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Hopping path planning in uncertain 
environments for planetary explorations
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Abstract 

Hopping robots, called hoppers, are expected to move on rough terrains, such as disaster areas or planetary environ-
ments. The uncertainties of the hopping locomotion in such environments are high, making path planning algo-
rithms essential to traverse these uncertain environments. Planetary surface exploration requires to generate a path 
which minimises the risk of failure and maximises the information around the hopper. This paper newly proposes 
a hopping path planning algorithm for rough terrains locomotion. The proposed algorithm takes into account the 
motion uncertainties using Markov decision processes (MDPs), and generates paths corresponding to the terrain 
conditions, or the mission requirements, or both. The simulation results show the effectiveness of the proposed route 
planning scheme in three cases as the rough terrain, sandy and hard ground environment, and non-smooth borders.
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Introduction
In recent years, hopping robots (hoppers) have received 
a lot of attention, because they are expected to play an 
active role in disaster areas [1], celestial bodies [2–5], etc. 
In September 2019, the MINERVA-II robot, the hopper 
developed by JAXA/ISAS, succeeded in landing on the 
surface of the asteroid “Ryugu”, locomoting, and taking 
the photos as shown in Fig. 1 [6]. This achievement indi-
cates that the planetary surface exploration by hoppers 
is becoming active increasingly. For example, various 
environments, such as a Recurring Slope Lineae (RSL) 
on Mars [7], are expected to be investigated by hoppers. 
However, there are many challenges to carry out actual 
planetary surface explorations by a hopper/hoppers. One 
of the challenges is the path and motion planning prob-
lems. The detailed conditions of the planetary surface 
cannot be known before the robot has arrived on site 
and explored the celestial body. The environments also 
have uncertainties of locomotion. In addition, planetary 

surfaces are almost completely covered with granular 
media, called regolith. The sandy terrains might cause the 
robot to get stuck. Therefore, hopping path/motion plan-
ning algorithms are essential in order to investigate such 
environments using hoppers.

The contribution of this paper is to propose a hopping 
path planning algorithm to traverse uncertain environ-
ments. This paper presents the three main results to gen-
erate the paths:

•	 on rough terrain depending on the mission require-
ments.

•	 on heterogeneous terrains.
•	 in non-smooth environment.

It is difficult to follow a path accurately in uncertain envi-
ronments. The proposed algorithm can calculate the 
optimized action in each state using markov decision 
processes (MDPs). One of the advantages of MDPs is 
that you do not have to re-calculate paths when a hop-
per fails to follow a path. It is necessary to generate paths 
in a 3D environment, because hopping motion is spatial. 
However, the calculation cost is very high in the fully 
3D environment. The path planning algorithm needs 
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the constraint of the hopping trajectory for the collision 
check to reduce the calculation costs compared with the 
calculation in 3D. The proposed algorithm is classified 
as a 2.5D path planning. It is also needed to design the 
payoff function which depends on the environments. The 
proposed algorithm can generate the paths correspond-
ing to the requirements of mission sequences by changing 
the parameters. This paper considers three cases: consid-
ering the safety, the information gain, and both. Although 
the safety is important for successful missions, a hopper 
needs to perceive the environment around itself. This is 
because the hopper, or a rover, doesn’t know the details 
of the environment. The virtual environments are cre-
ated and the path generations are tested in simulations. 
First, the paths and actions are calculated on the rough 
terrain, and then the differences between the above men-
tioned three cases are evaluated. One of the virtual envi-
ronments includes the sandy places as a heterogeneous 
terrain. Sand decrease the hopping performance because 
of slipage, and may cause the hopper to get stuck. The 
differences in the results between the locomotion on the 
homogeneous terrain and the heterogeneous terrain are 
also observed. Finally, the proposed algorithm generates 
the path in the environment which includes the non-
smooth parts, such as rocks, or steps. The hopper can get 
on such paths by hopping almost vertically.

The next section reviews related works on the topic. 
Then, the proposed algorithm for the hopping path plan-
ning on rough terrains is introduced, and the simulation 
results to evaluate the proposed algorithm are shown. 
The results section introduces the three environments in 
the simulations: the homogeneous rough terrain, the het-
erogeneous rough terrain, and the non-smooth environ-
ment. Finally, the last section summarises this paper and 
presents future work.

Related works
Path planning, or motion planning algorithms have 
been studied and improved by many researchers. Since 
our study focuses on 3D environments and field robot-
ics, this section enumerates some conventional planning 

algorithms and their applications to 3D environments 
and natural terrains.

Sampling based algorithms
The probabilistic road map (PRM) [8] and the rapidly 
exploring random trees (RRTs) [9] are some of the most 
commonly used planning methods. Both algorithms sam-
ple many nodes in the configuration space (C-space) and 
then generate a path connecting nodes. In the C-space, 
the collision areas are expanded into the size of a robot 
around the obstacles. When sampling nodes, collision 
check is required. The difference between the PRM and 
RRTs is the way of generating a path. PRM uses a graph 
search algorithm to generate the path. RRTs connect 
nodes depending on the constraints.

One of the applications of PRM for 3D environments 
is presented in [10]. However, the computation time 
increases due to collision check. In addition, the calcula-
tion cost also depends on a graph search algorithm.

RRTs and its series are used more widely than PRM 
because of the applicability and simplicity. Although the 
result of only RRT is not an optimal path, the constraints 
can generate a semi-optimal path. One of the famous 
algorithm is RRT* [11], and the application in 3D envi-
ronments is presented in [12]. RRT series generate an 
only single path. If a robot fail to follow the path, then 
you need to re-planning a path. This is because we think 
RRT-based path planning algorithms are not suited for 
the uncertain environments.

Geometric analytic approaches
As the name suggests, geometric analytic approaches use 
the geometric information of the environments. Interpo-
lating curve algorithms are the often used in the field of 
path planning for wheeled vehicles in 2D environments 
(e.g., [13]). Voronoi diagram is also one of the most 
famous methods and has been applied for 3D environ-
ments [14]. Voronoi diagram divides the environments 
around specific points ( most of the time, the obstacles 
in robotics). The divided regions generate topological 
connection; the distance from the edge to the obstacles 
is the same. To generate the shortest (or optimal) path, it 
is essential to use a graph search algorithm (which will be 
described in the next subsection) with voronoi diagram, 
because voronoi generates only a graph.

Graph search algorithms
Graph theory is an important basic theory in robotics. 
Robots use a grid map constantly and a path on a grid 
map is often generated using graph search algorithms. 
Dijkstra [15], A* [16], or D* [17] are the most used graph 
search algorithms even in 3D environments. Dijkstra’s 
algorithm can generate the shortest path and is easy to 

Fig. 1  MINERVA II robot and rendering the contribution. Left: the 
image of MINERVA II on asteroids. Right: the real photo that the 
MINERVA II robot took while hopping on asteroid Ryugu [6]
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implement for various environments, however the cal-
culation time increases diverge dramatically the number 
of the nodes. A* and D* reduce the computation cost by 
using heuristics. This is why these algorithms are often 
implemented to real time applications. Graph searches 
are more effective to cooperate with other graph gen-
erators. However, one of the shortcomings of these algo-
rithms is that it is difficult to apply them for uncertain 
environments. If the robots stray off the calculated path, 
it is required to re-calculate the path.

Model based algorithms
Unlike urban environments, locomotion on natural ter-
rains includes a lot of uncertainties because of the inter-
actions with the terrain surface. Model based algorithms 
reduce the uncertainty arising from terrains using inter-
action models. State lattice algorithm [18] is applied 
on rough terrains. The algorithm uses the grid of state, 
called state lattice. Based on the mobility model or the 
terrain interaction, the input parameters are optimized. 
The method often uses lookup tables or neural networks 
for estimating the parameters. Therefore, the validity of 
the results of the optimization depends on the lookup 
table or the used model. Terramechanics is the field of 
the terrain-mobility interactions and the application for 
path planning of wheeled robots has been studied in [19]. 
Although terramechanics can estimate the motion on 
sandy terrains, there are few conditions to which terra-
mechanics can be applied because of the uncertainty of 
the prediction models. Recently, machine learning algo-
rithms based model has been widely studied instead of 
terramechanics [20]. One of the advantages of machine 
learning is that we can create the models of various ter-
rain conditions. One of the challenges of this field is to 
make computationally light on-line learning algorithms.

Uncertainty‑aware planning
It is hard to detect the causes of uncertainties, and hence 
uncertainties are formulated probabilistically. Chance 
constraint path planning is one of the approaches to deal 
with the motion uncertainty. CC-RRT* [21] is the com-
bined RRT* algorithm with the uncertainty of the colli-
sion as constraints. Particle filter RRT [22] formulates the 
increase of the uncertainty of the locomotion as a particle 
filter. These algorithms generate the path which increases 
the uncertainty as little as possible. However the easiness 
of a path following or the re-planning of the path are not 
considered.

The Markov Decision Processes (MDPs) based algo-
rithms (e.g., [23, 24]) calculate the actions in all states. 
Therefore, it is not essential to re-plan the paths. In par-
ticular, MDPs is effective for large uncertain environ-
ments. This study uses MDPs as a basic theory. Hockman 

and Pavone propose the hopping motion planning on 
asteroids using reinforcement learning [25]. The differ-
ence with this study is that they make the uncertainty 
model on asteroids using reinforcement learning, and 
minimise the noise of the hopping trajectories. This study 
focuses on not only asteroids, but also planets, or satel-
lites which have solid surfaces, such as Moon or Mars. In 
addition, our approach can generate paths correspond-
ing to the requirements in each mission sequence, and 
calculate the optimal action in all states (details in sec-
tion ). The hopper resumes moving immediately after 
a failure of the landing on the expected point without 
re-calculating.

Qualitative comparison
Table 1 shows the comparison table of the path planning 
methods. The five items, validity, adaptivity, optimality, 
calculation cost, and uncertainty are evaluated according 
to the four-grade system. The advantage of the PRM or 
RRTs is a light calculation cost. Although the RRT* can 
generate the suboptimal paths and CC-RRT* can gener-
ate the uncertainty aware paths, the performances are 
slightly less than the others. Voronoi can generate the 
optimal paths and mitigate the calculation cost. However, 
the paths are not adaptive and do not include uncertainty.

Methods
This section presents the assumptions of environments 
and the conditions of the hopper. Then, the proposed 
algorithm is described. This study uses the MDP method. 
The reasons are that the hopping is a discrete motion, 
and hence the uncertainty is relatively large. In addition, 
it is difficult to control the attitude and trajectory while 
hopping. Therefore, the best action should be pre-calcu-
lated in all states.

Assumptions
The environment which is used in this paper causes the 
motion uncertainties because of the roughness of the 

Table 1  The comparison of path planning algorithms. The 
five items, validity, adaptivity, optimality, calculation cost, and 
uncertainty are evaluated according to the four-grade system
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terrain. Moreover, a part of the surface that is covered 
with granular media, such as regolith, causes slipage. 
It decreases the performance of the hopper low and 
increases the motion uncertainties. This study assumes 
that the uncertainty of the landing point is probabilisti-
cally expressed. Figure  2 shows the image of the uncer-
tainty of the hopping.

Hopper Conditions
The shape of the hopper is a sphere of 15 [cm] radius. 
The hopper can hop any horizontal directions (360º) and 
some vertical directions (45–90º). The condition is the 
same as our previous work [26]. The hopper is equipped 
with springs which generate the hopping force, and ste-
reo cameras to perceive the environments. This study 
assumes that the hopper can know its position and atti-
tude using an arbitrary localization method. Therefore, 
this paper does not discuss localization and perception 
methods. This paper also does not focus on the mobility 
mechanisms of the hopper in details. The initial veloc-
ity v0 is known when the hopping starts. This is because 
we can measure the initial elastic energy of springs and 
a mechanical loss, and then calculate the initial kinetic 
energy Ekin = 1/2mv20.

Markov decision processes
This section describes the basic concept of the MDPs and 
the application. MDPs assume that robots can observe 
the state fully, i.e., the perceptual model p(z|x), Where z 
and x denote the measurement and state, respectively, is 
deterministic. If we would like to treat fully probabilistic 
cases, which include the uncertainty of observations, the 
partially observable markov decision processes (POM-
DPs) is used. However, this paper does not focus on the 
POMDPs. The MDPs define the probabilistic action 
model p(xt |ut−1, xt−1) , where u denotes the action.

The key technique of the MDPs is the way of design-
ing the payoff function r(x, u). The details of the r(x, u) 
are described later. This study employs the value iteration 
method in order to calculate the best control policy. At 
step T, the control policy πT (x) is expressed as follows:

where VT (x) denotes the value function which is defined 
by:

where γ denotes the discount factor. In the case of 
T → ∞ , Eq. (2) is known as the Bellman equation. Bell-
man equation induces the control policy to be optimal. 
Algorithm 1 shows the calculation of the value iteration. 
Once the V(x) is obtained, the control policy is calculated 
by Eq. (1). This paper calculates the value iteration in all 
states.

Algorithm 1 Value iteration.
for i = 1 → N do

V (xi) ← rmin
end for
while until V (xi) converge do

for i = 1 → N do
V (xi) ← γmaxu

[
r(xi, u) +

∑N
j=1 V (xj)p(xj |u, xi)

]

end for
end while
return V

Payoff function
In general, payoff functions are defined numerically in 
MDPs, and designed by considering the above assump-
tions and hopping features. The proposed function is 
expressed as:

where S(x, u),  I(x, u) and P(x, u) denote the safety cost, 
the information gain, and the penalty, respectively. The 
w1 and w2 are the weight coefficients. The payoff function 
applies the min-max normalization to each term S(x, u) 
and I(x, u).

The safety of the rover operations depends on the 
interaction between the mobility and the environ-
ments, such as slope, obstacles, terrains and so on. The 
safety cost is proportional to the roughness. The rea-
sons are that hoppers can ride on rocks, and get over 
steps. These indicate that hoppers can access more 
dangerous areas than wheeled rovers can access. In 

(1)

πT (x) = arg max
u

[
r(x,u)+

∫
VT−1(x

′)p(x′|u, x)dx′
]
,

(2)

VT (x) = γ max
u

[
r(x,u)+

∫
VT−1(x

′)p(x′|u, x)dx′
]
,

(3)r(x,u) = w1S(x,u)+ w2I(x,u)+ P(x,u),

Fig. 2  The image of the hopping with uncertainty
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addition, the algorithm calculates the hopping trajec-
tory in advance for collision check. If a hopper collide 
with an obstacle or a hill before reaching the high-
est point in the trajectory, the hopper is bounced off. 
Hence, the safety cost becomes very low in the case of 
a collision occurring. The hopping trajectory is calcu-
lated as follows:

where z and d denote the vertical direction and mov-
ing direction of the hopper, respectively. Note that 
α = v20/2g sin

2 η is used to simplify the Eq. (4), where g 
and η denote the gravitational acceleration and the hop-
ping angle, respectively. Moreover, the origin of the 
Eq.(4) is the initial position of the hopper. Therefore, the 
function of the safety cost is described as follows:

where h(xp, yp) and f(u) denote the height of the terrain at 
a point (xp, yp) and the switching function, respectively. 
The roughness on a point (xp, yp) of terrain is formulated 
as the magnitude of the gradient at that point. If the hop-
per chooses the action u1 , and a collision is detected, 
f (u1) returns an infinite value. Otherwise, f (u1) returns 
1.

The information gain is also key to explore in the 
uncertain environments. When a robot traverses an 
unknown environment, it needs to perceive the envi-
ronment around and map it in order to make a path or 
decide a next motion. The entropy Hp(x) is often used 
as the expected information gain E[− log p(x)] , where 
p(x) denotes a probability distribution. The belief b is 
usually used as a p(x). Exploring in planetary environ-
ments, a hopper can perceive the environments around 
the hopper by riding on a high place, such as a rock or 
a step. In this paper, the information gain is expressed 
simply as:

This equation means that the higher the position of the 
hopper, the greater the information it can gather.

Simulation study
The following section describes the simulation study to 
validate the path planning algorithm expressed in the 
previous section. First, the assumptions of the simula-
tions are introduced. Next, the results of several cases 
of simulations are shown and discussed changing the 
weight coefficient w1 and w2 , and sandy surface or rigid 
surface.

(4)z = −
1

4α
(d − 2α)2 + α,

(5)S(xp,u) := −f (u)
∣∣∇h(xp, yp)

∣∣

(6)I(xp,u) := h(xp, yp).

Modelling assumptions
This simulation uses the artificial rough terrain shown 
in Fig.  3. This environment has regions of higher and 
lower elevation, indicated with a colorbar.

This environment is expressed as digital elevation 
map (DEM), of size 20[m] × 20[m]. Each state is a 1[m] 
× 1[m] cell. The terrain is expressed as superposition of 
2D Gaussian distribution:

where xp = (xp, yp) denotes a 2D position. The mean 
vector µi and the covariance matrix �i are described as 
follows:

where Ei[·], σi,· and σi,xy denote the expected value, stand-
ard deviation and covariance of the i-th gaussian distri-
bution, respectively. This simulation used eight gaussian 
distribution: five with elevated regions (i.e., positive 
values) and three depressed regions (i.e., negative val-
ues). The means, standard deviations, covariances of the 
gaussian distributions are shown in Table 2.

These expected values indicate the extremal values. 
The standard deviations and covariances use identical 
values, which means the profiles of convex and concave 
features are the same. The start point is (xp, yp) = (0, 0).

The paths are generated by MDPs, and hence each 
optimal actions chosen by the hopper is calculated 

(7)

h(xp) =
∑

i

1

2π
√
|�i|

exp

(
−
1

2
(xp − µi)

T�−1
i (xp − µi)

)
,

(8)µi = (Ei[x],Ei[y]),

(9)�i =

(
σ 2
i,x σi,xy

σi,xy σ 2
i,y

)
,

Fig. 3  The artificial terrain. The higher places are colored green, and 
the lower places are colored brown
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in all states. The actions used in the simulations are 
defined in Table 3.

In order to mitigate the calculation cost, the moving 
orientations of the hopper are restricted to four options, 
and the turning orientations are restricted to two. More-
over, two hopping angles are used: 45 and 80◦ . When a 
collision occurs, the hopper changes the hopping angle 
from 45 to 80◦ , and then re-calculates the trajectory. If 
the collision does not occur, the hopper choose the “Hop 
up” action to ride on the rock or hill, otherwise the hop-
per chooses the other action. This simulation employs 
the Martian gravitational acceleration g = 3.72[m/s2] . 
The value of the square of the initial velocity v20 is con-
stant to calculate the hopping distance d′ = 1.0[m] and 
h′ = 0.25[m] at the hopping angle η = 45 [deg] on flat 
terrains. In the case that the hopper moves on slopes and 
cannot reach to the next state (cell), the hopper continues 
to do the same action until arriving at the next state.

Results and discussion
The simulation conditions and the results are listed and 
discussed below in detail. The simulation environments 
are four cases: hard ground, hetero terrain (hard and 
sandy terrain), sandy terrain, and flat terrain with two 
obstacles. The start point is (0, 0), and the goal point is 
(18, 18), that are shown in “S” and “G” in Figs. 4, 5, 6, 7, 8 
and 9.

This simulation used a laptop PC with Intel Core-i9, 8 
cores, 2.4 [GHz].

Simulations on hard ground
This work try the three 11 of simulation by chang-
ing the weight coefficient in Eq. (3) on hard ground: 

(w1,w2) = (0, 1), (0.1, 0.9), (0.2, 0.8), . . . , (1, 0) . The goal 
is (xp, yp) = (18, 18) , and the payoff is enough big (10) at 
the point. The uncertainties of the hopping maneuver are 
defined as below: the hopper

•	 can reach to the expected point with a 70
(
1− θfront

(π/6)

)
 

% possibility
•	 may not change the state with a 70 θfront

(π/6) % possibility

•	 may be off to the left with a 15
(
1− θright

(π/6)

)
 % possibil-

ity or to the right with a 15
(
1− θleft

(π/6)

)
 % possibility

where θdirection denotes the slope angle to a direction. The 
reason why θdirection divided by (π/6) is that the probabili-
ties of the uncertainties of the motions are in inverse pro-
portion to a slope angle. This simulation assumes the 
maximum angle of slope is 30 degrees, which the hopper 
may land at an expected point, and be off to the both 
sides. Note that if the θdirection ≥ π/6 , the 1− θfront

(π/6) := 0 
in order the probability not to be negative values, and 
θleft = −θright.

The simulation results are shown in from Figs. 4a to 5e. 
The arrows indicate the actions the hopper chooses at 
each state: blue, purple, red, and black arrows denote the 
moving direction to north, south, east, and west, respec-
tively. The green lines show the path that start from the 
initial state. The computing time is about 0.79 [s]. In the 
case of (w1,w2) = (0, 1)− (0.2, 0.8) (Fig. 4a–c), the hop-
per makes the path what traverse on places as high as 
possible to get the information about the environment. 
Figure 4d shows that the path considering both the infor-
mation gain and the safety moves on relatively higher 
places at first. Then, coming near the goal, the hopper 
selects the path on the flat terrain.

Figures  4e–5e indicate that the path from the initial 
state is generated on the flat terrains. The hopper also 
selects the flattest route possible at the start. However, 
the actions in some states near the goal show that hopper 
should go through the slopes. It is assumed that the hop-
per gets more payoff to traverse on slopes than to make 
a detour in order to reach the goal. Simulation results 

Table 2  The parameters of the gaussian distributions

Parameters Values

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

Ei[x] 1 5 5 7 8 10 12 15

Ei[y] 6 0 20 14 8 18 1 10

σi,x 2

σi,y 2

σi,xy 0

Table 3  The action list

Action name Directions

Moving orientations North South East West

Turning orientations Turn right Turn left

Vertical hop orientations North South East West
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(a) (b)

(c) (d)

(e) (f)
Fig. 4  The path planning results on hard ground (1); a: (w1,w2) = (0, 1) , b: (w1,w2) = (0.1, 0.9) , c: (w1,w2) = (0.2, 0.8) , d: (w1,w2) = (0.3, 0.7) , e: 
(w1,w2) = (0.4, 0.6) , f: (w1,w2) = (0.5, 0.5)
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naturally depend on the conditions of environment or the 
hopper or both.

These results suggest the following observation:

Observation 1: the proposed algorithm can generate 
the various paths depending on the requirements: more 
safe, more challenging, or both safety and challenge.

(a) (b)

(c)

(e)

(d)

Fig. 5  The path planning results on hard gorund (2); a: (w1,w2) = (0.6, 0.4) , b: (w1,w2) = (0.7, 0.3) , c: (w1,w2) = (0.8, 0.2) , d: (w1,w2) = (0.9, 0.1) , 
e: (w1,w2) = (1, 0)
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(a) (b)

(c) (d)

(e) (f)
Fig. 6  The path planning results on heterogeneous terrain (1); a: (w1,w2) = (0, 1) , b: (w1,w2) = (0.1, 0.9) , c: (w1,w2) = (0.2, 0.8) , d: 
(w1,w2) = (0.3, 0.7) , e: (w1,w2) = (0.4, 0.6) , f: (w1,w2) = (0.5, 0.5)
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(a) (b)

(c)

(e)

(d)

Fig. 7  The path planning results on heterogeneous terrain (2); a: (w1,w2) = (0.6, 0.4) , b: (w1,w2) = (0.7, 0.3) , c: (w1,w2) = (0.8, 0.2) , d: 
(w1,w2) = (0.9, 0.1) , e: (w1,w2) = (1, 0)
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Simulations on heterogeneous terrain
This section shows the simulation on heterogenous ter-
rain. A part of this terrain (5 ≤ x ≤ 11, 3 ≤ y ≤ 11) is 

covered with sand. The hopping performance decreases 
on sandy terrain: the hopping distance d′ = 0.5 [m] and 
height h′ = 0.125 [m] at the hopping angle η = 45 [deg]. 

(a) (b)

(c) (d)

(e) (f)
Fig. 8  The path planning results on sandy terrain (1); a: (w1,w2) = (0, 1) , b: (w1,w2) = (0.1, 0.9) , c: (w1,w2) = (0.2, 0.8) , d: (w1,w2) = (0.3, 0.7) , e: 
(w1,w2) = (0.4, 0.6) , f: (w1,w2) = (0.5, 0.5)
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(a) (b)

(c) (d)

(e)
Fig. 9  The path planning results on sandy terrain (2); a: (w1,w2) = (0.6, 0.4) , b: (w1,w2) = (0.7, 0.3) , c: (w1,w2) = (0.8, 0.2) , d: (w1,w2) = (0.9, 0.1) , 
e: (w1,w2) = (1, 0)
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In addition, the hopper might stuck in sand. This is why 
the penalty (negative value: −0.5 ) are added to the pay-
off function expressed as Eq. (3). Therefore, the uncer-
tainty of locomotion on sand is re-defined as follows: the 
hopper

•	 can reach to the expected point with a 

50
(
1− θfront

(π/6)

)
 % possibility

•	 may not change the state with a 50θfront
(π/6) possibility

•	 might get a stuck with a 20% possibility

•	 may be off to the left with a 15
(
1− θright

(π/6)

)
 % possi-

bility or to the right with a 15
(
1− θleft

(π/6)

)
 % possibil-

ity

This simulation employs the same values of the weight 
coefficients as the section .

The results are shown in from Figs. 6a to 7e. The part of 
sandy terrains are figured as translucent grey. The computing 
time is about 0.79 [s]. The paths are generated from the initial 
state, which avoid sandy terrains as shown in from Figs. 6(1) 
to 7b. The main difference between the generated paths is 
the actions on the elevated regions. If the hopper prioritizes 
to get information, the paths pass on the two tops of the hills 
in order to maximize the information gain. Figure 7a, b indi-
cate the hopper selects a safer path than the others.

On the other hand, Fig. 7c–e show that there are no 
path from the initial state. These results indicate the 
hopper doesn’t reach the goal from the start. In the case 
of prioritizing safety, the environment is too dangerous 
to go to the goal. In other words, the goal is not attrac-
tive for the hopper. There are the three choices in this 
case: (1) increasing the payoff of the goal, (2) decreas-
ing the penalty of the sandy terrains, or (3) giving up 
to reach the goal in this environment. (1) Should be 
chosen if a robot want very much to arrive at the goal. 
Figure  10 shows the case that the payoff of the goal 
increases from 10 to 50. This case also chooses only the 
safety cost as the payoff functions. Although traversing 
on slopes, the hopper can arrive at the goal. The choice 
of (2) indicates that a robot might overestimate the risk 
of sandy terrain (e.g., the probability of stuck). The path 
may be generated from the start to the goal by decreas-
ing the penalty. The hopper may move on sand in this 
case. If a robot have more maps, the robot should select 
the (3). Detours might be found. These results indicate 
the following observation:

Observation 2: the proposed algorithm can generate the 
various path depending on the requirements on hetero-
geneous terrains. If the hopper doesn’t get the path which 
reaches the goal from the start, examine the choices (1), 
(2), and (3) in order to find other routes.

Simulations on sandy terrain
This section shows the simulation on heterogenous ter-
rain. Most of this terrain is covered with sand where the 
hopping performance decreases. This simulation uses 
the different performance: hopping distance d′ = 2.0 [m] 
and height h′ = 0.5 [m] on hard ground and d′ = 1.0 [m] 
and height h′ = 0.25 [m] on sandy terrains. The hopping 
angle is the same as the above sections η = 45 [deg]. The 
other assumptions are also same as the previous section.

The results are shown in from Fig.  8a–e. The part of 
sandy terrains are figured as translucent grey. The paths 
are illustrated as two colors: the green lines show the 
hopping routes on sandy terrain, and the yellow lines 
show the hopping on hard ground. The computing time 
is about 0.79 [s]. The paths are generated from the ini-
tial state as shown in from Figs. 8a to 9b. Even though the 
weight coefficients are different, these paths are almost 
same. The reason may be deduced that to reach the goal 
is most important with minimizing traversing on sandy 
terrain for hopper regardless of reward functions.

On the other hand, Figs. 9c, 8d, and 9e show that there 
are no path which starts from the initial state to the goal. 
In these cases, the hopper consideres that going to the 
goal is dangerous, i.e., the goal is not attractive for the 
hopper. The hopper might generate paths by selecting 
the option discussed in the previous section. Note that it 
is important to evaluate the risk of locomotion on sandy 

Fig. 10  The case of the more attractive goal (w1,w2) = (1, 0) . The 
hopper find the path from the start to the goal, which passes on the 
slopes
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terrain, because the hopper might get stuck. These results 
indicate the following observation:

Observation 3: the proposed algorithm can generate 
a path on sandy terrains. If the hopper doesn’t get the 
path which reaches the goal from the start, examine the 
choices in Obserbation 2 in order to find other routes 
with taking a risk into account carefully.

Vertical hopping simulation
Finally, the vertical hopping actions are evaluated. The 
simulation uses the other environment. Figure  11 illus-
trates the new environment and the simulation result. 
The size of the environment is 14 [m] × 14 [m]. The goal 
is set on the (xp, yp) = (14, 14) . The environment is a flat 
plane, and includes the tall rock (the height is 1.0 [m]), 
and the low rock (the height is 0.25 [m]). The borders 
between the rocks and the flat terrain are not smooth. 
The gradients on the borders are very large (almost infin-
ity). The other safety cost is defined for the vertical hop-
ping as below:

where ui and �h denote the vertical hopping action and 
the difference 

∣∣h(xp+i, yp+i)− h(xp, yp)
∣∣ , respectively. The 

vertical hop is shown as a green arrow regardless of the 
hopping orientations. The payoff function of this sec-
tion includes the information gain and the safety cost 
( (w1,w2) = (0.5, 0.5) ) in order to confirm the vertical hop 
action. The uncertainties of the vertical hopping action in 
this simulation are the following: the hopper

•	 can reach to the expected point with a 
70

(
1− �h

hmax

)
% possibility

(10)S(xp,ui) := −�h,

•	 may be off to the left with a 15
(
1− �h

hmax

)
% possibil-

ity or to the right with a 15
(
1− �h

hmax

)
% possibility

•	 fails to get on the rock with a 100 �h
hmax

% possibility

where hmax  is the hopping height at the hopping angle 
η = 80 [deg]. The uncertainties of the 45 [deg] hopping 
are the same as referred to the previous section. Here, 
θdirection = 0 , because the terrain is flat. This simulation 
assumes that the probability of a failure is proportional 
to �h.

The result of this simulation shows that the path can 
include the vertical hop at the (x, y) = (9, 11) . The verti-
cal hopping actions are plotted as green arrows. The path 
includes the vertical hopping shown in a green curve. The 
computing time is about 0.55 [s]. It is also confirmed the 
other vertical hopping actions around the low rock. The 
hopper can get on the low rock to gain the information 
about the environment around the hopper. The actions 
around the tall rock avoid collisions by calculating the 
hopping trajectories. The result indicates the following 
observation.

Observation 4: the proposed algorithm can generate 
paths that pass on the non-smooth borders (e.g, rocks), 
and avoid the collision with too high rocks.

Conclusion
This paper presents the hopping path planning method for 
traversing on rough terrains, such as disaster areas, planetary 
environments, or both. One of the features of the proposed 
algorithm is calculating the hopping trajectory for the col-
lision check. It enables generating paths on undulating ter-
rain, such as slopes. This means the proposed algorithm 
is the path planning method in 2.5D. The advantage of this 
method is that the calculation cost is reduced, which is better 
than the fully 3D path planning methods. The contributions 
of this study is the followings: the proposed algorithm can 
generate the paths on rough terrain depending on the mis-
sion requirements by Observation 1, on heterogeneous ter-
rain by Observation 2, on sandy terrain by Observation 3, and 
can traverse on non-smooth fields, such as rocks, or steps by 
Observation 4.

This summary remarks the important limitations of 
this work. (L1) this work does not consider the locomo-
tion mechanisms of the hopper. The actions used in the 
proposed algorithm should be selected based on the hop-
ping mechanisms. In particular, the way of recovering 
the attitude of the hopper after a landing is essential in 
order to continue the locomotion. (L2) The uncertain-
ties of motions depend on the real environments. It is 
hardly that the expected uncertainties which described 

Fig. 11  The environment for the vertical hopping simulation. The tall 
rock is shown as dark grey, and the low rock is shown as light grey. 
The vertical hopping actions are plotted as green arrows. The path 
includes the vertical hopping shown as a green curve



Page 15 of 15Sakamoto and Kubota ﻿ROBOMECH Journal             (2022) 9:4 	

in section Simulation Study correspond with the actual 
uncertainties.

In order to tackle the limitations, future works are listed 
as below. (S1) developing hopping robots and correct hop-
ping data. The works assist us to understand the restrictions 
of hopping actions, and improve the proposed algorithm. 
Moreover, we will include the energy constraints in the pay-
off function, which can reduce the number of turns. (S2) The 
reinforcement learning can renew uncertainties of motion, 
or a hopping model, or the both. The MDPs are the basic 
theory of the reinforcement learning. Therefore, the pro-
posed algorithm can use the reinforcement learning method 
relatively easily. The transfer learning is also used to modify a 
hopping model and uncertainties, which the hopper learned 
in advance.
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