inaccuracies of 
the RGB-D camera.

Algorithm for fruit detection to harvest
The harvesting robot needs to be told where to insert 
its end-effectors to harvest the fruits. However, as 
explained in the subsection on the camera, the 3D posi-
tions acquired outdoors with the RGB-D camera tend 
to be inaccurate. After recognizing the fruits on the 2D 
image, the accuracy of the 3D position was improved by 
fitting the fruit to a sphere in a 3D space. This is based 
on the assumption that the shape of a fruit is close to a 
sphere. By adopting the sphere fitting, it is possible to 
estimate the position where the end-effectors should be 

inserted, even if the lower part of the fruit is not visible to 
the RGB-D cameras. In addition, our proposed method 
simplifies annotation work because the annotation work 
required for 3D object detection can be performed on a 
2D image instead of a point cloud.

Position recognition of fruit on the two‑dimensional image
Based on the assumption that the fruit that is the target 
of harvesting is spherical, the spherical shape of the fruit 
becomes circular when it is projected onto a 2D image. 
In this section, after going through the fruit recognition 
stage, we estimate the circle that can fit the fruit. Our 
proposed method adopts Mask R-CNN proposed by He 
et al. as a fruit detection method on an image [18]. The 
detection accuracy of Mask R-CNN, including the shape 
of a bounding box, is excellent. We used Detectron 2 [19] 
as a library providing Mask R-CNN. Fig. 6 shows a result 
that Mask R-CNN detecting a fruit.

The shape of the circle is obtained by setting the center 
and the short side of the bounding box as the center and 
diameter of the circle, respectively. In addition, the point 
cloud corresponding to the pixel on the binary mask of 
the fruit is assumed to be the point cloud that constitutes 
the fruit, and will be used in the next section.

Sphere fitting
The fruit circle obtained in the previous section is a pro-
jection of the fruit onto the image plane. From the per-
spective projection model of the camera, the 3D position 
of the fruit is assumed to exist in a similar relationship 
somewhere on the extension of the center of the circle on 
the image plane from the center of the image, as shown in 
Fig. 7. Based on this assumption, the location of the fruit 

Fig. 6  Example of the detection result of Mask R-CNN
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is identified using the 3D point cloud corresponding to 
the binary mask obtained by Mask R-CNN as a cue.

The relationship between point P = [X Y Z]T , which 
exists in a 3D space in the camera coordinate, and point 
p = [x y]T , which is the projection of point P onto a 
image plane, can be expressed by Eq.  (1), where K is the 
intrinsic parameter of the camera and s is the scale fac-
tor that makes the third line on the left side 1. In this 
study, the intrinsic parameter K is obtained by camera 
calibration.

By transforming Eq.  (1), the relationship between a 
sphere in a 3D space whose center is Pc = [Xc Yc Zc]

T 
and a circle whose center is pc = [xc xc]

T , which is a pro-
jection of the sphere onto a 2D image, can be expressed 
by Eq.  (2).

Because the center pc of the circle was obtained in the 
previous section, the center Pc of the sphere correspond-
ing to the circle is determined only by s when the intrin-
sic parameter s of the camera is known. Conversely, the 
relationship between the radius R of the sphere and the 
radius r of the circle can be expressed by Eq.  (3).

Eliminating the sphere and circle centers from Eqs. (2) 
and (3) yields Eq.  (4). Because the radius of the circle is 
known, the radius of the sphere is determined only by s.

Substituting Eqs. (2) and (4) into Eq.  (5), which is the 
equation of the sphere, yields Eq.  (6).
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where each coefficient in Eq.  (6) is as follows.

The objective function of the least squares method to fit 
a sphere from a 3D point cloud Pi = [Xi Yi Zi]

T can be 
expressed by Eq.  (11).

where ei is the following equation.

To organize Eq.  12), the coefficients are set as in the fol-
lowing equations.

Using these coefficients, Eq.  (11) can be transformed 
into Eq.  (16).

The s that minimizes the objective function is the solu-
tion to Eq.  (17), which is a cubic equations, where 
RANSAC [20] (Random sample consensus) is used to 
suppress the effect of a noisy point cloud.

The 3D coordinates and radius of the center of the target 
sphere are obtained by substituting the obtained s into 
Eqs. (2) and (4). By assuming that the sphere exists on the 
extension of the circle detected in the 2D image, instead 
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of directly fitting the sphere from the point cloud, it is 
possible to fit the sphere even from an inaccurate point 
cloud.

Based on the calibration results between the robot arm 
and the camera, the last step is to transform the coordi-
nates to the robot coordinate system.

Ripeness determination
Extraction of determining region
Kosui and Hosui are pear varieties that are the targets of 
harvesting in this study. It is important to determine the 
right time to harvest them because they do not ripen at 
once and are non-climacteric-type fruits. We propose a 
method to determine whether harvesting them is possible 
based on images captured by RGB-D cameras mounted on 
a harvesting robot. On the other hand, since apples are har-
vested all at once, ripeness determination is not necessary.

Farmers check the color of the bottom of the pears at 
harvest time to determine whether they can be harvested 
because the part of the pear near the bottom depression 
is less susceptible to discoloration caused by sunburn and 
the cork layer on the surface of the pear. In this section, 
we describe how the harvesting robot extracts the color 
around the bottom of the pear to determine whether it 
can be harvested or not, similar to the viewpoint used by 
farmers. By extracting the color near the bottom of the 
pear, the harvest robot determines ripeness, similar to the 
viewpoint used by farmers. However, depending on the 
direction of the fruit, the harvesting robot may observe the 
entire bottom of the fruit. To solve this problem, we pro-
pose a method to obtain information about the entire area 
around the bottom of the fruit based on the spherical shape 
obtained in the previous section.

First, to obtain the center of the bottom of the fruit, 
Faster R-CNN is applied to the region of the bounding box 
of the fruit obtained with Mask R-CNN as the second step 
of object detection [21]. Thereafter, based on the sphere 
information of the fruit obtained in the previous section, 
the sphere belt corresponding to the region of the bottom 
of the fruit is obtained.

When the point on the sphere is X , the center of the 
sphere is Xc , the radius of the sphere is R, and the tangent 
plane at point B , which corresponds to the peak at the bot-
tom of the fruit, can be expressed by Eq.  (18).

Here, as shown in Fig. 8, the points B1 and B2 from the 
center of the sphere Xc to the point B are represented by 
equations (19) and (20).

(18)(B− Xc) · (X − Xc) = R2

(19)B1 = n1(B− Xc)+ Xc

The sphere belt of a sphere sandwiched between planes 
parallel to the tangent plane of the point B passing 
through points B1 and B2 can be expressed by equations 
(21) and (22).

By reprojecting the points that satisfy equations (21) and 
(22) from the point cloud that composes the sphere used 
in the previous section onto the original image, we can 
extract the region for maturity judgment, as shown in 
Fig.  9. In this study, n1 and n2 were set to 0.8 and 0.95, 
respectively.

(20)B2 = n2(B− Xc)+ Xc

(21)(B1 − Xc) · (X − B1) > 0

(22)(B2 − Xc) · (X − B2) < 0

Xc

B

Xc

B1
B2
B

Fig. 8  Sphere belt

Fig. 9  Detected area for determining ripeness
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Learning of ripeness determination
We constructed a convolutional neural network (CNN) 
for regression to determine the ripeness of pears from 
the RGB data of the sphere belt shown in the previ-
ous section. Continuous ripeness data used for training 
the network were obtained using a fruit sorting system 
(Fig. 10), which has an internal quality sensor manufac-
tured by Sibuya Seiki Co. On the other hand, the ripeness 
data obtained by the sorting machine cannot be used as 
is. In the field, the line between harvestability and non-
harvestability is drawn each year based on the ripeness 
data. To judge whether or not to harvest from the con-
tinuous data of ripeness, a classifier using logistic regres-
sion was constructed through questionnaires provided to 
skilled pear cultivators, referring to the eyeballing meet-
ing conducted by pear farmers in the field. The input data 
used to train the classifier of logistic regression is the 
ripeness value, and the output data is the harvestability 
decision. By passing the RGB-D data of the sphere belt 
of the bottom of the pear through this two step classi-
fier, the harvesting robot can now determine whether the 
pear can be harvested or not.

Results and Discussion
We performed experiments to confirm the effectiveness 
of our proposed method for the fruit-harvesting robot 
at Kanagawa Agricultural Technology Center (Pear) and 
Miyagi Prefectural Institute of Agriculture and Horticul-
ture (Apple). Fig.  11 shows examples of the recognition 
results on the 2D images. Figure 11a shows that detection 
of the bottom of the fruits and extraction region to deter-
mine their ripeness are applied to the pears. However, 
the detection of the bottom was not applied to apples 
because apples are harvested together simultaneously 
and therefore do not need the ripeness determination.

Figure  12a shows a recognition result in a 3D space 
based on the detection result of Fig. 11a. In particular, 

Fig. 10  Fruit sorting system

(a) Pear (b) Apple
Fig. 11  Recognition results on the 2D images

(a) Pear (b) Apple
Fig. 12  Results of sphere shape estimation

(a) Pear (b) Apple
Fig. 13  Details of sphere shape estimation
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as shown in Fig  13a, the original point cloud is highly 
distorted for the fruit in the highest position. However, 
the pink sphere estimated by the proposed method is 
roughly applied to the roundness of the fruit, and it can 
be observed that the error can be suppressed. Simi-
larly, based on the detection results shown in Fig. 12b, 
the fruit recognition results in the 3D space are shown 
in Fig. 13b. Similar to Fig. 13a, in this figure, the pink 
sphere is fitted to the fruit of the point cloud, and it can 
be seen that the proposed method does not depend on 
the type of fruit.

The harvestability of pears was verified by extract-
ing the color around the bottom of 137 fruits using the 
method described in the previous section. The percent-
age of correct answers was 87% in comparison to the 
correct responses provided by skilled workers. Col-
lecting data to determine whether to harvest is labor-
intensive compared to fruit recognition; therefore, 
to improve the accuracy of the data, it is necessary to 
consider a system that not only increases the amount 
of data, but also allows for efficient data collection. An 
example of easy confirmation of harvestability is shown 
in Fig.  14. The upper fruit is not the fruit at harvest 
time, but the lower fruit is.

Next, to verify the fruit position using our proposed 
method, an orange softball simulating a fruit was 
attached to a tree in the field while changing the loca-
tion, and the actual measurements by the laser measure 
shown in Fig.  15 were compared with the estimation 
results obtained using the proposed method. The dis-
tance from the center of the lens, which is the starting 
point of the laser measure placed as shown in Fig. 15, 
to the ball marked to be detected at the bottom of the 
fruit was measured. The softball was used as a target 

because the actual fruits were distorted and there was a 
depression at the bottom of the fruits, making it impos-
sible to measure the exact points.

Table 1 shows the comparison between the proposed 
method and the actual measurements for the two fruits 
shown in Fig. 16. It can be observed that each error is 
small enough for the robot hand palm size.

Fig. 14  Example of easy confirmation of harvestability

Fig. 15  Placement of the laser measure to measure the distance 
between the fruits and camera

(a) Case 1 (b) Case 2
Fig. 16  Target fruits for distance measurement

Table 1  Detection results for different peduncle lengths

Measured value Estimated value Error

Case 1 0.913 [m] 0.919 [m] − 0.006 [m]

Case 2 0.992 [m] 0.961 [m] 0.032 [m]
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Fig.  17 shows an example of a harvesting robot mov-
ing while harvesting. In this case, 23 out of 25 fruits were 
harvested. Conversely, the cause of the harvest failure 
was occlusion by leaves and branches. Excluding state 
transitions, the average time taken for recognition and 
harvesting was about 24 seconds. Jetson AGX Xavier 
from NVIDIA was used for the calculations.

Conclusions
In this study, we proposed a method for estimating the 
position of fruits in a 3D space such that the fruit har-
vesting robot cloud perform automatic harvesting. 
Even when using data from RGB-D cameras where the 
acquired point cloud is inaccurate owing to its use in an 

outdoor environment, the proposed method could sup-
press the inaccuracy of the point cloud using not only the 
3D information of RGB-D cameras but also the 2D image 
information and information about the cameras obtained 
simultaneously. In addition, by using the 3D information 
of the fruits obtained in this process, the ripeness of the 
fruits was also determined. In the experiment, recogni-
tion was performed on an actual joint V-shaped trellis, 
and the effect was confirmed.

Abbreviations
RGB-D: Red, green, blue, and depth; R-CNN: Region-based convolutional neu-
ral network; R-YOLO: Rotational you only look once; SLIC: Simple linear iterative 
clustering; HOG: Histogram of oriented gradient; NIR: Near infraRed; RANSAC: 
Random sample consensus; CNN: Convolutional neural network.
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