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Abstract 

We propose a novel robotic system that combines both a reliable programming-based approach and a highly 
generalizable learning-based approach. How to design and implement a series of tasks in an atypical environment is 
a challenging issue. If all tasks are implemented using a programming-based approach, the development costs will 
be huge. However, if a learning-based approach is used, reliability is an issue. In this paper, we propose novel design 
guidelines that focus on the respective advantages of programming-based and learning-based approaches and select 
them so that they complement each other. We use a program-based approach for motions that is rough behavior 
and a learning-based approach for motion that is required complex interaction between robot and object of robot 
tasks and are difficult to achieve with a program. Our learning approach can easily and rapidly accomplish a series of 
tasks consisting of various motions because it does not require a computational model of an object to be designed in 
advance. We demonstrate a series of tasks in which randomly arranged parts are assembled using an actual robot.
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Introduction
Robotic automation has traditionally been used mainly 
for repetitive tasks in known environments, such as 
automotive assembly. However, in recent years, there 
has been a growing need to automate atypical tasks in 
unknown or undeveloped environments that are difficult 
to perform with conventional robotic technology. For 
example, shortages of workers are becoming more seri-
ous at construction and maintenance sites where danger-
ous and heavy work is required. For robots to perform 
on-site work, the emphasis is not on the ability to repeat 
simple tasks at high speed and with high precision as in 
the past but on the ability to perform tasks reliably even 

in unexpected situations. In factory automation, it is also 
desirable for robots to work autonomously in a new work 
environment without humans having to teach them oper-
ations in detail since a quick response to frequent process 
changes is required for small-volume production. How-
ever, there are several issues that need to be addressed in 
order to design a robot system that can perform atypical 
tasks.

Big issues for design a robot system for perform series 
of task in atypical tasks is the implementation cost. At 
atypical work sites, robots need to be adaptive to the 
conditions of work objects and the positioning of parts. 
To execute a series of tasks autonomously, three actions 
must be done: (1) recognizing the work situation and 
planning a procedure, (2) recognizing the position, 
shape, and posture of parts, tools, etc., and (3) controlling 
the motion of the robot. However, if we were to imple-
ment these functions for each task, the development 
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costs would be huge. In addition, a high level of exper-
tise is required to developtasks that involve contact with 
an object (screw fastening and fitting) or are difficult to 
describe in a program (handling flexible objects). There-
fore, learning-based approaches have been proposed to 
accomplish complex tasks that are difficult to accomplish 
with conventional programming-based approaches [1–3].

However, learning-based approaches have safety and 
reliability issues. Unlike image recognition and natural 
language processing, robots perform tasks that involve 
physical contact in the real world. This can lead to colli-
sions and other dangers. Therefore, it is necessary to have 
both “safety” to prevent failure and damage as a result of 
physical contact and collision and “reliability” to ensure 
that behavioral rules are improved through learning. For 
the former, safety has been ensured by detecting abnor-
malities and loads of robots by analyzing signals such as 
current values, acoustic sensors, and acceleration sen-
sors [4–7]. However, the learning approach is a black box 
because it acquires behavioral rules on the basis of data, 
and there are still problems with reliability. Some meth-
ods have been proposed to use a model-based controller 
as prior knowledge for deep reinforcement learning [8, 
9] or to monitor the state of a system in real time dur-
ing operation generation and execute a predetermined 
recovery action when an anomaly is detected [10–12]. 
However, none of these methods focus on the reliability 
of behavior.

In this paper, we aim to accomplish complex tasks in 
an atypical environment in a simple and rapid way that is 
both reliable and flexible. How to design and implement 
a set of tasks in an atypical environment is a challenging 
issue. If we try to implement all tasks using a program-
ming-based approach, the implementation costs will be 
huge. However, if a learning-based approach is used, reli-
ability becomes an issue. In this paper, we propose a novel 
robotic system that focuses on the respective advantages 
of reliable program-based and flexible learning-based 
motion generation, which complement each other. To 
verify the effectiveness of the proposed method, as a 
first step for an atypical environment task, an assembly 
task with randomly placed tools and parts is performed 
with a real robot. This task is very challenging compared 
with general assembly tasks because it requires trajectory 
planning based on the positions of randomly placed parts 
and tools, as well as their positioning and screw fasten-
ing. The contributions of this paper are as follows. 

1.	 Categorization of robotic tasks based on the therblig: 
A method is proposed for designing a robotic sys-
tem using therbligs that visualizes and improves the 
efficiency of human tasks. The robot’s various tasks 
(e.g., grasping, carrying, fitting) were categorized, 

and actions that can be realized with relatively sim-
ple definitions were defined as program-based ones, 
while complex actions were defined as learning-
based ones. For example, a program-based approach 
is used for operations such as reaching, where the 
robot moves dynamically, and safety and reliabil-
ity are required, and a learning approach is used for 
operations such as screw fastening and fitting, where 
the robot’s work area is limited, and the operations in 
this area are difficult to accomplish with a program. 
The system designer can easily and rapidly realize a 
robotic system in which programming and learning 
approaches coexist by implementing various func-
tions on the basis of the design guidelines presented 
in this paper.

2.	 Realizing a series of tasks in an atypical environment: 
The robot can flexibly generate motions even in an 
atypical environment where the placement of parts, 
work areas, and tools change, and a series of assem-
bly tasks can be accomplished with an 80% success 
rate. In the experiment, the alignment of each part is 
important because the assembly work is performed 
using parts placed in random positions. Our learn-
ing-based approach allows the robot to acquire the 
desired operation by being taught the motion using 
teleoperation and learning models. Therefore, there 
is no need to design a computational model of an 
object in advance. During motion execution, the 
robot can perform screw fastening and object align-
ment on the basis of its sensor information in real 
time.

Design concept
How to design and implement a series of tasks in an 
atypical environment is a challenging issue. If all the 
tasks are implemented using a programming approach, 
the costs of development will be huge, and if a learning-
based approach is used, the data collection cost, learning 
cost, and reliability will become issues. In this section, 
we focus on the advantages of both reliable program-
ming-based and flexible learning-based methods, and we 
describe how to design robotic systems that complement 
each other’s shortcomings.

Task categorization
The issue is whether a programming-based or learning-
based approach is more suitable for implementing each 
function of a robot and how best to combine them. As a 
solution to this problem, in this paper, we define a clas-
sification of robot functions and the execution order of 
each function with reference to the therblig. Therbligs 
are 18 kinds of elemental motions that a worker needs 
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in order to perform a task [13, 14]. In the field of indus-
trial engineering, therbligs are used to visualize the 
content and series of human work and to propose and 
more efficient work methods and improve them. Here, 
we describe how to design a robotic system on the basis 
of the therblig.

First, we extracted 12 kinds of elemental motions 
for robotic system design while excluding six elemen-
tal motions that should be unnecessary for design the 
robot tasks, these are stopped motion elements that 
is no longer needed for work (i.e. “hold”, “unavoidable 
delay”, “avoidable delay”, “rest”), “pre-position” element 
that become unnecessary by optimizing in advance and 
“find” element that is almost same as “search” and sel-
dom use. Each elemental motion is explained using the 
screw handling in assembly tasks as an example.

•	 Search: Searching the location of an object with the 
eyes or hands. The five senses other than the eyes, 
such as when searching for holes with the fingertips, 
are also equivalent. Find out where the screws are.

•	 Inspect: Determining an object by a defined standard 
(quality or characteristics) using visual, auditory, tac-
tile, etc. Check how tightly screws have been tight-
ened between parts.

•	 Select: Choosing one out of several. Select an appro-
priate screw from several screws.

•	 Grasp: Grasping an object with hands or fingers. 
Grab the screw.

•	 Release load: Releasing control of an object. Release 
the screw.

•	 Transport empty: Reaching an object with an empty 
hand. Reach out to where the screw is.

•	 Transport load: Moving an object in hand from one 
place to another. Carry the screw.

•	 Position: Adjusting the position and orientation of 
objects. Adjust the position to insert the screw into 
the hole.

•	 Use: Manipulating tools, instruments, and equip-
ment for a purpose. Tighten the screws.

•	 Assemble: Joining two parts together. Use the screws 
to fix the two parts together.

•	 Disassemble: Separating multiple components that 
are joined. Loosen the screws and disassemble the 
parts.

•	 Plan: Planning to do this next or later. Think about 
the procedure of the task.

Implementing all these 12 kinds of elemental motions 
with a programming-based approach would lead to 
huge development costs. Therefore, we propose a design 
method (guidelines) for a robot system with reliability 
and versatility by classifying the 12 motions into three 
categories on the basis of the characteristics of each func-
tion and then implementing them as modules. Table 1(a) 
shows three categorized elemental motions, and (b) 
shows the corresponding robot functions. (1)–(3) Show 
the three categories, and their details are as follows. (1) 
“Perception” is a motion to judge or measure without 
actual robot action based on information such as vision, 
and corresponds to functions such as image recogni-
tion, object detection, and position estimation based on 
the robot’s visual information. It is also used for check-
ing the task status (progress) and motion planning based 
on visual information. Since deep learning has made 
recognition technologies more diverse and accurate, 
it is possible to choose a method of implementation in 
accordance with the task. Template matching [15], which 
is conventionally used, is effective when the number of 
target objects is limited or patterned, while learning-
based object recognition algorithms [16–18] are effec-
tive for various types and complex shapes of objects. 
(2) “Motion” is relatively simple motion that have not 
complex interactions between robot and object of robot 
tasks, and it also requires a high level of reliability and 
safety because the robot moves widely in the real world. 
Many of the motions are somewhat patterned, such as 
“take object A and place it at position B.” Teaching play-
back, point-to-point (PtP), and trajectory planning algo-
rithms such as rapidly-exploring random tree (RRT) [19, 
20] are examples of implementation methods. (3) “Sen-
sorimotor” is a motion that is necessary to have complex 
interactions between robot and object of robot task, and 
relies on the five senses and adjusts the position and force 

Table 1  Categorization of robot functions based on therbligs

(1) Perception (2) Motion (3) Sensorimotor

(a) Basic motion Search
Inspect
Select
Plan

Grasp
Release load
Transport empty
Transport load

Position
Use
Assemble
Disassemble

(b) Key function of robot control Image recognition
Object detection
Position estimation

Point-to-point motion
Interference avoidance

Learning-based
motion generation
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in accordance with the situation. For tasks that are dif-
ficult to describe in a program, such as screw tightening 
and fitting, a learning-based motion generation method 
would be effective. The diversification and develop-
ment of learning-based approaches makes it possible to 
perform complex tasks [21–24]. Deep reinforcement 
learning, imitation learning, and other implementation 
methods are examples of implementation methods.

We have described the categorization of robot func-
tions and examples of their implementation, referring to 
the therblig. In the next section, we describe the execu-
tion procedure and how to combine the three functions.

System architecture
When a robot is performing a task, the timing at which 
tasks are switched and the order in which the motion and 
sensorimotor are executed are issues. Figure 1 shows the 
execution procedure (system configuration) for the series 
of tasks proposed in this paper. The squares in the figure 
represent each of the functions defined above (hereafter 
referred to as modules). The modules consist of a “per-
ception module” for recognizing situations, a “process 
manager” for switching tasks, and a “motion module” 
and a “sensorimotor module” for executing subtasks. 
On a simple production line, each task is executed in a 
feed-forward sequence. However, with a pre-planned 
work schedule, it is not possible to respond to unex-
pected events. In particular, since this paper assumes 
an atypical environment where the positions of objects 
change, process control in a feed-forward manner is dif-
ficult. To manage work processes in an atypical environ-
ment, it is necessary to recognize where objects are and 
what state they are in on the basis of vision information. 
In this paper, we use the perception module of Fig. 1 (1) 

to detect the position and state labels of objects. (2) The 
process manager switches tasks using real-time process 
planning methods [25, 26] or pre-designed if-then rules.

Next, we describe the series in which tasks are executed 
as shown in Fig. 1c. In this paper, a task consists of up to 
three kinds of modules. A typical robotic system consists 
of “perception” and “motion planning and control.” It rec-
ognizes object names and locations on the basis of vision 
and executes trajectories that satisfy geometric, mecha-
nistic, and dynamic constraints on the basis of the rec-
ognition results. If we apply this to the categorization in 
Table 1, the task will transition in the order of “perception 
module” and “motion module.” However, not all tasks can 
be realized with a program-based motion module. Some 
tasks define the “motion module” to be followed by the 
“sensorimotor module.” Basically, a programming-based 
approach is used for rough motions that are defined as 
“Motion” in Table  1, and a learning-based approach is 
used for complex motions that are defined as “Sensori-
motor” in Table  1. Thus, the number of modules (sub-
tasks) varies depending on the task. For example, Task 1 
in Fig. 1 consists of subtask 1 to pick up the object and 
Subtask 2 to place it at the target position. Subtask 1 gen-
erates a grasping motion with the motion module on the 
basis of the position information of the target object rec-
ognized by the perception module. Similarly, subtask 2 
generates a motion to place the object at the goal position 
with the motion module on the basis of the goal posi-
tion information recognized by the perception module. 
However, if positioning accuracy is required, such as in 
assembly work, it is impossible to complete a series of 
tasks by simply placing the object at the goal position 
and it is required to adjust position according to state of 
each parts that would be assembled, such as adjustment 

Fig. 1  Software architecture for performing series of tasks
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motion with vision sensing or searching motion with 
force feedback. In addition, implementing a high-preci-
sion positioning algorithm using a programming-based 
approach requires complex programming and real-world 
tuning. Therefore, we use the sensorimotor module to 
adjust the position after the motion module. This makes 
it possible to perform complex tasks robustly with lower 
development costs.

As described above, by defining (implementing) vari-
ous functions and execution procedures for the robot on 
the basis of the task categories and design policies pro-
posed in this paper, a robot system can be constructed in 
which a highly reliable program base and a highly robust 
learning base coexist.

Set up for verification
To verify the effectiveness of the proposed method, we 
performed an assembly task in an atypical environment. 
Here, we describe the experimental setup and the experi-
mental task.

Robotic hardware
Figure 2 shows the experimental setup. As shown in (a), 
two robot arms (KUKA LBR iiwa 14 R820) are used, and 
a robotic hand (Robotiq 2F-85 Adaptive Gripper) and 
an RGB camera (Buffalo BSW500M Series) are attached 
to the end of the arms. The other equipment includes a 
bird’s-eye-view camera (Intel RealSenes D435i) for tak-
ing full view of work place, and an electric screwdriver 
connected to a tool balancer. The workbench, cover, 
base, and screws are the parts needed for assembly. (b) 
Shows an enlarged view near the robotic hand when 
hand grasping the screw driver. As shown in (b), hand 
camera installed near base of robotic hand and it can 
take an image of near the finger of robotic hand. The 

robot arms can be remotely controlled using a joystick 
to teach the desired motion. Impedance control can also 
be performed by using a torque sensor at each joint. For 
example, even if the axis of the driver and the screw hole 
is misaligned when tightening a screw and the hand is 
overloaded, it can prevent the screw and screw hole 
from being overloaded by passively moving the hand. 
However, since there is an inverse relationship between 
arm strength and positioning accuracy with impedance 
control, and the arm does not move accurately in rela-
tion to the hand position command, the control mode is 
switched depending on the task. In this paper, we used 
position control mode when executing the motion mod-
ule and impedance control mode when executing the 
sensorimotor module, which involves contact with the 
object.

Assembly task for verification
Recently, robots are required to have the ability to handle 
high-mix low-volume production, rather than the con-
ventional ability to repeat simple tasks at high speed and 
with high precision. These robots must have the ability to 
work autonomously in atypical environments. As men-
tioned above, in this paper, we focus on assembly tasks 
in the atypical environment shown in Fig. 3. To evaluate 
such tasks in this environment, the parts and workbench 
are not fixed but are randomly placed within the robot’s 
operating range before work is started. The assembly 
task consists of five steps: (1) pick and place a randomly 
placed base, (2) pick and place a randomly placed cover, 
(3) grasp the electric screwdriver, (4) pick up a screw 
(attach it to the screw bit with the magnetic bit on the tip 
of the electric driver), and (5) screw the four corners of 
the cover to the base. To avoid contact between the robot 
and floor, the assembly is performed on a workbench. We 

Fig. 2  Experimental environment: sensors and equipment
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evaluated the success rate of the proposed method by 
performing a series of assembly tasks 10 times. In these 
tasks, some complex behavior that needs interaction 
between robot and object for assembly task is required, 
for example, align two parts while considering position 
and orientation of each parts so that the two parts over-
lap exactly, or adjust position and force of the hand to fit 
the screw to the tip of the screwdriver.

System configuration
In this section, we describe the specific method to con-
figure the robot system with classification of the experi-
mental tasks and the specific implementation method. 
Table 2 shows the tasks and their execution procedures. 
The assembly task consisted of five tasks, which were 
executed in order from 1 to 5. The numbers in each task 
correspond to the numbers in Fig. 3. The subtasks were 
executed in order from A to C. The implementation 
method for each function is described below.

Process manager
We used the Single Shot Multibox Detector (SSD) [17] as 
an object recognition algorithm based on deep learning 
to recognize the work process. To reduce the implemen-
tation costs, we used the TensorFlow Object Detection 
API [27]. The robot performed rule-based task switch-
ing on the basis of object labels recognized by SSD. For 
example, when two parts are to be assembled, the name 
of each part is output as an object label before assem-
bly, and the states are combined after assembly. If a part 
name is output, the corresponding action (motion or/
and sensorimotor module) will be performed; if a state 
is output, the next task will be performed. Thus, a series 
of tasks can be accomplished by combining object recog-
nition and rule-based process planning. General object 
recognition algorithms, such as template matching, have 
low robustness to illumination changes. In particular, it is 
difficult to accurately recognize metals such as assembly 
parts because the way an object looks depends on how 
the light hits it (reflection angle). In comparison, SSD 
can perform object detection in real time and robustly 
against illumination and background changes. Further-
more, it can simultaneously predict location information 
in addition to object label information. We can share the 
modules and reduce development costs by passing the 
label information predicted by SSD to the process man-
ager and the location information to the motion module.

Perception module
Since SSD detects the positional information of objects 
in the two-dimensional plane of a camera image, it can-
not be used directly for robot control. For the robot to 
perform tasks on the basis of location information from 
SSD, the information is converted into 3D coordinates 
of the real environment. The camera used for perception 
in this paper is bird’s-eye-view camera that is shown in 

Fig. 3  Assembly tasks in atypical environment. Each part and tool are 
randomly placed

Table 2  Task categorization for assembly work

Task Sub-task (A) Perception (B) Motion (C) Sensorimotor

(1) Base operation Picking Base Pick up base –

Placing Workbench Place base on workbench –

(2) Cover operation Picking Cover Pick up cover –

Moving Workbench Layer cover over base Alignment adjustment

Placing Workbench Place cover on base –

(3) Take screwdriver Grasping Screwdriver Reach for screwdriver Position adjustment

Moving Screw holder Move to screw holder –

(4) Pick up screw Moving Screw – Approach screw

Grasping Screw – Pick up screw

(5) Screw Fasten Moving Screw hole Move to screw hole –

Fasten Screw hole Fasten screw –
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Fig. 2, and it has a one-to-one correspondence between 
each pixel of an RGB image and depth image. Therefore, 
the center coordinates of the object recognized by SSD 
( fx, fy ) are converted to 3D positional information (x, y, z) 
using a depth image. In addition, to enable the process 
manager to check the progress of the work, we trained 
the module to change the recognition result in accord-
ance with the state of the object.

Motion module
In the motion module, the robot generates a trajectory on 
the basis of object position information (x, y, z). Point-to-
Point (PtP) control is used to generate the robot’s motion. 
PtP control is implemented in common industrial robots 
and can be implemented at a small cost. The robot auto-
matically generates motions toward the goal position on 
the basis of the position information of the object recog-
nized by the perception module. For example, in Task (2) 
of Table 2, the robot grasps the cover and places it at the 
goal position. However, since both the cover and the base 
stand are placed in random positions and postures, it is 
difficult to accurately align both positions. Therefore, in 
the subtask “Moving,” the sensorimotor module is used 
to adjust the position of the cover to overlap the base 
platform perfectly.

Sensorimotor module
For the sensorimotor module, we use “Deep Predictive 
Learning (DPL),” which is able to acquire desired behav-
iors with low data-collection and learning costs [28–
30]. This method learns a time series of sensory-motor 
information when the robot operates in the real world, 
enabling it to perform complex tasks that are difficult 
to realize with programs. Specifically, it consists of 
three steps: (1) collect sensory-motor information (e.g., 
camera image, joint angle, and torque) with the robot 
as learning data when a human teleoperates the robot 
or performs direct teaching, (2) input the sensor infor-
mation xt at time t into the model, output the sensor 

information ŷt+1 at the next time t + 1 , and update the 
weights of the model to minimize the error between the 
predicted value ŷt+1 and the true value xt+1 , and (3) at 
execution time, the robot is made to generate sequen-
tial motions by inputting the robot’s sensor information 
xt and inputting the predicted value (motion command 
value) to the robot for the next time. This method can 
be used to perform various tasks, such as flexible object 
handling, which is difficult to do with the conventional 
method [31, 32].

Figure 4 shows the details of the sensorimotor mod-
ule. Using a raw visual image of a robot increases the 
calculation cost, making it difficult to generate motion 
in real time. When a visual image is simply resized, the 
important areas for the task are also compressed into a 
small size, making it difficult to recognize detailed tasks 
and states. In a typical environment where the position 
of an object does not change, it is sufficient to crop a 
specific area of the camera image. However, in an atypi-
cal environment where the position of an object ran-
domly changes, simple cropping cannot be used. In this 
paper, we extract and resize images of the surround-
ings on the basis of the location information of the 
object recognized by the perception module, as shown 
in Fig.  4a. The object position is extracted only at the 
initial time t = 0 , and an image of the same region is 
used continuously after that to ensure real-time perfor-
mance. Figure  4b shows the motion generation model 
(DPL module) used in this paper. The model consists of 
a convolutional layer [33] that extracts image features 
from the robot’s visual information, a long short-term 
memory (LSTM) [34] that learns image features and the 
robot’s body information in a time series, and a trans-
posed convolution layer that reconstructs images from 
image features. The LSTM predicts the next-time image 
(situation) and motor command from the current sen-
sor information. By learning visual and physical infor-
mation simultaneously, the convolutional layer extracts 
the appropriate image features for motion generation 

Fig. 4  Network architecture of sensorimotor module



Page 8 of 14Ito and Nakamura ﻿ROBOMECH Journal             (2022) 9:7 

[35]. The robot generates real-time motions after the 
motor commands predicted by the LSTM are inputted.

As shown in Table 2, the sensorimotor module is used 
for three tasks: (1) adjusting the position and orienta-
tion of the cover and base, (2) grasping the electric driver, 
and (3) adjusting the position of the screwdriver bit and 
the top of the screw (hexagonal hole) and inserting it. 
We designed the these tasks with sensorimotor modules 
since these have characteristics that is required interac-
tion with robot and object of tasks, and also significant 
impact on the later stages of the process. If the positions 
of the cover and the base are misaligned, the cover may 
fall off the base during the task, or the screw-hole posi-
tions may not match, and the task may fail. In addition, 
the grasping position and direction of the electric driver 
will change the way in which screws are picked up and 
tightened. To accomplish a series of tasks with a high 
success rate, the adjustment operation of the sensorimo-
tor module is indispensable. Note that we used program 
based approach for sub-task of fastening the screw since 
it was easy to achieve by using impedance control so that 
following hand position to screw hole when pre-exami-
nation, though it should be classified as sensorimotor 
motion based on the proposal.

Datasets for deep‑learning method
Training data of perception module
In this paper, we used a pre-trained SSD model to train 
the recognition and grasping position of assembly parts. 
A total of 693 images of nine objects were taken using 
the bird’s-eye-view camera at the top of the experimental 
apparatus: the workbench, base, grasping position of the 
base, cover, grasping position of the cover, the base on the 
workbench, the cover on the workbench, the screw stor-
age area, and the electric screwdriver. The images were 
taken when the position and orientation of the object 
were randomly changed. We prepared a set of images of 
assembly parts and their labels (object name and location 
information) as training data. To increase the amount of 
training data, we performed image positioning, rotation, 
and flipping for data augmentation. In addition, by ran-
domly varying the brightness and contrast of the images, 
we obtained an object recognition model that was robust 
to changes in illumination.

Training data for sensorimotor module
In deep predictive learning, the model learns sensor 
information as a robot operates in the real world. In this 
paper, we taught the robot the three motions shown in 
Table 2(C). Since the method for teaching an operation is 
different for each task, the details are given below.

First, we describe the teaching method for adjusting 
the position of the cover. In an atypical environment, 

the position and orientation of a cover change randomly 
each time. It is not easy to grasp a randomly placed cover 
and align its position and orientation so that it overlaps 
the base perfectly. Even if a joystick is used to remotely 
control a robot to teach movements, there is the problem 
of learning not proceeding well because human move-
ments are inconsistent. In particular, it is difficult to 
achieve high-precision operation due to minute misalign-
ment of the end state. Here, we used the motion teaching 
method shown in Fig. 5 to ensure that the training data 
contains consistency. (a) Shows the sample of collected 
image data by bird’s-eye-view camera, and it is found that 
the center coordinates of the robot hand (yellow dotted 
line) and the cover (red dotted line) were not always on a 
straight line. Desired operation is that align the orienta-
tion of cover and then align the position of covers, like 
flow from (d) to (b). For achieving this motion, we collect 
the data that move position randomly from the aligned 
state, then rotate orientation randomly. When the model 
training, the time series of the collected data is inverted 
(played backwards). It is based on the ease of generat-
ing motions that shift from an aligned state to a random 
direction and position, and this made it possible to col-
lect data that were consistent with the end state. There-
fore, it is expected that the robot can move an object 
in a random initial position to the same end state each 
time like as shown in from (d) to (b) during motion gen-
eration. We acquired the image data of bird’s-eye-view 
camera as input data and command data of hand posi-
tioning and rotating as output data of DPL. 504 training 
data where the orientation and position of the cover were 
changed, furthermore changing the grasping finger posi-
tion and orientation of cover were acquired. Each piece 
of data was acquired for 10 s at a sampling rate of 10 Hz 
per piece of data.

Fig. 5  Overview of motion teaching: position adjustment of cover 
and base
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Next, we describe the teaching method for screw han-
dling. Here, screw handling consists of the two opera-
tions shown in Fig.  6, the screw approach motion and 
the screw pickup motion. (a) Is a motion for bringing the 
electric screwdriver close to the screw (screw approach 
motion). Two motions are taught to the robot for the 
screw approach action: (1) leftward (positive y) move-
ment and (2) forward (positive x) movement. As a recov-
ery operation in the case of operation failure, we taught 
several operations to move the screwdriver directly above 
the screw from different directions as shown by the thin 
arrows in Fig. 6a. This allowed the robot to go back and 
continue the positioning operation even if the amount 
of movement of the hand position was too large and 
thus passed the target position. We acquired the image 
data of hand camera as input data and command data 
of hand positioning as output data of DPL. 441 training 
data where the approach motion when the position of 
the screw storage area was changed were acquired. From 
the bird’s-eye-view camera, it was possible to recognize 
the screw storage area and generate motion toward its 
vicinity, but the resolution was not high enough to rec-
ognize the exact location of the screw. Here, the robot’s 
hand camera was used to generate an accurate approach 
motion to the screw. (b) Is the action of fitting the bit of 
the electric screwdriver into the hexagonal hole at the 
top of the screw (screw pickup motion). In the screw 
approach operation, it is difficult for the bit of the electric 
screwdriver to stop exactly above the screw. Therefore, 

the pickup work was performed by moving (searching) 
back and forth and left and right while pressing the bit 
against the screw. Impedance control was used to pre-
vent overloading between the robot and the screw. The 
robot was taught two motions as screw pickup motions: 
(1) perform adjustment in the left-right (y-axis) direc-
tion and (2) in the front-back (x-axis) direction. The six 
horizontal arrows shown in (b) are teaching positions, 
and 378 training data that is same contents as (a) were 
acquired. The training data were collected by a person 
using a joystick to remotely control the robot.

Finally, we describe the teaching method for electric 
screwdriver grasping. The robot grasped the electric 
screwdriver, which was placed on a holder. The height of 
the electric screwdriver was the same each time, but the 
screwdriver was placed at random positions. Therefore, 
the robot was taught the motion in the same way as the 
screw approach motion described above. We acquired 86 
training data that is same contents as motion of picking 
up screw by randomizing the initial position of the driver 
each time. The robot was taught to move from the screw-
driver grasping position to a random position. The time 
series was reversed (played backwards) and used as train-
ing data. This made it possible to execute position adjust-
ment to align the robot hand with the screwdriver in a 
random position.

Results and discussion
In this section, we verify whether the perception module 
and sensorimotor module implemented using the learn-
ing approach worked properly. In addition, we describe 
the results of 10 assembly operations performed in an 
atypical environment as a validation of the effectiveness 
of the proposed method.

Object recognition
Figure  7 shows the results of object recognition using 
SSD. (a) Is the initial state of assembly, (b) is after placing 
the base, and (c) is the end-of-task state. The parts and 
tools required for assembly were recognized. The model 

Fig. 6  Overview of motion teaching: screw approach and pickup

Fig. 7  Task execution result: object labels and states recognized by SSD
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recognized the object name as a label when each part was 
on the floor and the state name as a label when they were 
combined. For example, as shown in Fig.  7c, the model 
output “Cover on Base” with the base and cover placed 
on top of the bench. By switching the recognition label in 
accordance with the status of the part, the process man-
ager could check the progress status and switch tasks.

Cover adjustment motion
Figure 8 shows the results of adjusting the position of the 
cover. The positions of the workbench and the base were 
set up randomly. The center position of the image (inter-
section of the white dotted lines) is indicated to make it 
easier to understand the position change. (a) Shows that 
the robot learned to adjust the position of the cover. The 
robot adjusted the orientation to make a parallel line 
between the silver cover and the black base stand (step 
2). Then, it adjusted the position of the cover and the 
base stand (step 3). Since the size of the cover and the 
base stand were the same, the robot adjusted the posi-
tion to make the black base invisible. Steps 2 and 3 corre-
spond to Fig. 5d, c, respectively, indicating that the robot 
generated a sequence of the motions. Thus, even if the 
base and cover were placed randomly and furthermore 
the grasping position were different each time, the robot 
could adjust its position accurately.

Next, we discuss the reusability of the cover adjust-
ment module. We verified whether the robot, which had 
not learned the cover positioning operation, could adjust 
the position of the cover. In an atypical environment, the 
robot arm is expected to move appropriately in accord-
ance with the position of the manipulated object. How-
ever, reusability (commonality and diversion) of tasks is 
expected because implementing each behavior would 
incur development costs. In this section, we will learn a 

behavior only with robot arm 1, shown in Fig. 2, and ver-
ify whether the same behavior can be executed with robot 
arm 2, which has not yet been trained. Each robot was 
installed symmetrically around the bird’s-eye-view cam-
era. Therefore, the image from the camera appeared dif-
ferently to each robot working on the task. In Fig. 8a, the 
robot arm appears to be on the left side, while in (b), it is 
on the right side. Therefore, to transfer the model learned 
with robot arm 1 to robot arm 2, the input images and 
command values to the DLP were inverted. Specifically, 
the input images were flipped left and right, and the signs 
of the command values in the left and right (x) directions 
were reversed for position and orientation adjustment. 
(b) Is the execution result for robot arm 2. The direction 
and position of the cover could be adjusted even though 
the position of the robot arm was reversed from that 
of the learning process. By simply learning the motion 
of one robot arm, it was possible for the other robot to 
perform the same motion. This allows us to reduce the 
cost of motion learning. However, this is limited to cases 
where there is symmetry in the sensor information of the 
robot and the work object.

Screw pickup motion
Figure 9 shows a hand camera image of the robot during 
the execution of the screw handling operation. (a–d) Are 
the operation of approaching the screw, and (e–h) are the 
screw pickup operation. The robot was holding the elec-
tric screwdriver and stopped in front of the screw stor-
age area. There were several screws, and the robot went 
to grab the leftmost one. At point (c), it recognized the 
end position of the screw and generated a return motion. 
When the tip of the screwdriver bit and the screw were 
aligned, it moved in the forward direction. Then, it 
switched to the screw pickup operation and executed the 

Fig. 8  Task execution result: positioning cover on randomly placed base
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search operation to fit the tip of the screwdriver into the 
hexagonal hole of the screw. The robot could perform 
the tasks shown in Fig.  6 by generating (adjusting) the 
motions in real time.

Verification of series of assembly tasks
To verify the effectiveness of the proposed method, 
assembly work was performed with random positions of 
parts, work tables, etc. Figure 10 shows the initial status 
of the parts and workbench before the start of assem-
bly for each session. The white dashed line is shown in 
the center of the image to make it easier to understand 
the situation of misalignment. In (a–f), the work was 
started with the base and cover placed on both sides of 
the working table respectively, and in (g–j), the base and 
cover were placed on only one side of the table. Further-
more, in addition to the positions and orientations of the 
base and cover, the work was started with the positions 
of the workbench, screw storage area, and electric driver 
changed.

Figure  11 shows the assembly process with different 
initial positions for the objects. The numbers in the fig-
ure correspond to the task numbers in Table  2. In this 
section, we explain the software architecture of Fig.  1 
in comparison with the actual operation. First, the 

perception module was used to check the current work 
status and detect the position of the object. Next, the 
process manager selected a task on the basis of the rec-
ognition results. The process manager was implemented 
with if-then rules. Task 1 was executed since the base was 
placed on the green desk. Task 1 consisted of two sub-
tasks: pick up motion toward the recognized base and 
place motion toward the workbench. After Task 1 was 
completed, the perception module was used to check the 
work status. The base was now placed on top of the work-
bench, which changed the state name from workbench to 
“Bench and base” as in Fig. 7b. This change in the state 
name caused the process manager to select Task 2. Task 
2 involved the motion module and sensorimotor mod-
ule. Task 2-1 shows the grasped cover stacked on top of 
the base table, and it can be seen that a small misalign-
ment occurred. If the cover were placed on the base in 
this state, it would fall off. Therefore, in Task 2-2, the 
cover adjustment module was used to align the position 
and orientation of both covers. Program-based execution 
of simple operations was followed by fine-tuning using 
a learning-based approach to generate reliable and gen-
eralizable motions. At the end of Task 2, the state name 
changed from “Bench and base” to “Cover on base” as in 
Fig. 7c. A series of tasks can be performed by executing 

Fig. 9  Task execution result: approaching top of screw and picking it up

Fig. 10  Atypical environment used to verify sequence of tasks
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Task 3 through Task 5 in the same manner as described 
above.

We confirmed that the robot could flexibly generate 
motions and realize a series of assembly operations even 
in an atypical environment where the positions of parts, 
workplaces, and tools changed. Ten assembly opera-
tions were performed, and the work was completed eight 
times. By implementing the various functions of a robot 
on the basis of the therblig, a robot system can be real-
ized in which a reliable program-based approach and a 
flexible learning-based approach coexist.

Failure case
Figure 12 shows the case of a task failure. (a) Shows the 
screw pickup operation being executed. Normally, the 
screwdriver bit would be inserted into the screw hole, but 
the screwdriver bit came off the top of the screw. In this 
experiment, the screwdriver bit used had a built-in mag-
net for picking up screws. Therefore, in (b), the driver bit 
stuck to the side of the screw when it fell. In (c), the screw 

popped out of the screw holder, making it impossible to 
continue working.

We consider there to be two reasons for this failure. The 
first is that the accuracy of stopping the screw approach 
motion was low. The screwdriver bit may have come off 
the top of the screw during the next process because the 
position was slightly off when it should have stopped 
directly above the screw. The second is that the direc-
tion of the screw pickup motion was not appropriate. The 
screw approach/pickup motion uses a learning approach, 
which enables the operation to be performed with gen-
eralized performance. However, it is difficult to elucidate 
the causes of failures and take countermeasures because 
this approach is data-driven. One possible solution is to 
improve the accuracy of the operation by increasing the 
number of its learning patterns. Future tasks include 
real-time failure determination and estimation of recov-
ery operations [11, 12, 25] and improvements to stability 
through hybridization with conventional control [36].

Conclusion
In this paper, we developed a novel robotic system that 
uses both a reliable programming-based approach and 
a robust learning-based approach. The program-based 
approach is used for four elemental motion that have 
not complex interactions between robot and object of 
robot tasks and is rough behavior, and the learning-
based approach is used for four elemental motion that is 
required complex interaction between robot and object 
of robot tasks and that are difficult to describe in a pro-
gram. Our learning approach does not require the prior 
design of a computational model of an object. The robot’s 
visual-image and joint-angle information can be used 
to fasten screws and adjust the positions of objects. To 
verify the effectiveness of the proposed method, we cre-
ated an assembly task with randomly placed tools and 
parts using a real robot. This task was challenging com-
pared with a typical assembly task because it required 
trajectory planning based on the positions of the ran-
domly placed parts and tools, and it also required that 
their positions be adjusted and that screws be fastened. 
As a future works, upgrade of process manager will be 
required. Current process manager is configured by 

Fig. 11  Task execution result: parts and tools are in different 
positions

Fig. 12  Task execution result: task aborted due to failed screw pickup
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simple if-then rules, however autonomous function to 
configur the motion modules from the stored modules 
will be required for adapting more atypical task with-
out high implementation cost. And considering the best 
perception method will also be issues so that process 
manager determines the suitable task and motion by 
recognizing the situation of task and environment and 
automatically configure motions. Furthermore, we will 
update the system to be able to perform recovery opera-
tions based on work failure decisions in order to improve 
reliability.
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