
Ito and Nakamura ﻿ROBOMECH Journal (2022) 9:7
https://doi.org/10.1186/s40648-022-00222-y

RESEARCH ARTICLE

Rapid prototyping for series of tasks
in atypical environment: robotic system
with reliable program‑based and flexible
learning‑based approaches
Hiroshi Ito1*  and Satoshi Nakamura2   

Abstract 

We propose a novel robotic system that combines both a reliable programming-based approach and a highly
generalizable learning-based approach. How to design and implement a series of tasks in an atypical environment is
a challenging issue. If all tasks are implemented using a programming-based approach, the development costs will
be huge. However, if a learning-based approach is used, reliability is an issue. In this paper, we propose novel design
guidelines that focus on the respective advantages of programming-based and learning-based approaches and select
them so that they complement each other. We use a program-based approach for motions that is rough behavior
and a learning-based approach for motion that is required complex interaction between robot and object of robot
tasks and are difficult to achieve with a program. Our learning approach can easily and rapidly accomplish a series of
tasks consisting of various motions because it does not require a computational model of an object to be designed in
advance. We demonstrate a series of tasks in which randomly arranged parts are assembled using an actual robot.

Keywords:  Autonomous robot, Assembly, Motion generation, Deep predictive learning

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Robotic automation has traditionally been used mainly
for repetitive tasks in known environments, such as
automotive assembly. However, in recent years, there
has been a growing need to automate atypical tasks in
unknown or undeveloped environments that are difficult
to perform with conventional robotic technology. For
example, shortages of workers are becoming more seri-
ous at construction and maintenance sites where danger-
ous and heavy work is required. For robots to perform
on-site work, the emphasis is not on the ability to repeat
simple tasks at high speed and with high precision as in
the past but on the ability to perform tasks reliably even

in unexpected situations. In factory automation, it is also
desirable for robots to work autonomously in a new work
environment without humans having to teach them oper-
ations in detail since a quick response to frequent process
changes is required for small-volume production. How-
ever, there are several issues that need to be addressed in
order to design a robot system that can perform atypical
tasks.

Big issues for design a robot system for perform series
of task in atypical tasks is the implementation cost. At
atypical work sites, robots need to be adaptive to the
conditions of work objects and the positioning of parts.
To execute a series of tasks autonomously, three actions
must be done: (1) recognizing the work situation and
planning a procedure, (2) recognizing the position,
shape, and posture of parts, tools, etc., and (3) controlling
the motion of the robot. However, if we were to imple-
ment these functions for each task, the development

Open Access

*Correspondence: hiroshi.ito.ws@hitachi.com
1 Center for Technology Innovation ‑ Controls and Robotics, Research &
Development Group, Hitachi, Ltd., Ibaraki 312‑0025, Japan
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-8044-9825
http://orcid.org/0000-0001-7978-0705
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40648-022-00222-y&domain=pdf

Page 2 of 14Ito and Nakamura ﻿ROBOMECH Journal (2022) 9:7

costs would be huge. In addition, a high level of exper-
tise is required to developtasks that involve contact with
an object (screw fastening and fitting) or are difficult to
describe in a program (handling flexible objects). There-
fore, learning-based approaches have been proposed to
accomplish complex tasks that are difficult to accomplish
with conventional programming-based approaches [1–3].

However, learning-based approaches have safety and
reliability issues. Unlike image recognition and natural
language processing, robots perform tasks that involve
physical contact in the real world. This can lead to colli-
sions and other dangers. Therefore, it is necessary to have
both “safety” to prevent failure and damage as a result of
physical contact and collision and “reliability” to ensure
that behavioral rules are improved through learning. For
the former, safety has been ensured by detecting abnor-
malities and loads of robots by analyzing signals such as
current values, acoustic sensors, and acceleration sen-
sors [4–7]. However, the learning approach is a black box
because it acquires behavioral rules on the basis of data,
and there are still problems with reliability. Some meth-
ods have been proposed to use a model-based controller
as prior knowledge for deep reinforcement learning [8,
9] or to monitor the state of a system in real time dur-
ing operation generation and execute a predetermined
recovery action when an anomaly is detected [10–12].
However, none of these methods focus on the reliability
of behavior.

In this paper, we aim to accomplish complex tasks in
an atypical environment in a simple and rapid way that is
both reliable and flexible. How to design and implement
a set of tasks in an atypical environment is a challenging
issue. If we try to implement all tasks using a program-
ming-based approach, the implementation costs will be
huge. However, if a learning-based approach is used, reli-
ability becomes an issue. In this paper, we propose a novel
robotic system that focuses on the respective advantages
of reliable program-based and flexible learning-based
motion generation, which complement each other. To
verify the effectiveness of the proposed method, as a
first step for an atypical environment task, an assembly
task with randomly placed tools and parts is performed
with a real robot. This task is very challenging compared
with general assembly tasks because it requires trajectory
planning based on the positions of randomly placed parts
and tools, as well as their positioning and screw fasten-
ing. The contributions of this paper are as follows.

1.	 Categorization of robotic tasks based on the therblig:
A method is proposed for designing a robotic sys-
tem using therbligs that visualizes and improves the
efficiency of human tasks. The robot’s various tasks
(e.g., grasping, carrying, fitting) were categorized,

and actions that can be realized with relatively sim-
ple definitions were defined as program-based ones,
while complex actions were defined as learning-
based ones. For example, a program-based approach
is used for operations such as reaching, where the
robot moves dynamically, and safety and reliabil-
ity are required, and a learning approach is used for
operations such as screw fastening and fitting, where
the robot’s work area is limited, and the operations in
this area are difficult to accomplish with a program.
The system designer can easily and rapidly realize a
robotic system in which programming and learning
approaches coexist by implementing various func-
tions on the basis of the design guidelines presented
in this paper.

2.	 Realizing a series of tasks in an atypical environment:
The robot can flexibly generate motions even in an
atypical environment where the placement of parts,
work areas, and tools change, and a series of assem-
bly tasks can be accomplished with an 80% success
rate. In the experiment, the alignment of each part is
important because the assembly work is performed
using parts placed in random positions. Our learn-
ing-based approach allows the robot to acquire the
desired operation by being taught the motion using
teleoperation and learning models. Therefore, there
is no need to design a computational model of an
object in advance. During motion execution, the
robot can perform screw fastening and object align-
ment on the basis of its sensor information in real
time.

Design concept
How to design and implement a series of tasks in an
atypical environment is a challenging issue. If all the
tasks are implemented using a programming approach,
the costs of development will be huge, and if a learning-
based approach is used, the data collection cost, learning
cost, and reliability will become issues. In this section,
we focus on the advantages of both reliable program-
ming-based and flexible learning-based methods, and we
describe how to design robotic systems that complement
each other’s shortcomings.

Task categorization
The issue is whether a programming-based or learning-
based approach is more suitable for implementing each
function of a robot and how best to combine them. As a
solution to this problem, in this paper, we define a clas-
sification of robot functions and the execution order of
each function with reference to the therblig. Therbligs
are 18 kinds of elemental motions that a worker needs

Page 3 of 14Ito and Nakamura ﻿ROBOMECH Journal (2022) 9:7 	

in order to perform a task [13, 14]. In the field of indus-
trial engineering, therbligs are used to visualize the
content and series of human work and to propose and
more efficient work methods and improve them. Here,
we describe how to design a robotic system on the basis
of the therblig.

First, we extracted 12 kinds of elemental motions
for robotic system design while excluding six elemen-
tal motions that should be unnecessary for design the
robot tasks, these are stopped motion elements that
is no longer needed for work (i.e. “hold”, “unavoidable
delay”, “avoidable delay”, “rest”), “pre-position” element
that become unnecessary by optimizing in advance and
“find” element that is almost same as “search” and sel-
dom use. Each elemental motion is explained using the
screw handling in assembly tasks as an example.

•	 Search: Searching the location of an object with the
eyes or hands. The five senses other than the eyes,
such as when searching for holes with the fingertips,
are also equivalent. Find out where the screws are.

•	 Inspect: Determining an object by a defined standard
(quality or characteristics) using visual, auditory, tac-
tile, etc. Check how tightly screws have been tight-
ened between parts.

•	 Select: Choosing one out of several. Select an appro-
priate screw from several screws.

•	 Grasp: Grasping an object with hands or fingers.
Grab the screw.

•	 Release load: Releasing control of an object. Release
the screw.

•	 Transport empty: Reaching an object with an empty
hand. Reach out to where the screw is.

•	 Transport load: Moving an object in hand from one
place to another. Carry the screw.

•	 Position: Adjusting the position and orientation of
objects. Adjust the position to insert the screw into
the hole.

•	 Use: Manipulating tools, instruments, and equip-
ment for a purpose. Tighten the screws.

•	 Assemble: Joining two parts together. Use the screws
to fix the two parts together.

•	 Disassemble: Separating multiple components that
are joined. Loosen the screws and disassemble the
parts.

•	 Plan: Planning to do this next or later. Think about
the procedure of the task.

Implementing all these 12 kinds of elemental motions
with a programming-based approach would lead to
huge development costs. Therefore, we propose a design
method (guidelines) for a robot system with reliability
and versatility by classifying the 12 motions into three
categories on the basis of the characteristics of each func-
tion and then implementing them as modules. Table 1(a)
shows three categorized elemental motions, and (b)
shows the corresponding robot functions. (1)–(3) Show
the three categories, and their details are as follows. (1)
“Perception” is a motion to judge or measure without
actual robot action based on information such as vision,
and corresponds to functions such as image recogni-
tion, object detection, and position estimation based on
the robot’s visual information. It is also used for check-
ing the task status (progress) and motion planning based
on visual information. Since deep learning has made
recognition technologies more diverse and accurate,
it is possible to choose a method of implementation in
accordance with the task. Template matching [15], which
is conventionally used, is effective when the number of
target objects is limited or patterned, while learning-
based object recognition algorithms [16–18] are effec-
tive for various types and complex shapes of objects.
(2) “Motion” is relatively simple motion that have not
complex interactions between robot and object of robot
tasks, and it also requires a high level of reliability and
safety because the robot moves widely in the real world.
Many of the motions are somewhat patterned, such as
“take object A and place it at position B.” Teaching play-
back, point-to-point (PtP), and trajectory planning algo-
rithms such as rapidly-exploring random tree (RRT) [19,
20] are examples of implementation methods. (3) “Sen-
sorimotor” is a motion that is necessary to have complex
interactions between robot and object of robot task, and
relies on the five senses and adjusts the position and force

Table 1  Categorization of robot functions based on therbligs

(1) Perception (2) Motion (3) Sensorimotor

(a) Basic motion Search
Inspect
Select
Plan

Grasp
Release load
Transport empty
Transport load

Position
Use
Assemble
Disassemble

(b) Key function of robot control Image recognition
Object detection
Position estimation

Point-to-point motion
Interference avoidance

Learning-based
motion generation

Page 4 of 14Ito and Nakamura ﻿ROBOMECH Journal (2022) 9:7

in accordance with the situation. For tasks that are dif-
ficult to describe in a program, such as screw tightening
and fitting, a learning-based motion generation method
would be effective. The diversification and develop-
ment of learning-based approaches makes it possible to
perform complex tasks [21–24]. Deep reinforcement
learning, imitation learning, and other implementation
methods are examples of implementation methods.

We have described the categorization of robot func-
tions and examples of their implementation, referring to
the therblig. In the next section, we describe the execu-
tion procedure and how to combine the three functions.

System architecture
When a robot is performing a task, the timing at which
tasks are switched and the order in which the motion and
sensorimotor are executed are issues. Figure 1 shows the
execution procedure (system configuration) for the series
of tasks proposed in this paper. The squares in the figure
represent each of the functions defined above (hereafter
referred to as modules). The modules consist of a “per-
ception module” for recognizing situations, a “process
manager” for switching tasks, and a “motion module”
and a “sensorimotor module” for executing subtasks.
On a simple production line, each task is executed in a
feed-forward sequence. However, with a pre-planned
work schedule, it is not possible to respond to unex-
pected events. In particular, since this paper assumes
an atypical environment where the positions of objects
change, process control in a feed-forward manner is dif-
ficult. To manage work processes in an atypical environ-
ment, it is necessary to recognize where objects are and
what state they are in on the basis of vision information.
In this paper, we use the perception module of Fig. 1 (1)

to detect the position and state labels of objects. (2) The
process manager switches tasks using real-time process
planning methods [25, 26] or pre-designed if-then rules.

Next, we describe the series in which tasks are executed
as shown in Fig. 1c. In this paper, a task consists of up to
three kinds of modules. A typical robotic system consists
of “perception” and “motion planning and control.” It rec-
ognizes object names and locations on the basis of vision
and executes trajectories that satisfy geometric, mecha-
nistic, and dynamic constraints on the basis of the rec-
ognition results. If we apply this to the categorization in
Table 1, the task will transition in the order of “perception
module” and “motion module.” However, not all tasks can
be realized with a program-based motion module. Some
tasks define the “motion module” to be followed by the
“sensorimotor module.” Basically, a programming-based
approach is used for rough motions that are defined as
“Motion” in Table 1, and a learning-based approach is
used for complex motions that are defined as “Sensori-
motor” in Table 1. Thus, the number of modules (sub-
tasks) varies depending on the task. For example, Task 1
in Fig. 1 consists of subtask 1 to pick up the object and
Subtask 2 to place it at the target position. Subtask 1 gen-
erates a grasping motion with the motion module on the
basis of the position information of the target object rec-
ognized by the perception module. Similarly, subtask 2
generates a motion to place the object at the goal position
with the motion module on the basis of the goal posi-
tion information recognized by the perception module.
However, if positioning accuracy is required, such as in
assembly work, it is impossible to complete a series of
tasks by simply placing the object at the goal position
and it is required to adjust position according to state of
each parts that would be assembled, such as adjustment

Fig. 1  Software architecture for performing series of tasks

Page 5 of 14Ito and Nakamura ﻿ROBOMECH Journal (2022) 9:7 	

motion with vision sensing or searching motion with
force feedback. In addition, implementing a high-preci-
sion positioning algorithm using a programming-based
approach requires complex programming and real-world
tuning. Therefore, we use the sensorimotor module to
adjust the position after the motion module. This makes
it possible to perform complex tasks robustly with lower
development costs.

As described above, by defining (implementing) vari-
ous functions and execution procedures for the robot on
the basis of the task categories and design policies pro-
posed in this paper, a robot system can be constructed in
which a highly reliable program base and a highly robust
learning base coexist.

Set up for verification
To verify the effectiveness of the proposed method, we
performed an assembly task in an atypical environment.
Here, we describe the experimental setup and the experi-
mental task.

Robotic hardware
Figure 2 shows the experimental setup. As shown in (a),
two robot arms (KUKA LBR iiwa 14 R820) are used, and
a robotic hand (Robotiq 2F-85 Adaptive Gripper) and
an RGB camera (Buffalo BSW500M Series) are attached
to the end of the arms. The other equipment includes a
bird’s-eye-view camera (Intel RealSenes D435i) for tak-
ing full view of work place, and an electric screwdriver
connected to a tool balancer. The workbench, cover,
base, and screws are the parts needed for assembly. (b)
Shows an enlarged view near the robotic hand when
hand grasping the screw driver. As shown in (b), hand
camera installed near base of robotic hand and it can
take an image of near the finger of robotic hand. The

robot arms can be remotely controlled using a joystick
to teach the desired motion. Impedance control can also
be performed by using a torque sensor at each joint. For
example, even if the axis of the driver and the screw hole
is misaligned when tightening a screw and the hand is
overloaded, it can prevent the screw and screw hole
from being overloaded by passively moving the hand.
However, since there is an inverse relationship between
arm strength and positioning accuracy with impedance
control, and the arm does not move accurately in rela-
tion to the hand position command, the control mode is
switched depending on the task. In this paper, we used
position control mode when executing the motion mod-
ule and impedance control mode when executing the
sensorimotor module, which involves contact with the
object.

Assembly task for verification
Recently, robots are required to have the ability to handle
high-mix low-volume production, rather than the con-
ventional ability to repeat simple tasks at high speed and
with high precision. These robots must have the ability to
work autonomously in atypical environments. As men-
tioned above, in this paper, we focus on assembly tasks
in the atypical environment shown in Fig. 3. To evaluate
such tasks in this environment, the parts and workbench
are not fixed but are randomly placed within the robot’s
operating range before work is started. The assembly
task consists of five steps: (1) pick and place a randomly
placed base, (2) pick and place a randomly placed cover,
(3) grasp the electric screwdriver, (4) pick up a screw
(attach it to the screw bit with the magnetic bit on the tip
of the electric driver), and (5) screw the four corners of
the cover to the base. To avoid contact between the robot
and floor, the assembly is performed on a workbench. We

Fig. 2  Experimental environment: sensors and equipment

Page 6 of 14Ito and Nakamura ﻿ROBOMECH Journal (2022) 9:7

evaluated the success rate of the proposed method by
performing a series of assembly tasks 10 times. In these
tasks, some complex behavior that needs interaction
between robot and object for assembly task is required,
for example, align two parts while considering position
and orientation of each parts so that the two parts over-
lap exactly, or adjust position and force of the hand to fit
the screw to the tip of the screwdriver.

System configuration
In this section, we describe the specific method to con-
figure the robot system with classification of the experi-
mental tasks and the specific implementation method.
Table 2 shows the tasks and their execution procedures.
The assembly task consisted of five tasks, which were
executed in order from 1 to 5. The numbers in each task
correspond to the numbers in Fig. 3. The subtasks were
executed in order from A to C. The implementation
method for each function is described below.

Process manager
We used the Single Shot Multibox Detector (SSD) [17] as
an object recognition algorithm based on deep learning
to recognize the work process. To reduce the implemen-
tation costs, we used the TensorFlow Object Detection
API [27]. The robot performed rule-based task switch-
ing on the basis of object labels recognized by SSD. For
example, when two parts are to be assembled, the name
of each part is output as an object label before assem-
bly, and the states are combined after assembly. If a part
name is output, the corresponding action (motion or/
and sensorimotor module) will be performed; if a state
is output, the next task will be performed. Thus, a series
of tasks can be accomplished by combining object recog-
nition and rule-based process planning. General object
recognition algorithms, such as template matching, have
low robustness to illumination changes. In particular, it is
difficult to accurately recognize metals such as assembly
parts because the way an object looks depends on how
the light hits it (reflection angle). In comparison, SSD
can perform object detection in real time and robustly
against illumination and background changes. Further-
more, it can simultaneously predict location information
in addition to object label information. We can share the
modules and reduce development costs by passing the
label information predicted by SSD to the process man-
ager and the location information to the motion module.

Perception module
Since SSD detects the positional information of objects
in the two-dimensional plane of a camera image, it can-
not be used directly for robot control. For the robot to
perform tasks on the basis of location information from
SSD, the information is converted into 3D coordinates
of the real environment. The camera used for perception
in this paper is bird’s-eye-view camera that is shown in

Fig. 3  Assembly tasks in atypical environment. Each part and tool are
randomly placed

Table 2  Task categorization for assembly work

Task Sub-task (A) Perception (B) Motion (C) Sensorimotor

(1) Base operation Picking Base Pick up base –

Placing Workbench Place base on workbench –

(2) Cover operation Picking Cover Pick up cover –

Moving Workbench Layer cover over base Alignment adjustment

Placing Workbench Place cover on base –

(3) Take screwdriver Grasping Screwdriver Reach for screwdriver Position adjustment

Moving Screw holder Move to screw holder –

(4) Pick up screw Moving Screw – Approach screw

Grasping Screw – Pick up screw

(5) Screw Fasten Moving Screw hole Move to screw hole –

Fasten Screw hole Fasten screw –

Page 7 of 14Ito and Nakamura ﻿ROBOMECH Journal (2022) 9:7 	

Fig. 2, and it has a one-to-one correspondence between
each pixel of an RGB image and depth image. Therefore,
the center coordinates of the object recognized by SSD
( fx, fy ) are converted to 3D positional information (x, y, z)
using a depth image. In addition, to enable the process
manager to check the progress of the work, we trained
the module to change the recognition result in accord-
ance with the state of the object.

Motion module
In the motion module, the robot generates a trajectory on
the basis of object position information (x, y, z). Point-to-
Point (PtP) control is used to generate the robot’s motion.
PtP control is implemented in common industrial robots
and can be implemented at a small cost. The robot auto-
matically generates motions toward the goal position on
the basis of the position information of the object recog-
nized by the perception module. For example, in Task (2)
of Table 2, the robot grasps the cover and places it at the
goal position. However, since both the cover and the base
stand are placed in random positions and postures, it is
difficult to accurately align both positions. Therefore, in
the subtask “Moving,” the sensorimotor module is used
to adjust the position of the cover to overlap the base
platform perfectly.

Sensorimotor module
For the sensorimotor module, we use “Deep Predictive
Learning (DPL),” which is able to acquire desired behav-
iors with low data-collection and learning costs [28–
30]. This method learns a time series of sensory-motor
information when the robot operates in the real world,
enabling it to perform complex tasks that are difficult
to realize with programs. Specifically, it consists of
three steps: (1) collect sensory-motor information (e.g.,
camera image, joint angle, and torque) with the robot
as learning data when a human teleoperates the robot
or performs direct teaching, (2) input the sensor infor-
mation xt at time t into the model, output the sensor

information ŷt+1 at the next time t + 1 , and update the
weights of the model to minimize the error between the
predicted value ŷt+1 and the true value xt+1 , and (3) at
execution time, the robot is made to generate sequen-
tial motions by inputting the robot’s sensor information
xt and inputting the predicted value (motion command
value) to the robot for the next time. This method can
be used to perform various tasks, such as flexible object
handling, which is difficult to do with the conventional
method [31, 32].

Figure 4 shows the details of the sensorimotor mod-
ule. Using a raw visual image of a robot increases the
calculation cost, making it difficult to generate motion
in real time. When a visual image is simply resized, the
important areas for the task are also compressed into a
small size, making it difficult to recognize detailed tasks
and states. In a typical environment where the position
of an object does not change, it is sufficient to crop a
specific area of the camera image. However, in an atypi-
cal environment where the position of an object ran-
domly changes, simple cropping cannot be used. In this
paper, we extract and resize images of the surround-
ings on the basis of the location information of the
object recognized by the perception module, as shown
in Fig. 4a. The object position is extracted only at the
initial time t = 0 , and an image of the same region is
used continuously after that to ensure real-time perfor-
mance. Figure 4b shows the motion generation model
(DPL module) used in this paper. The model consists of
a convolutional layer [33] that extracts image features
from the robot’s visual information, a long short-term
memory (LSTM) [34] that learns image features and the
robot’s body information in a time series, and a trans-
posed convolution layer that reconstructs images from
image features. The LSTM predicts the next-time image
(situation) and motor command from the current sen-
sor information. By learning visual and physical infor-
mation simultaneously, the convolutional layer extracts
the appropriate image features for motion generation

Fig. 4  Network architecture of sensorimotor module

Page 8 of 14Ito and Nakamura ﻿ROBOMECH Journal (2022) 9:7

[35]. The robot generates real-time motions after the
motor commands predicted by the LSTM are inputted.

As shown in Table 2, the sensorimotor module is used
for three tasks: (1) adjusting the position and orienta-
tion of the cover and base, (2) grasping the electric driver,
and (3) adjusting the position of the screwdriver bit and
the top of the screw (hexagonal hole) and inserting it.
We designed the these tasks with sensorimotor modules
since these have characteristics that is required interac-
tion with robot and object of tasks, and also significant
impact on the later stages of the process. If the positions
of the cover and the base are misaligned, the cover may
fall off the base during the task, or the screw-hole posi-
tions may not match, and the task may fail. In addition,
the grasping position and direction of the electric driver
will change the way in which screws are picked up and
tightened. To accomplish a series of tasks with a high
success rate, the adjustment operation of the sensorimo-
tor module is indispensable. Note that we used program
based approach for sub-task of fastening the screw since
it was easy to achieve by using impedance control so that
following hand position to screw hole when pre-exami-
nation, though it should be classified as sensorimotor
motion based on the proposal.

Datasets for deep‑learning method
Training data of perception module
In this paper, we used a pre-trained SSD model to train
the recognition and grasping position of assembly parts.
A total of 693 images of nine objects were taken using
the bird’s-eye-view camera at the top of the experimental
apparatus: the workbench, base, grasping position of the
base, cover, grasping position of the cover, the base on the
workbench, the cover on the workbench, the screw stor-
age area, and the electric screwdriver. The images were
taken when the position and orientation of the object
were randomly changed. We prepared a set of images of
assembly parts and their labels (object name and location
information) as training data. To increase the amount of
training data, we performed image positioning, rotation,
and flipping for data augmentation. In addition, by ran-
domly varying the brightness and contrast of the images,
we obtained an object recognition model that was robust
to changes in illumination.

Training data for sensorimotor module
In deep predictive learning, the model learns sensor
information as a robot operates in the real world. In this
paper, we taught the robot the three motions shown in
Table 2(C). Since the method for teaching an operation is
different for each task, the details are given below.

First, we describe the teaching method for adjusting
the position of the cover. In an atypical environment,

the position and orientation of a cover change randomly
each time. It is not easy to grasp a randomly placed cover
and align its position and orientation so that it overlaps
the base perfectly. Even if a joystick is used to remotely
control a robot to teach movements, there is the problem
of learning not proceeding well because human move-
ments are inconsistent. In particular, it is difficult to
achieve high-precision operation due to minute misalign-
ment of the end state. Here, we used the motion teaching
method shown in Fig. 5 to ensure that the training data
contains consistency. (a) Shows the sample of collected
image data by bird’s-eye-view camera, and it is found that
the center coordinates of the robot hand (yellow dotted
line) and the cover (red dotted line) were not always on a
straight line. Desired operation is that align the orienta-
tion of cover and then align the position of covers, like
flow from (d) to (b). For achieving this motion, we collect
the data that move position randomly from the aligned
state, then rotate orientation randomly. When the model
training, the time series of the collected data is inverted
(played backwards). It is based on the ease of generat-
ing motions that shift from an aligned state to a random
direction and position, and this made it possible to col-
lect data that were consistent with the end state. There-
fore, it is expected that the robot can move an object
in a random initial position to the same end state each
time like as shown in from (d) to (b) during motion gen-
eration. We acquired the image data of bird’s-eye-view
camera as input data and command data of hand posi-
tioning and rotating as output data of DPL. 504 training
data where the orientation and position of the cover were
changed, furthermore changing the grasping finger posi-
tion and orientation of cover were acquired. Each piece
of data was acquired for 10 s at a sampling rate of 10 Hz
per piece of data.

Fig. 5  Overview of motion teaching: position adjustment of cover
and base

Page 9 of 14Ito and Nakamura ﻿ROBOMECH Journal (2022) 9:7 	

Next, we describe the teaching method for screw han-
dling. Here, screw handling consists of the two opera-
tions shown in Fig. 6, the screw approach motion and
the screw pickup motion. (a) Is a motion for bringing the
electric screwdriver close to the screw (screw approach
motion). Two motions are taught to the robot for the
screw approach action: (1) leftward (positive y) move-
ment and (2) forward (positive x) movement. As a recov-
ery operation in the case of operation failure, we taught
several operations to move the screwdriver directly above
the screw from different directions as shown by the thin
arrows in Fig. 6a. This allowed the robot to go back and
continue the positioning operation even if the amount
of movement of the hand position was too large and
thus passed the target position. We acquired the image
data of hand camera as input data and command data
of hand positioning as output data of DPL. 441 training
data where the approach motion when the position of
the screw storage area was changed were acquired. From
the bird’s-eye-view camera, it was possible to recognize
the screw storage area and generate motion toward its
vicinity, but the resolution was not high enough to rec-
ognize the exact location of the screw. Here, the robot’s
hand camera was used to generate an accurate approach
motion to the screw. (b) Is the action of fitting the bit of
the electric screwdriver into the hexagonal hole at the
top of the screw (screw pickup motion). In the screw
approach operation, it is difficult for the bit of the electric
screwdriver to stop exactly above the screw. Therefore,

the pickup work was performed by moving (searching)
back and forth and left and right while pressing the bit
against the screw. Impedance control was used to pre-
vent overloading between the robot and the screw. The
robot was taught two motions as screw pickup motions:
(1) perform adjustment in the left-right (y-axis) direc-
tion and (2) in the front-back (x-axis) direction. The six
horizontal arrows shown in (b) are teaching positions,
and 378 training data that is same contents as (a) were
acquired. The training data were collected by a person
using a joystick to remotely control the robot.

Finally, we describe the teaching method for electric
screwdriver grasping. The robot grasped the electric
screwdriver, which was placed on a holder. The height of
the electric screwdriver was the same each time, but the
screwdriver was placed at random positions. Therefore,
the robot was taught the motion in the same way as the
screw approach motion described above. We acquired 86
training data that is same contents as motion of picking
up screw by randomizing the initial position of the driver
each time. The robot was taught to move from the screw-
driver grasping position to a random position. The time
series was reversed (played backwards) and used as train-
ing data. This made it possible to execute position adjust-
ment to align the robot hand with the screwdriver in a
random position.

Results and discussion
In this section, we verify whether the perception module
and sensorimotor module implemented using the learn-
ing approach worked properly. In addition, we describe
the results of 10 assembly operations performed in an
atypical environment as a validation of the effectiveness
of the proposed method.

Object recognition
Figure 7 shows the results of object recognition using
SSD. (a) Is the initial state of assembly, (b) is after placing
the base, and (c) is the end-of-task state. The parts and
tools required for assembly were recognized. The model

Fig. 6  Overview of motion teaching: screw approach and pickup

Fig. 7  Task execution result: object labels and states recognized by SSD

Page 10 of 14Ito and Nakamura ﻿ROBOMECH Journal (2022) 9:7

recognized the object name as a label when each part was
on the floor and the state name as a label when they were
combined. For example, as shown in Fig. 7c, the model
output “Cover on Base” with the base and cover placed
on top of the bench. By switching the recognition label in
accordance with the status of the part, the process man-
ager could check the progress status and switch tasks.

Cover adjustment motion
Figure 8 shows the results of adjusting the position of the
cover. The positions of the workbench and the base were
set up randomly. The center position of the image (inter-
section of the white dotted lines) is indicated to make it
easier to understand the position change. (a) Shows that
the robot learned to adjust the position of the cover. The
robot adjusted the orientation to make a parallel line
between the silver cover and the black base stand (step
2). Then, it adjusted the position of the cover and the
base stand (step 3). Since the size of the cover and the
base stand were the same, the robot adjusted the posi-
tion to make the black base invisible. Steps 2 and 3 corre-
spond to Fig. 5d, c, respectively, indicating that the robot
generated a sequence of the motions. Thus, even if the
base and cover were placed randomly and furthermore
the grasping position were different each time, the robot
could adjust its position accurately.

Next, we discuss the reusability of the cover adjust-
ment module. We verified whether the robot, which had
not learned the cover positioning operation, could adjust
the position of the cover. In an atypical environment, the
robot arm is expected to move appropriately in accord-
ance with the position of the manipulated object. How-
ever, reusability (commonality and diversion) of tasks is
expected because implementing each behavior would
incur development costs. In this section, we will learn a

behavior only with robot arm 1, shown in Fig. 2, and ver-
ify whether the same behavior can be executed with robot
arm 2, which has not yet been trained. Each robot was
installed symmetrically around the bird’s-eye-view cam-
era. Therefore, the image from the camera appeared dif-
ferently to each robot working on the task. In Fig. 8a, the
robot arm appears to be on the left side, while in (b), it is
on the right side. Therefore, to transfer the model learned
with robot arm 1 to robot arm 2, the input images and
command values to the DLP were inverted. Specifically,
the input images were flipped left and right, and the signs
of the command values in the left and right (x) directions
were reversed for position and orientation adjustment.
(b) Is the execution result for robot arm 2. The direction
and position of the cover could be adjusted even though
the position of the robot arm was reversed from that
of the learning process. By simply learning the motion
of one robot arm, it was possible for the other robot to
perform the same motion. This allows us to reduce the
cost of motion learning. However, this is limited to cases
where there is symmetry in the sensor information of the
robot and the work object.

Screw pickup motion
Figure 9 shows a hand camera image of the robot during
the execution of the screw handling operation. (a–d) Are
the operation of approaching the screw, and (e–h) are the
screw pickup operation. The robot was holding the elec-
tric screwdriver and stopped in front of the screw stor-
age area. There were several screws, and the robot went
to grab the leftmost one. At point (c), it recognized the
end position of the screw and generated a return motion.
When the tip of the screwdriver bit and the screw were
aligned, it moved in the forward direction. Then, it
switched to the screw pickup operation and executed the

Fig. 8  Task execution result: positioning cover on randomly placed base

Page 11 of 14Ito and Nakamura ﻿ROBOMECH Journal (2022) 9:7 	

search operation to fit the tip of the screwdriver into the
hexagonal hole of the screw. The robot could perform
the tasks shown in Fig. 6 by generating (adjusting) the
motions in real time.

Verification of series of assembly tasks
To verify the effectiveness of the proposed method,
assembly work was performed with random positions of
parts, work tables, etc. Figure 10 shows the initial status
of the parts and workbench before the start of assem-
bly for each session. The white dashed line is shown in
the center of the image to make it easier to understand
the situation of misalignment. In (a–f), the work was
started with the base and cover placed on both sides of
the working table respectively, and in (g–j), the base and
cover were placed on only one side of the table. Further-
more, in addition to the positions and orientations of the
base and cover, the work was started with the positions
of the workbench, screw storage area, and electric driver
changed.

Figure 11 shows the assembly process with different
initial positions for the objects. The numbers in the fig-
ure correspond to the task numbers in Table 2. In this
section, we explain the software architecture of Fig. 1
in comparison with the actual operation. First, the

perception module was used to check the current work
status and detect the position of the object. Next, the
process manager selected a task on the basis of the rec-
ognition results. The process manager was implemented
with if-then rules. Task 1 was executed since the base was
placed on the green desk. Task 1 consisted of two sub-
tasks: pick up motion toward the recognized base and
place motion toward the workbench. After Task 1 was
completed, the perception module was used to check the
work status. The base was now placed on top of the work-
bench, which changed the state name from workbench to
“Bench and base” as in Fig. 7b. This change in the state
name caused the process manager to select Task 2. Task
2 involved the motion module and sensorimotor mod-
ule. Task 2-1 shows the grasped cover stacked on top of
the base table, and it can be seen that a small misalign-
ment occurred. If the cover were placed on the base in
this state, it would fall off. Therefore, in Task 2-2, the
cover adjustment module was used to align the position
and orientation of both covers. Program-based execution
of simple operations was followed by fine-tuning using
a learning-based approach to generate reliable and gen-
eralizable motions. At the end of Task 2, the state name
changed from “Bench and base” to “Cover on base” as in
Fig. 7c. A series of tasks can be performed by executing

Fig. 9  Task execution result: approaching top of screw and picking it up

Fig. 10  Atypical environment used to verify sequence of tasks

Page 12 of 14Ito and Nakamura ﻿ROBOMECH Journal (2022) 9:7

Task 3 through Task 5 in the same manner as described
above.

We confirmed that the robot could flexibly generate
motions and realize a series of assembly operations even
in an atypical environment where the positions of parts,
workplaces, and tools changed. Ten assembly opera-
tions were performed, and the work was completed eight
times. By implementing the various functions of a robot
on the basis of the therblig, a robot system can be real-
ized in which a reliable program-based approach and a
flexible learning-based approach coexist.

Failure case
Figure 12 shows the case of a task failure. (a) Shows the
screw pickup operation being executed. Normally, the
screwdriver bit would be inserted into the screw hole, but
the screwdriver bit came off the top of the screw. In this
experiment, the screwdriver bit used had a built-in mag-
net for picking up screws. Therefore, in (b), the driver bit
stuck to the side of the screw when it fell. In (c), the screw

popped out of the screw holder, making it impossible to
continue working.

We consider there to be two reasons for this failure. The
first is that the accuracy of stopping the screw approach
motion was low. The screwdriver bit may have come off
the top of the screw during the next process because the
position was slightly off when it should have stopped
directly above the screw. The second is that the direc-
tion of the screw pickup motion was not appropriate. The
screw approach/pickup motion uses a learning approach,
which enables the operation to be performed with gen-
eralized performance. However, it is difficult to elucidate
the causes of failures and take countermeasures because
this approach is data-driven. One possible solution is to
improve the accuracy of the operation by increasing the
number of its learning patterns. Future tasks include
real-time failure determination and estimation of recov-
ery operations [11, 12, 25] and improvements to stability
through hybridization with conventional control [36].

Conclusion
In this paper, we developed a novel robotic system that
uses both a reliable programming-based approach and
a robust learning-based approach. The program-based
approach is used for four elemental motion that have
not complex interactions between robot and object of
robot tasks and is rough behavior, and the learning-
based approach is used for four elemental motion that is
required complex interaction between robot and object
of robot tasks and that are difficult to describe in a pro-
gram. Our learning approach does not require the prior
design of a computational model of an object. The robot’s
visual-image and joint-angle information can be used
to fasten screws and adjust the positions of objects. To
verify the effectiveness of the proposed method, we cre-
ated an assembly task with randomly placed tools and
parts using a real robot. This task was challenging com-
pared with a typical assembly task because it required
trajectory planning based on the positions of the ran-
domly placed parts and tools, and it also required that
their positions be adjusted and that screws be fastened.
As a future works, upgrade of process manager will be
required. Current process manager is configured by

Fig. 11  Task execution result: parts and tools are in different
positions

Fig. 12  Task execution result: task aborted due to failed screw pickup

Page 13 of 14Ito and Nakamura ﻿ROBOMECH Journal (2022) 9:7 	

simple if-then rules, however autonomous function to
configur the motion modules from the stored modules
will be required for adapting more atypical task with-
out high implementation cost. And considering the best
perception method will also be issues so that process
manager determines the suitable task and motion by
recognizing the situation of task and environment and
automatically configure motions. Furthermore, we will
update the system to be able to perform recovery opera-
tions based on work failure decisions in order to improve
reliability.

Acknowledgements
Not applicable.

Authors’ contributions
All authors contributed to the concept and overall development of this study.
HI developed the software for the learning-based approach. NA implemented
the rest of the software and performed the experiments. All authors worked
together to wrote the manuscript. All authors read and approved the final
manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Center for Technology Innovation ‑ Controls and Robotics, Research & Devel-
opment Group, Hitachi, Ltd., Ibaraki 312‑0025, Japan. 2 Present Address: Center
for Technology Innovation ‑ Controls and Robotics, Research & Development
Group, Hitachi, Ltd., Ibaraki 312‑0025, Japan.

Received: 5 November 2021 Accepted: 17 February 2022

References
	1.	 Arnold S, Yamazaki K (2019) Fast and flexible multi-step cloth manipula-

tion planning using an encode-manipulate-decode network (em* d net).
Front Neurorobot 13:22

	2.	 Sasagawa A, Fujimoto K, Sakaino S, Tsuji T (2020) Imitation learning based
on bilateral control for human-robot cooperation. IEEE Robot Autom Lett
5(4):6169–6176

	3.	 Zeng A, Song S, Lee J, Rodriguez A, Funkhouser T (2020) Tossingbot:
learning to throw arbitrary objects with residual physics. IEEE Trans Robot
36(4):1307–1319

	4.	 Olsson E, Funk P, Bengtsson M (2004) Fault diagnosis of industrial robots
using acoustic signals and case-based reasoning. In: European confer-
ence on case-based reasoning, Springer, pp 686–701

	5.	 Hornung R, Urbanek H, Klodmann J, Osendorfer C, Van Der Smagt P
(2014) Model-free robot anomaly detection. In: 2014 IEEE/RSJ interna-
tional conference on intelligent robots and systems, IEEE, pp 3676–3683.

	6.	 Jaber AA, Bicker R (2014) The optimum selection of wavelet transform
parameters for the purpose of fault detection in an industrial robot. In:
2014 IEEE international conference on control system, computing and
engineering (ICCSCE 2014), IEEE, pp 304–309

	7.	 Cheng F, Raghavan A, Jung D, Sasaki Y, Tajika Y (2019) High-accuracy
unsupervised fault detection of industrial robots using current signal

analysis. In: 2019 IEEE international conference on prognostics and health
management (ICPHM), IEEE, pp 1–8

	8.	 Johannink T, Bahl S, Nair A, Luo J, Kumar A, Loskyll M, Ojea JA, Solowjow E,
Levine S (2019) Residual reinforcement learning for robot control. In: 2019
international conference on robotics and automation (ICRA), IEEE, pp
6023–6029

	9.	 Okawa Y, Sasaki T, Iwane H (2019) Control approach combining
reinforcement learning and model-based control. In: 2019 12th Asian
control conference (ASCC), IEEE, pp 1419–1424

	10.	 Suzuki K, Mori H, Ogata T (2018) Motion switching with sensory and
instruction signals by designing dynamical systems using deep neural
network. IEEE Robot Autom Lett 3(4):3481–3488

	11.	 Chen T, Liu X, Xia B, Wang W, Lai Y (2020) Unsupervised anomaly detec-
tion of industrial robots using sliding-window convolutional variational
autoencoder. IEEE Access 8:47072–47081

	12.	 Hung C-M, Sun L, Wu Y, Havoutis I, Posner I (2021) Introspective visuo-
motor control: exploiting uncertainty in deep visuomotor control for
failure recovery. arXiv preprint arXiv:​2103.​11881

	13.	 Price B (1989) Frank and lillian gilbreth and the manufacture and mar-
keting of motion study, 1908-1924. Business and economic history, pp
88–98

	14.	 Gilbreth FB (1909) Bricklaying system. MC Clark Publishing Company,
New York

	15.	 Brunelli R (2009) Template matching techniques in computer vision:
theory and practice. Wiley, Hoboken

	16.	 Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once:
unified, real-time object detection. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp 779–788

	17.	 Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC (2016)
Ssd: Single shot multibox detector. In: European conference on com-
puter vision, Springer, pp 21–37

	18.	 Mahler J, Liang J, Niyaz S, Laskey M, Doan R, Liu X, Ojea JA, Goldberg K
(2017) Dex-net 2.0: deep learning to plan robust grasps with synthetic
point clouds and analytic grasp metrics. arXiv preprint arXiv:​1703.​
09312

	19.	 LaValle SM et al (1998) Rapidly-exploring random trees: a new tool for
path planning

	20.	 LaValle SM, Kuffner JJ Jr (2001) Randomized kinodynamic planning. Int
J Robot Res 20(5):378–400

	21.	 Duan Y, Andrychowicz M, Stadie BC, Ho J, Schneider J, Sutskever I,
Abbeel P, Zaremba W (2017) One-shot imitation learning. arXiv preprint
arXiv:​1703.​07326

	22.	 Tobin J, Fong R, Ray A, Schneider J, Zaremba W, Abbeel P (2017)
Domain randomization for transferring deep neural networks from
simulation to the real world. In: 2017 IEEE/RSJ international conference
on intelligent robots and systems (IROS), IEEE, pp 23–30

	23.	 Levine S, Pastor P, Krizhevsky A, Ibarz J, Quillen D (2018) Learning
hand-eye coordination for robotic grasping with deep learning and
large-scale data collection. Int J Robot Res 37(4–5):421–436

	24.	 Yu T, Finn C, Xie A, Dasari S, Zhang T, Abbeel P, Levine S (2018) One-
shot imitation from observing humans via domain-adaptive meta-
learning. arXiv preprint arXiv:​1802.​01557

	25.	 Tokuda S, Katayama M, Yamakita M, Oyama H (2020) Generating new
lower abstract task operator using grid-tli. In: 2020 IEEE/RSJ interna-
tional conference on intelligent robots and systems (IROS), IEEE, pp
6578–6584

	26.	 Matsuoka S, Sawaragi T, Horiguchi Y, Nakanishi H (2016) Hierarchical plan-
ning for error recovery in automated industrial robotic systems. In: 2016
IEEE international conference on systems, man, and cybernetics (SMC),
IEEE, pp 001406–001410

	27.	 Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z,
Song Y, Guadarrama S et al. (2017) Speed/accuracy trade-offs for modern
convolutional object detectors. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp 7310–7311

	28.	 Noda K, Arie H, Suga Y, Ogata T (2014) Multimodal integration learn-
ing of robot behavior using deep neural networks. Robot Auton Syst
62(6):721–736

	29.	 Kase K, Suzuki K, Yang P-C, Mori H, Ogata T (2018) Put-in-box task gener-
ated from multiple discrete tasks by ahumanoid robot using deep learn-
ing. In: 2018 IEEE international conference on robotics and automation
(ICRA), IEEE, pp 6447–6452

http://arxiv.org/abs/2103.11881
http://arxiv.org/abs/1703.09312
http://arxiv.org/abs/1703.09312
http://arxiv.org/abs/1703.07326
http://arxiv.org/abs/1802.01557

Page 14 of 14Ito and Nakamura ﻿ROBOMECH Journal (2022) 9:7

	30.	 Ichiwara H, Ito H, Yamamoto K, Mori H, Ogata T (2021) Spatial atten-
tion point network for deep-learning-based robust autonomous robot
motion generation. arXiv preprint arXiv:​2103.​01598

	31.	 Yang P-C, Sasaki K, Suzuki K, Kase K, Sugano S, Ogata T (2016) Repeatable
folding task by humanoid robot worker using deep learning. IEEE Robot
Autom Lett 2(2):397–403

	32.	 Suzuki K, Kanamura M, Suga Y, Mori H, Ogata T (2021) In-air knotting of
rope using dual-arm robot based on deep learning. arXiv preprint arXiv:​
2103.​09402

	33.	 Fukushima K, Miyake S, Ito T (1983) Neocognitron: a neural network
model for a mechanism of visual pattern recognition. IEEE Trans Syst Man
Cybern 5:826–834

	34.	 Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural
Comput 9(8):1735–1780

	35.	 Ito H, Yamamoto K, Mori H, Ogata T (2020) Evaluation of generalization
performance of visuo-motor learning by analyzing internal state struc-
tured from robot motion. New Gener Comput 38:7–22

	36.	 Suzuki K, Mori H, Ogata T (2021) Compensation for undefined behaviors
during robot task execution by switching controllers depending on
embedded dynamics in rnn. IEEE Robot Autom Lett 6(2):3475–3482

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/2103.01598
http://arxiv.org/abs/2103.09402
http://arxiv.org/abs/2103.09402

	Rapid prototyping for series of tasks in atypical environment: robotic system with reliable program-based and flexible learning-based approaches
	Abstract
	Introduction
	Design concept
	Task categorization
	System architecture

	Set up for verification
	Robotic hardware
	Assembly task for verification

	System configuration
	Process manager
	Perception module
	Motion module
	Sensorimotor module

	Datasets for deep-learning method
	Training data of perception module
	Training data for sensorimotor module

	Results and discussion
	Object recognition
	Cover adjustment motion
	Screw pickup motion
	Verification of series of assembly tasks
	Failure case

	Conclusion
	Acknowledgements
	References

