
Itsuka et al. ROBOMECH Journal (2022) 9:1
https://doi.org/10.1186/s40648-021-00216-2

RESEARCH ARTICLE

Development of ROS2‑TMS: new software
platform for informationally structured
environment
Tomoya Itsuka*  , Minsoo Song, Akihiro Kawamura  and Ryo Kurazume   

Abstract 

This study proposes a new software platform, called ROS2-TMS, for an informationally structured environment. An
informationally structured environment is vital for developing intelligent service robots by embedding various sensors
in the environment to enhance the sensing capability and intelligence of robots. Thus far, we have been developing
a software platform, named ROS-TMS, for an informationally structured environment, which connects various sensors
and robots using ROS architecture. In recent years, ROS2, a next-generation version of ROS, has been released. ROS2
has many advantages, such as enhanced security, QoS control, and support for various platforms. ROS2-TMS, a new
version of ROS-TMS, is developed not only by porting existing modules in ROS-TMS, such as the control system for
a communication robot, but also by adding useful functions utilizing new features in ROS2. For instance, we added
a voice user interface to control robots and various devices in the environment, such as lights or a bed. In addition,
we implemented a new task scheduler that provides a cancelation function to stop running tasks and improve the
security of the platform.

Keywords:  Service robot, Informationally structured environment, Internet of things, Cyber physical system, Ambient
sensing

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
In recent decades, with the decline in birthrate and aging
of population, labor shortage has become a crucial issue
in various fields such as medical and nursing care. As a
solution to this problem, the realization of life support
services using artificial intelligence and service robots has
attracted considerable attention. However, unlike robots
operated in factories, the environment in which service
robots work for daily life support is diverse and dynami-
cally changing. Therefore, it is difficult to fully under-
stand the surrounding situation based on the embedded
sensors of the robot alone. One of the key solutions to
this problem is an informationally structured environ-
ment (ISE), in which sensors are distributed throughout

the surrounding environment to collect, analyze, and
retain environmental information. As a software platform
for an ISE, we have been developing ROS-TMS [1], which
realizes service robots that coexist with humans. ROS-
TMS connects various sensors embedded in the environ-
ment and service robots using a robot operating system
(ROS) [2], which is a general-purpose robot middleware.
In recent years, ROS2 [3], a next-generation version of
ROS, has been released. ROS2 has many advantages,
such as enhanced security, QoS control, support for vari-
ous platforms, and advanced navigation algorithms [4].

In this study, we propose a novel software platform for
an ISE, named ROS2-TMS. The characteristics of ROS2-
TMS are as follows. (1) Upgradation of the middleware
from ROS to ROS2: Enhanced security, QoS control,
and latest navigation algorithms are available. (2) Uni-
fied task management mechanism: Regardless of the
type of device (for example, robots, room lighting, and

Open Access

*Correspondence: itsuka@irvs.ait.kyushu-u.ac.jp
Kyushu University, 744 Motooka, Nishi‑ku, Fukuoka‑shi, Fukuoka 819‑0395,
Japan

http://orcid.org/0000-0002-9603-5691
http://orcid.org/0000-0003-4521-235X
http://orcid.org/0000-0002-4219-7644
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40648-021-00216-2&domain=pdf

Page 2 of 19Itsuka et al. ROBOMECH Journal (2022) 9:1

intelligent home appliances), service tasks can be man-
aged uniformly as subtasks in the task manager. This
makes it easier to perform advanced coordination of vari-
ous devices. (3) Cancelation function: By managing sub-
tasks in all devices using the ROS2 Action protocol, all
service tasks can be terminated during execution regard-
less of the complexity of the task, thus, increasing safety.

Related works
ISE enables the flexible operation of service robots by
collecting, analyzing, and managing data for a complex
environment by deploying distributed sensors not only
on the robot but also in the environment. Several systems
have been developed on ISE thus far. In the “Robotic
Room” [5] at The University of Tokyo, an approach to
deploy various sensors in the environment was pro-
posed to observe the status of patients. In the “Intelligent
Room” [6] at MIT, AILab deployed multiple cameras in
a room to track the location of humans and determine
their direction to provide services. “Intelligent Sweet
Home” [7] proposed a robotic platform that includes an
intelligent bed with pressure sensors and an autonomous
mobile wheelchair in the context of ambient assisted liv-
ing (AAL), which aims to promote independent living
for the elderly and disabled. These studies on ISEs have
focused on two aspects: (1) deploying sensors in the
environment to collect advanced information regarding
humans, robots, and objects, and (2) providing services
to assist humans through robots and intelligent home
appliances.

In recent years, various systems related to ISE have
been proposed and commercialized, such as AAL, smart
houses, and the Internet of Robotic Things (IoRT). In
the field of smart homes, smart speakers, such as Ama-
zon’s “Alexa” [8] and Google’s “Google Assistant” [9], are
widely used in households, and the technology to control
home appliances, lighting, and other Internet of Things
(IoT) devices through voice interfaces is widely adopted
in households. In [10], it was stated that the presence
of a central interface, such as a smart speaker, increases
the quality of the robot service. IoRT is a field that incor-
porates IoT technology, in which various devices in the
home environment are connected to the Internet and
robotics technology. As a method of component coor-
dination using IoT technology, there is coordination
between sensors to collect information using multiple
sensors, as well as coordination on actuators to perform
various services; for example, [11] identifies user activi-
ties and habits by collecting information from a group
of sensors installed in a smart house, such as a pressure
sensor installed in a bed. In [12], a service robot was con-
nected to an elevator control unit to move the service
robot across multiple floors of an apartment building.

Various research topics and references on IoRT are intro-
duced in [13].

The robot operating system (ROS) [2], an open source
platform, has contributed significantly to the develop-
ment and research of mobile and service robots. The
new generation of ROS, ROS2 [3], has enhanced security
and QoS control and supports the latest development
environments, such as C++14 and Python3. The latest
robot autonomous mobility package Navigation2 is also
available in ROS2. Navigation2 [4] consists of a behavior
tree, which represents a management mechanism that is
higher than the autonomous movement of the robot, and
it is easy to describe complex control such as temporary
avoidance behavior for environments wherein autono-
mous movement is difficult. Consequently, it has the
potential to cope with complex everyday environments.
One of the important updates in the internal design is the
action protocol [14], which is useful for time-consum-
ing tasks, such as the moving task of a robot or a pick-
ing up task of a manipulator. With the evolution of the
design, an identifier is issued for each action protocol to
distinguish each action. This action protocol is incorpo-
rated into the task scheduler proposed in this research
and plays a major role in connecting individual tasks and
subtasks.

From ROS‑TMS to ROS2‑TMS
The authors began to develop an ISE in the “Robot Town
Project” in 2005 and have been developing a software
platform named Town Management System (TMS).
In [1], we proposed a software platform, ROS-TMS 5.0
(Fig. 1), and a hardware platform, Big Sensor Box (Fig. 2),
for an ISE. ROS-TMS 5.0 is developed as a core software
platform for IoRT and has some novel functions, such as
a care receiver-watching service and a voice control for
service robots.

However, there were four concerning points about
ROS-TMS:

1.	 Using ROS as middleware: ROS initially supported
Python2; thus, the ROS-TMS executable used
Python2. However, support for Python2 was dis-

Fig. 1  ROS-TMS

Page 3 of 19Itsuka et al. ROBOMECH Journal (2022) 9:1 	

continued in 2020. We believe that the platform
should support Python3 and the latest development
resources.

2.	 Difficulty in task implementation: The ROS-TMS
microphone module, which is responsible for voice
input, transcribes the user’s speech, searches for ser-
vice tasks, and executes tasks specific to those ser-
vices (sending commands to devices such as robots,
lightings, and robotic beds using ROS topics, ser-
vices, socket communication, etc.). Therefore, the
dependency between task implementation and the
microphone module is high, and it is necessary to
develop the microphone control node again when
tasks are added.

3.	 Limited subtasks: In ROS-TMS, the objects to be
managed by the task scheduler were limited to
robots only, and there were only three types of sub-
tasks: robot movement, robot arm grasp, and release.
Together with the problems discussed in 2) above,
it was difficult to implement services that scheduled
robot movements and other devices.

4.	 Cannot stop a task while it is running: For example,
when a robot is moving and bumps into something
inadvertently, it is necessary to perform an emer-
gency stop of the service task. However, ROS-TMS
does not allow the user to perform an emergency
stop while the task is in progress.

Therefore, we developed a new software platform for an
ISE, named ROS2-TMS. This platform has the following
four features to solve these four problems:

1.	 Using ROS2 as middleware: While ROS uses C++03
/ Python2 as its development environment, ROS2
can now use C++14 / Python3. Therefore, ROS2-
TMS ports the core modules of ROS-TMS to ROS2,

which can be used in the C++14 / Python3 environ-
ment. Also, advanced ROS2 technologies such as
QoS control and Navigation2 are applicable in ROS2-
TMS.

2.	 Redesign of task execution: In ROS-TMS, the micro-
phone module was responsible not only for under-
standing the user’s speech but also for task search
and task execution. In addition, ROS2 does not have
SMACH, the task execution machine used in ROS-
TMS; therefore, the task execution had to be rebuilt.
Therefore, we separated task search and task execu-
tion from the roles of the microphone module and
implemented task search in the task search node and
task execution and management in the task scheduler
module. Furthermore, task execution was performed
using ROS2 actions, and we were able to add func-
tions for failure behavior and stopping during execu-
tion.

3.	 Redesign of tasks and subtasks: In ROS-TMS, there
were only three types of subtasks: moving the robot
and grasping and releasing by the robot hand. In
ROS2-TMS, the scope of subtasks was expanded to
include robots as well as robotic beds, room light-
ing, and speakers. As a result, all service tasks can
be managed using a task scheduler. In addition, tasks
linked to multiple devices can be added simply by
entering the configuration information of these sub-
tasks in the database.

4.	 Addition of cancel function: In ROS-TMS, a user
cannot stop a task in the middle of the execution.
ROS2-TMS has a newly developed task scheduler
with ROS2 action, which can stop a task in the mid-
dle of an execution according to the user’s request.
Each subtask defines its behavior when canceled
such that adding a task does not need to define a new
behavior.

The rest of the paper is organized as follows: The ROS2-
TMS modules section describes the structure of the
modules in ROS2-TMS. The Robots, Sensors, and User
Request Devices section describes the modules related
to the devices in ROS2-TMS, such as robots and robotic
beds. The Task execution flow section describes an
overview of task execution. The Voice interfaces (TMS_
UR) section describes the design of the voice user inter-
face. The Database (TMS_DB) section describes the
design of the database. The Task scheduler (TMS_TS)
section describes the design of the task scheduler. The
Robot service experiment section describes the service
tasks that can be provided by ROS2-TMS and provides
examples of their execution. Finally, the section Con-
clusions provides the conclusion.

Fig. 2  Big sensor box

Page 4 of 19Itsuka et al. ROBOMECH Journal (2022) 9:1

ROS2‑TMS modules
ROS2-TMS has a wide variety of functions as an ROS2
node. ROS2-TMS is composed of modules connected
in a hierarchical manner as shown in Fig. 3. In a ROS2-
TMS service, various modules play roles by intercon-
necting with each other, such as interpreting the user’s
speech, selecting a task to be executed, planning, and
even the robot’s behavior. The contents of each module
are described below.

Architecture

Database module (TMS_DB) Stores environmental
information managed by ROS2-TMS in a database.
The database is developed with mongoDB.
User request module (TMS_UR) Receives task
requests from users and sends task execution
requests to TMS_TS.
Task scheduler module (TMS_TS) The requested ser-
vice is executed by combining subtasks. In the pre-
vious study (ROS_TMS), only robots were subject
to subtask management, whereas in this study, we
expanded the scope of task management to intelli-
gent home appliances such as beds and speakers.
Robot planning module (TMS_RP) From some sub-
tasks of the robot commanded by TMS_TS, motion
planning was performed to correctly execute the
subtasks.
Robot controller module (TMS_RC) This is a module
that executes the planned subtasks using the robot.
A dedicated module is implemented for each robot.
Sensor driver module (TMS_SD) The system acti-
vates various sensors embedded in the environment
and publishes the acquired sensor data.

Sensor system module (TMS_SS) Sensor data are
interpreted and converted into higher-level environ-
mental information and stored in TMS_DB.
State analyzer module (TMS_SA) This module
receives information from TMS_SS and estimates
the state of the environment. For example, we plan
to estimate the user’s health status, but we are still in
the concept stage. Details are given in the “Conclu-
sions” section.

Robots, sensors, and user request devices
In this study, we upgraded the middleware for each
device from ROS to ROS2, improved the communica-
tion quality of the Data Distributed Service (DDS), and
expanded the functions of ROS2, such as the cancelation
function. Some sensors and robots used in Big Sensor
Box and ROS2-TMS are shown in Fig. 4.

Robot controller module (TMS_RC)

Robotic bed An electric bed (Rakusho Z KQ-7302,
Paramount Bed) is controlled by RaspberryPi Zero,
which can raise the upper body and the height of the
bed.
Communication robot (Double 2, Double 3) Double
2 [15] and Double 3 [16] are communication robots
manufactured by Double Robotics. Double 2 and
Double 3 are controlled by attached iPad and Linux
PC, respectively. We implemented a moving task for
the robots to a specified position and angle using a
motion capture system and the ROS2 Navigation2
package.

Sensor system module (TMS_SS)

Wearable Heart rate sensor (WHS-1) Whs-1 is a
wearable heart rate sensor developed by Union Tool
Corporation that updates the heart rate information
in the database at each timestep at which the user’s
heart rate is measured.
Motion capture system (VICON) VICON is a motion
capture system that uses multiple motion-tracking
cameras to recognize the position of an object. We
used it to estimate the position of the robot.

User request module (TMS_UR)

Microphone device A USB microphone is attached to
Intel’s NUC to receive voice requests from users.

User

TMS_UR: User Request

TMS_TS: Task Scheduler

TMS_SD:
Sensor Driver

Sensor Robot

TMS_RC:
Robot Controller

T
M

S
_
D

B
: D

atab
ase

TMS_SS
Sensor System

TMS_SA
State Analyzer

TMS_RP
Robot Planning

Fig. 3  ROS2-TMS architecture

Page 5 of 19Itsuka et al. ROBOMECH Journal (2022) 9:1 	

Speaker device A USB speaker is attached to the
Raspberry Pi 3 to play a conversation with the user
using the Google Assistant API, as well as announce-
ments and sound effects when the task starts using
TMS_TS.

Task execution flow
To run the ROS2-TMS service, the modules shown in the
previous sections need to control corresponding devices
and tasks coordinately. In TMS_RC, the robots and the
robotic bed are controlled. In TMS_RP, the robots are
connected to TMS_TS through Navigation2, and the
robotic bed is connected directly to TMS_TS. The micro-
phones and the speakers are managed in TMS_UR.

TMS_TS, TMS_DB, and the task search node in TMS_
UR were executed on a dedicated ROS2-TMS server in
our experiments.

An overview of task execution from a user’s voice com-
mand to the robot and lighting control is presented in
Fig. 5. The following bullet points correspond to the fol-
lowing figure:

1.	 The user requests a command from the microphone.
2.	 The microphone control node transcribes the voice

and sends a string to the task search node.
3.	 The task search node searches for related task IDs

and objects in the database.
4.	 The task search node passes the task IDs and objects

to TMS_TS.

Motion capture

Heart rate sensor

Sensor System
Collect sensor infomation

Robot Controller
Robot Intelligent appliances

Robotic bed

User Request
Interface with users

Mic

Speaker
Communication

Robot

Fig. 4  Sensors and robots in TMS_SS, TMS_RC, TMS_UR modules

TMS_DB: Database

TMS_UR TMS_TS

U
ser

TMS_RC
Mic Find a task

Robot

Bed

Lighting

Manage tasks Thread

Thread

Subtask

Subtask

TMS_RP
(Navigation2)

Subtask

1. 2.

3.

4.

5.

6.

7.

8.

8.

9.

9.

9.

Microphone
control node

Task search node Task management
node

Task control node

Task control node

Subtask node

Fig. 5  Flowchart of processes from user request to task execution in ROS2-TMS

Page 6 of 19Itsuka et al. ROBOMECH Journal (2022) 9:1

5.	 The task management node integrates task and
object information.

6.	 The task management node creates a task control
node to execute the task.

7.	 If necessary, more task control nodes are generated
and coordinated by an additional number of tokens
for parallel execution.

8.	 Each task control node eventually requests one sub-
task node.

9.	 Each subtask node executes its process.

The subsequent sections on “Voice interfaces (TMS_
UR),” “Task scheduler (TMS_TS),” and “Database (TMS_
DB)” describe the function of the individual modules in
detail.

Voice interfaces (TMS_UR)
Currently, smart speakers are being released by various
companies, and home automation, in which home appli-
ances are controlled by smart speakers, is also gaining
popularity. In ROS2-TMS, we implemented a voice inter-
face using the Google Assistant API [17], a voice assistant

service that is also installed in Google’s smart speakers,
to transcribe text and provide simple responses.

Note that the Google Assistant API is only used for
speech recognition and transcription, weather forecast-
ing, and other general-purpose responses, and not for
operating devices such as robotic beds. All device opera-
tions on ROS2-TMS were performed via ROS2.

The ROS-TMS also had a voice interface. However, a
microphone control node implemented the task search
and execution functions, which had to be developed
when a task was added (Fig. 6a). In ROS2-TMS, the task
search and execution functions are outsourced to the
other nodes. In particular, the task scheduler can manage
the execution of all tasks. As a result, the development of
a microphone module is no longer necessary when tasks
are added or changed. In addition, tasks that combine
multiple devices can be realized using only the task infor-
mation in the database (Fig. 6b).

First, the wake word “ROS-TMS” is detected by
Julius [18]. Once the wake word is detected, Google
Assistant transcribes the request. The transcribed text is
separated into words by Janome [19] and then matched
to tags in the database for task execution by ROS2-TMS.

Fig. 6  Task execution flow of User Interface (TMS_UR) and Task Scheduler (TMS_TS)

Page 7 of 19Itsuka et al. ROBOMECH Journal (2022) 9:1 	

If an appropriate task is found, TMS_TS schedules the
execution of the task. If a proper task cannot be found,
the speaker outputs the response using Google Assistant.

“Cancel” is also a wake word recognized by Julius.
When Julius recognizes “cancel,” TMS_TS is requested to
terminate the current task immediately.

Database (TMS_DB)
The database stores tasks and environmental informa-
tion, such as a map of the environment, task information,
and robot, human, and object positions.

The task information included an ID of the task, a
sequence of subtasks that complied with the task, tags
used for voice search, and the text that was announced
when the task was started.

In addition to these tasks, other objects can be added
to the database. The following four pieces of information
are required to work with the voice interface:

ID: A unique ID in the database.
Name: A name that represents this object.
Type: The name of the type that the object repre-
sents, such as “room_place.” The same type must
have the same properties.
Tags for searching: Store several related words for
searching the object. In addition to this, there shold
be properties for each type.

The information in the database can be referenced
from other information. For example, the robot move-
ment task (ID: 9001) refers to the patrol points speci-
fied by the user and stored in the database; thus, the
robot moves autonomously along these points (Fig. 7).
It is described in detail in the “Integrate tasks and data-
bases” subsection under the “Task Scheduler (TMS_
TS)” section.

Task Information Object (location) information
“Robot movement task” “Nearly bed”

“ROS-TMS, Double,

go to the bed.”
Search in the

database

(a) Searching for tasks and objects in the database

9001${“position”: (room_place.position),

“orientation”: (room_place.orientation)}

Subtask composition of “Move” task

type: “room_place”

position: [8.65, 1.62, 0.0]

orientation: [0.0, 0.0, 0.28, 0.96]

“Nearly bed” data

9001${“position”: [8.65, 1.62, 0.0],

“orientation”:[0.0, 0.0, 0.28, 0.96]}

Composition of subtasks to be executed

(b) Linking movement tasks with location information
Fig. 7  Task definition in database

Page 8 of 19Itsuka et al. ROBOMECH Journal (2022) 9:1

Task scheduler (TMS_TS)
The task scheduler module (TMS_TS) receives the task
requested from the user request (TMS_UR), analyzes
the request, and executes the task while interpolating the
necessary information in cooperation with the database.

In our previous study [1], we adopted the approach
named “task information structuring.” In this approach,
a task is defined as a combination of subtasks, which are
basic actions shared among different tasks. We imple-
mented moving, grasping, and handling subtasks, all of
which are fundamental functions for service robots. In
addition to these subtasks, we implemented new sub-
tasks in ROS2-TMS, which control not only robots but
also devices such as speakers, beds, and room lighting. In
addition, all tasks can be canceled using the ROS2 Action
protocol.

Consequently, ROS2-TMS has the following advan-
tages compared to ROS-TMS.

•	 Controllable devices are increased. Various devices,
such as speakers, room lighting, and beds, can be
controlled simultaneously to provide service tasks
with robots (Fig. 8).

•	 Since all operations are centrally controlled by the
task manager using the ROS2 Action protocol, any
task can be terminated or canceled immediately.

Two‑layer service structure: tasks and subtasks
We defined and provided services using a two-layer
structure in ROS2-TMS, that is, the task and subtask
layers.

A task is defined by a one-to-one correspondence with
a service that can be requested in ROS2-TMS. The task

consists of the following contents. All tasks are stored
as data structures in the database and thus have no sub-
stance as programs.

•	 Tags for searching by a requested text
•	 Set of subtasks
•	 Text announced when starting a task

If a task needs to refer to environmental information in
the database, such as the destination of a robot in a mov-
ing task, the type of necessary information is also speci-
fied in the data structure above.

A subtask is implemented as an ROS2 node that can be
executed by robots or devices. A subtask is composed of
the following contents.

•	 Unique ID for each subtask
•	 Processing implementation
•	 Implementation of the cancelation process

Because a task is defined as a set of subtasks, a new task
can be represented as a set of existing subtasks; thus, it is
not necessary to implement the execution code of robots
or devices for each task individually.

Method of adding a subtask
It is implemented by inheriting the SubtaskNodeBase
class, which inherits from the ROS2 Node class and then
overrides the following items:

Name: Name of the ROS2 node.
The ID of the subtask: Assign a number between
9000 and 9999.

9

9102: Raise the head side of the bed

300: Announce "Raised the bed "

9300: Announce "Good morning"

9900: Wait 3 seconds

9200: Lighting on

9300: Announce "Turned on the lights "

9001: The robot moves to "Nearly Bed"

9300: Announce "Double has arrived "

Robot subtask

Speaker subtaskLights subtask

Bed subtask

Connect

Subtasks “Good morning” task
Fig. 8  “Good morning” task consisting of subtasks for various devices

Page 9 of 19Itsuka et al. ROBOMECH Journal (2022) 9:1 	

Function at runtime: Define the process at runtime.
Because arguments assigned by the task scheduler
are allocated, it is possible to change the behavior
according to the arguments.
Function when canceled: The action to be taken can
be defined when cancelation is requested.

Implementation of subtasks
Subtasks are implemented as the minimum processes
executed by the robots and various devices. All subtasks
were implemented as nodes in the ROS2. IDs from 9000
to 9999 were assigned to the subtasks. Currently, 13 sub-
tasks are defined in the database. The detailed behaviors
when executing the subtasks are shown in Table 1.

Subtask for communication robot (tms_rc_double)
ID 9001 is a subtask for a robot, such as the communica-
tion robot Double 2, to move to a destination. The desti-
nation is defined with a position and an orientation and
specified when the subtask is called. This movement sub-
task uses the Navigation2 package and a behavior tree to
move.

•	 Double 2 moves to the destination (9001).

Subtasks for robotic bed (tms_rc_bed)
IDs in the 9100s are subtasks for a robotic bed. For each
subtask, the execution time in seconds is defined as an
argument.

•	 Raise (9100) or lower (9101) the head and leg sides of
the bed.

•	 Raise (9102) or lower (9103) the head side of the bed.
•	 Raise (9104) or lower (9105) the leg side of the bed.
•	 Raise (9106) or lower (9107) the height of the bed.

Other subtasks

•	 Turn on (9200) or off (9201) the lights in the room.
•	 Play a text from the speaker (9300).
•	 Wait for specified seconds (9900).

Connecting subtasks within a task
A task is defined as a set of subtasks and stored with
string information in the database. The subtask execu-
tion token is represented by “subtask_id” or “subtask_id $
json_format_argument,” and the task is specified by con-
necting them with the sequential execution token “+” or
the parallel execution token “|.” Examples of connecting
multiple subtasks using this notation are shown in Fig. 9.

More complex tasks can be represented with the
Backus-Naur Form (BNF) notation as follows:

�task − structure� ::= �task�

�task� ::= �task� �task� �operator�

| �subtask�

�operator� ::= “+′′ | “|′′

�subtask� ::= “subtask − id′′

| “subtask − id$json− arguments′′

Table 1  Definition of the implemented subtasks

Name IDs Arguments Behavior Behavior on cancelation

Robot movement subtask 9001 Goal position (x, y, z)
Goal angle (w, x, y, z)

Requests the Navigation2 package to autonomously move the
robot to the target location using ROS2 action communication. If
the request fails, it informs the upper-level task control node that
it has failed.

Cancels the currently
executed request to Navi-
gation2 by ROS2 action.

Subtasks for robotic bed 9100
9101
9102
9103
9104
9105
9106
9107

Execution seconds Requests the bed control node (websocket operation) in TMS_RC
to perform the respective operation via a websocket, such as rais-
ing the bed. If another task has already made the bed request, this
subtask informs the upper task control node of the failure.

Sends a stop command
to the bed control node
via a websocket.

Subtasks for the lights 9200
9201

None An HTTP request is sent to the lighting management server
located in the big sensor box to turn the lights on and off. Failure
is reported to the upper task control node if no response is
received from the server within the 5-second timeout period.

None

A subtask for the speaker 9300 Text to be spoken Request the speaker control node in TMS_UR to speak using the
ROS2 service.

None

A subtask for the speaker 9900 Execution seconds Wait for the specified time. None

Page 10 of 19Itsuka et al. ROBOMECH Journal (2022) 9:1

�task − structure� represents the connection between the
subtasks. “subtask − id′′ is the ID of the subtask to be
executed, and “subtask − id$json− arguments′′ is the ID
and some arguments. For example, the string command
for raising the height of the bed for 17 s is represented as

This command implies that the subtask to raise the height
of the bed (ID: 9106) is executed for 17 s.

Integrate tasks and databases
The task description in the database can be linked with
other objects.

The syntax above can be replaced by writing it in the
subtask structure or the startup readout property.
�object − type� is the type of information in the database,

9106${′′sec′′ : 17.0}

(�object − type�.�property− name�)

and �property− name� is the property’s name of the data-
base object.

The integration of object information and the task
is performed by the task search node in TMS_UR and
the task management node in TMS_TS. For example,
details of the operation from 3 to 5 shown in the “Task
execution flow” section are as follows:

1.	 The task search node in TMS_UR checks the string
against the task tag in the database and obtains the
task ID and object.

2.	 The task search node sends the task ID and objects to
the task management node in TMS_TS.

3.	 The task management node retrieves the task from
the task ID. After that, it replaces the above syntaxes
of the startup readout text and subtask structure with
the information of the object.

4	 A task control node is generated, and the task is exe-
cuted.

Fig. 9  Task notations

Page 11 of 19Itsuka et al. ROBOMECH Journal (2022) 9:1 	

Here is an example of a robot moving task. When a user
says “ROS-TMS, Double, go to the bed,” a task search
node in TMS_UR retrieves the “Robot movement task”
and the “Nearly bed” location information from the tags
in the database (Fig. 7a). Subsequentry, the task manage-
ment node in TMS_TS replaces the information in the
“Robot movement task” with the contents of the “Nearly
bed” (Fig. 7b). It then executes the task.

Method of adding a task
Adding a task is performed by storing the following infor-
mation in the database.

ID: Set a unique number that does not overlap with
any other object in the database.
Name: Give a name to the task content.
Type: Set the string “task” to distinguish it from
other objects in the database.
Subtask composition: Set the composition of the
subtasks using the syntax described in the “Con-
necting subtasks within a task” subsection.
Required tags and tags: If a word in a required tag
is included in a sentence, this task is searched. If a
word in the tag is included in a sentence, the priority
of this task is increased in the searched tasks.
Announcement text: An announcement at startup
and when object integration fails (optional). Set the
text to be spoken by the speaker at startup. The text
can also be set when the integration with the data-
base fails; for example, when the target point of the
robot’s movement task does not exist in the database.

Implementation of tasks
Currently, there are 13 types of tasks. Tasks exist in a
database, and their behavior can be based on a single
subtask or a combination of subtasks.

A task related to the communication robot (1 type)

•	 Double 2 moves to the destination.

	 Currently, there are 3 target locations in the database:
near the entrance, near the kitchen, and the bed, and
Double2 can move to them.

Tasks related to the robotic bed (8 types)

•	 Raise or lower the head and leg sides of the bed for a
certain period.

•	 Raise or lower the head side of the bed for a certain
period.

•	 Raise or lower the leg side of the bed for a certain
period.

•	 Raise or lower the height of the bed for a certain
period.

Tasks related to the lights (2 types)

•	 Turn on or off the lights in the room.

Tasks that combine multiple devices (2 types)

•	 “Good morning” task
•	 “Good night” task

Task execution
TMS_TS dynamically allocates a thread to execute the
requested task when the execution of a task is requested
by TMS_UR (Fig. 10a). The number of threads is set to
n+ 1 , where n is the number of tokens “| ” that represent
the parallel execution.

A control node is an ROS2 node that corresponds to
each thread. Several control nodes are created when tasks
start, and these nodes are connected to each other by
the ROS2 action protocol in the tree structure. The task
scheduler represents the root, the control nodes repre-
sent the branches, and the subtask execution nodes rep-
resent the leaves. Action communication in ROS2 [14]
handles accept or reject requests, and if accepted, the
status of the action is returned when the action is con-
cluded, such as succeeded, failed, or canceled. In addi-
tion, a cancelation request can be accepted while the
action is being executed.

Cancel function
In ROS-TMS, a user cannot stop a task in progress. To
implement this cancelation function, an update to the
action function in ROS2 is required. ROS action commu-
nication consists of two types of entities: clients and serv-
ers. However, the server could not recognize which client
requested it. In ROS2, when a client requests the server,
the client generates a UUID [14]. This UUID is used as an
identifier of the request between the server and the cli-
ent to manage each request individually. This new feature
was used to map tasks to subtasks in the task scheduler.

In ROS2-TMS, even when a task is running, the task
can be stopped immediately by receiving a “cancel” voice
request issued by the user or other cancelation com-
mands. The cancel operation is realized by sending a
cancel command to the subtasks currently running. It is
an emergency stop function, and there is currently no

Page 12 of 19Itsuka et al. ROBOMECH Journal (2022) 9:1

function to resume a task that has been stopped in the
middle.

Even if the execution time is specified when start-
ing subtasks, the execution is stopped immediately, and

further serial operations of subtasks are terminated
(Fig. 10b, c).

Error termination
If the subtask is not completed or canceled, its subtask
node informs the task search node in the TMS_UR of
the failure through the requested task control node or
its upper-level task management node. When the task
search node is informed of the failure, it sends a mes-
sage to the speaker that the task has failed or has been
canceled.

Tasks that combine subtasks
The task scheduler in ROS2-TMS can manage not only
robots but also IoT devices such as beds, lights, and
microphones, and ROS2-TMS can provide various ser-
vices by combining robots and intelligent home appli-
ances. Examples of services that are newly added to the
ROS2-TMS, such as the “Good morning” and “Good
night” tasks, are shown in Fig. 11. Both tasks combine
the subtasks for the communication robot Double 2,
a robotic bed, lighting, and speaker. For example, the
“Good morning” task is defined as shown in Fig. 12.

As shown above, these tasks consist of sequential and
parallel executions of several subtasks and are highly
complicated. We confirmed that the cancel function is
appropriately executed even for these complex tasks.

Service experiments using ROS2‑TMS and big
sensor box
We conducted an experiment to verify the operation of
services with a voice interface using ROS2-TMS in Big
Sensor Box (Fig. 2).

The big sensor box is a hardware platform for an infor-
mationally structured environment. As described in [1],
it is located on the second floor of the COI building at
the Ito campus of Kyushu University and is a habitable
space with a living room, bedroom, and kitchen. In the
room, there is a service robot, such as Double 2 and Dou-
ble 3, and a motion capture system that can acquire the
robot’s position, a robotic bed, and a server that manages
the room lighting. In this study, we interconnected them
using ROS2 communication and experimented with pro-
viding services using ROS2-TMS.

We confirmed that ROS2-TMS can launch proper tasks
according to a user’s voice request through the micro-
phone device and perform tasks such as user interaction
(daily conversation), bed operations, lighting control, and
robot motion by combining the proper information in
the database.

The following subsections show how each task was per-
formed. Detailed timecharts of each task are shown in
Figs. 13 and 14.

|

|

9102 9300

+

+

9900 9200

9300

+

9001 9300

+

9300

+ : sequential execution

| : parallel execution

Run in thread-1

Run in thread-2

Run in thread-3

(a) Threading

|

|

9102 9300

+

+

9900 9200

9300

+

9001 9300

+

9300

Run in thread-1

Run in thread-2

Run in thread-3

In operation

In operation

Successful
termination

+ : sequential execution

| : parallel execution

(b) In operation

|

|

9102 9300

+

+

9900 9200

9300

+

9001 9300

+

9300

Run in thread-1

Run in thread-2

Run in thread-3

Canceled

Successful
termination

+ : sequential execution

| : parallel execution

(c) Canceling
Fig. 10  Thread allocation for “Good morning” task

Page 13 of 19Itsuka et al. ROBOMECH Journal (2022) 9:1 	

Daily conversation
When a user asks ROS2-TMS questions such as “ROS-
TMS, What’s the weather today?” or “ROS-TMS, How

high is Mount Fuji?,” proper responses were provided
by Google Assistant (Fig. 15).

Lighting control
When a user requests tasks related to the lighting such as
“ROS-TMS, turn on the lights” or “ROS-TMS, turn off the
lights,” ROS2-TMS chooses and executes the proper tasks
by sending commands to the lighting management server
in Big Sensor Box (Fig. 16).

Robotic bed control
When a user requests tasks related to a robotic bed, such
as “ROS-TMS, raise the height of the bed,” ROS2-TMS exe-
cutes the proper tasks to control the robotic bed (Fig. 17a).

Robot control
When the user requests “ROS-TMS, Double, go to the
kitchen,” TMS_TS in ROS2-TMS generates a motion plan
for the communication robot Double 2 to move to the
kitchen. The coordinates of the kitchen are stored in the
database and interpolated to generate motion commands
in TMS_TS. In addition, if the user requests “ROS-TMS,
Double, go to the bed,” Double 2 moves to the vicinity of
the bed by linking with the bed coordinates stored in the
database. (Fig. 18a, b).

Execution of complex tasks
We implemented the “Good morning” and “Good night”
tasks to confirm the sequential and parallel executions of
subtasks. Both tasks consisted of several subtasks related
to robot motion, bed operation, and room lighting control
connected sequentially or in parallel. To confirm the flex-
ibility of the task representation, we implemented these
tasks with several different connections of subtasks and
confirmed that these tasks were executed appropriately
even with complex task structures.

“Good morning” task
The “Good morning” task performs the following three
subtasks in parallel.

•	 Raise the upper body of the bed and announce “Raised
the bed” from the speaker.

•	 Wait for 3 s, turn on the lights, and announce “Turned
on the lights.”

9102: Raise the head side of the bed

9300: Announce "Raised the bed"

9300: Announce "Good morning"

9900: Wait 3 seconds

9200: Lighting on

9300: Announce "Turned on the lights"

9001: The robot moves to "Nearly Bed"

9300: Announce "Double has arrived"

(a) “Good morning” task

9300: Announce "Lay down the bed" 9103: Lower the head side of the bed

9300: "Turn off the lights" 9201: Lighting off

9001: The robot moves to "Kitchen"

9300: Announce "Double has returned to the kitchen"

9300: Announce "Good night"

(b) “Good night” task
Fig. 11  Example of tasks combining subtasks

9102${“sec”: 20.0} 9300${“announce”: “Raised the bed”} + 9900${“wait sec”: 3.0} 9200 + 9300${“announce”:
“Turned on the lights”} + | 9001${“position”: [8.65, 1.62, 0.0], “orientation”: [0.0, 0.0, 0.280, 0.960]}

9300${“announce”: “Double has arrived”} + | 9300${“announce”: “Good morning”} +

Fig. 12  Task notation of “Good morning” task

Page 14 of 19Itsuka et al. ROBOMECH Journal (2022) 9:1

(a)

“Weather forecast” time chart. User 0: Ask the weather to microphone. Speaker 1: Answer the weather.

(b)

“Switching off the light” time chart. User 0: “ROS-TMS, turn off the lights”. Speaker 1: Announcement at
task startup. Light 2: Turned off.

(c)

“Lower the head side of the bed” time chart. User 0: “ROS-TMS, lower the head side of the bed”.
Speaker 1: Announcement at task startup. Bed 2: Lowered the head side.

(d)

“Canceling bed control task” time chart. User 0: “ROS-TMS, lower the head side of the bed”. Speaker 1:
Announcement at task startup. Bed 2: Lowered the head side. User 3: “Cancel”. Speaker 4: Announcement at task
cancelation.

(e)

“Double goes to the kitchen” time chart. User 0: “ROS-TMS, Double, go to the kitchen”. Speaker 1:
Announcement at task startup. Robot 2: Went to the kitchen.

(f)

“Double goes to the bed” time chart. User 0: “ROS-TMS, Double, go to the bed”. Speaker 1: Announcement
at task startup. Robot 2: Went to the near side of the bed.

(g)

“Canceling move task” time chart. User 0: “ROS-TMS, Double, go to the bed”. Speaker 1: Announcement
at task startup. Robot 2: Went to the near side of the bed. User 3: “Cancel”. Speaker 4: Announcement at task
cancelation.

Fig. 13  Time chart of task execution (1 of 2)

Page 15 of 19Itsuka et al. ROBOMECH Journal (2022) 9:1 	

(a)

Execute “Good morning” task time chart. User 0: “ROS-TMS, good morning”. Speaker 1: Announcement
at task startup. Robot 2: Went to the near side of the bed. Speaker Robot 3: Announced “Double has arrived”. Bed 4:
Raise the head side of the bed. Speaker Bed 5: Announced “Raised the bed”. Light 6: Turned on. Speaker Light 7:
Announced “Turned on the lights”. Speaker GoodMorning 8: Announced “Good morning”.

(b)

Canceling “Good morning” task time chart. User 0: “ROS-TMS, good morning”. Speaker 1: Announcement
at task startup. Robot 2: Went to the near side of the bed. Bed 4: Raise the head side of the bed. Light 6:
Turned on. Speaker Light 7: Announced “Turned on the lights”. User Cancel 9: “Cancel”. Speaker Cancel 10: An-
nouncement at task cancelation.

(c)

Execute “Good night” task time chart. User 0: “ROS-TMS, good night”. Speaker 1: Announcement at task
startup. Robot 2: Went to the near side of the kitchen. Speaker Robot 3: Announced “Double has returned to the
kitchen”. Speaker Bed 4: Announced “Lay down the bed”. Bed 5: Lowered the head side of the bed. Speaker Light 6:
Announced “Turn off the lights”. Light 7: Turned off. Speaker GoodNight 8: Announced “Good night”.

(d)

Canceling “Good night” task time chart. User 0: “ROS-TMS, good night”. Speaker 1: Announcement at
task startup. Robot 2: Went to the near side of the kitchen. Speaker Bed 4: Announced “Lay down the bed”. Bed 5:
Lowered the head side of the bed. User Cancel 9: “Cancel”. Speaker Cancel 10: Announcement at task cancelation.

Fig. 14  Time chart of task execution (2 of 2)

Page 16 of 19Itsuka et al. ROBOMECH Journal (2022) 9:1

•	 Move the communication robot Double 2 close to
the bed and announce “Double has arrived.”

After completing all the subtasks, “Good morning” is
announced from the speaker (Fig. 19a).

“Good night” task
The “Good night” task executes two subtasks in parallel.
In addition, there is a further parallel operation within
the first operation. The following two operations are exe-
cuted in parallel.

•	 A task lays the head side of the bed down and
announces “Lay down the bed” from the speaker and
then turns off the lights in the room and announces
“Turn off the lights.”

•	 After Double 2 returns to the kitchen, the speaker
announces, “Double has returned to the kitchen.”

After completing all the subtasks, “Good night” is
announced from the speaker (Fig. 20a).

Cancel tasks
If the word “cancel” is included in the user’s command,
TMS_TS sends a cancel command to the control nodes
in all subtasks executing currently. When the control
node in the subtask receives the cancel command, the
control node sends the cancel command to the subtasks
and the control nodes of the child subtasks executing

ROS-TMS, What’s the weather today?

User

Today in Fukuoka, it’ll be sunny,

with a forecast high of 13 and a low of 2.

System

21

Fig. 15  Weather forecast

ROS-TMS, turn off the lights.

User

2

Turn off the lights.

System

1

Fig. 16  Switching off the light

21

ROS-TMS, lower the head side

of the bed.

User

Lower the head side of the bed.

System

(a) Lower the head side of the bed

Stop lowering the bed.

21 3

ROS-TMS, lower the

head side of the bed.

User

Lower the head

side of the bed.

System

Cancel.

User

Canceled the

task.

System

(b) Canceling bed control task
Fig. 17  Bed control task

SystemUser

SystemUser

User System User System

21

Double goes to the kitchen.

3

ROS-TMS, Double, go to the kitchen.

(a) Double goes to the kitchen

21

Double goes to the bed.

3

ROS-TMS, Double, go to the bed.

(b) Double goes to the bed

Stop moving midway.

21 3

ROS-TMS, Double,

go to the bed.

Double goes to the

bed.
Cancel.

Canceled the

task.

(c) Canceling move task
Fig. 18  Move task for communication robot

Page 17 of 19Itsuka et al. ROBOMECH Journal (2022) 9:1 	

in parallel. When all the control nodes in the sub-
tasks receive the cancel command, the task is stopped
(Figs. 17b, c, 19b, and 20b).

Conclusions
In this study, we presented a new software platform for
an ISE, named ROS2-TMS, and demonstrated a few
robot services using ROS2-TMS. ROS2-TMS is publicly
available and can be downloaded from [20]. The differ-
ences between ROS2-TMS and the previous ROS-TMS
system are summarized as follows.

•	 The middleware was changed from ROS to ROS2,
and various modules were ported and newly devel-
oped.

	 Currently, ROS2-TMS does not actively use secu-
rity and QoS settings. However, as we continue our
research, QoS will used to configure sensor streams,
such as cameras, which have a large amount of data.
For the robot movement subtask, we used Naviga-
tion2 and the behavior tree. The application of ROS2-
TMS with this behavior tree is more flexible than
ROS-TMS for moving in complex environments.

1

3

2

4

ROS-TMS, good

morning.

User

Start the “Good morning”

task.

System

Turned on the lights.

System

Raised the bed.

System

Double has arrived.

System

Good morning!

System

(a) Execute “Good morning” task

1

3

2

4

ROS-TMS, good

morning.

User

Start the “Good morning”

task.

System

Turned on the lights.

System

Canceled the task.

System

Cancel.

User

(b) Canceling “Good morning” task
Fig. 19  “Good morning” task

1

3

2

4

Lay down the bed.

System

Turn off the lights.

System

Double has returned

to the kitchen.

System

Good night!

System

ROS-TMS, good night.

User

Start the “Good night” task.

System

(a) Execute “Good night” task

1

3

2

4

ROS-TMS, good night.

User

Start the “Good night” task.

System

Lay down the bed.

System

Canceled the task.

System

Cancel.

User

(b) Canceling “Good night” task
Fig. 20  “Good night” task

Page 18 of 19Itsuka et al. ROBOMECH Journal (2022) 9:1

•	 The interaction with a user was realized using the
Google Assistant API.

•	 The task scheduler was extended to manage not only
robots but also various IoT devices such as intelligent
beds, lighting, and speakers. This makes it possible to
provide various services that combine robots and IoT
devices.

•	 To improve safety, we added a new function that
allows the user to stop running tasks by issuing a
cancelation request to the ROS nodes using the
ROS2 Action protocol.

Future works includes the following improvements.

Low‑cost localization system
In this study, an optical motion capture system was used
to estimate the position of the robot. Although this sys-
tem can identify the robot position with high accuracy,
it is considerably expensive. Currently, we are testing
less expensive range-based localization systems such as
Wi-Fi, RFID, UWB, and visible light [21], and we believe
that low-cost autonomous mobile services can be pro-
vided by applying these technologies.

Services by health status
In this study, we developed a module for a wearable heart
rate sensor. We will develop a service robot that recog-
nizes not only the human’s location but also the health
condition using environmental sensors as a state analyzer
module (TMS_SA, in Fig. 3) and provides proper services
according to the health status of the individual.

Dynamic planning of tasks, such as autonomous robot
movement
The autonomous movement of robots in large areas,
including doors or elevators, requires coordination with
surrounding actuators [12, 22]. Therefore, even for the
same autonomous movement, the composition of the
subtasks differ significantly between movement in a
room and movement in a large area across rooms. For
such environment-dependent tasks, we will extend the
task scheduler so that the necessary functions can be
dynamically linked.

In addition, when several tasks are executed simultane-
ously, it is necessary to monitor and appropriately control
the progress of all the tasks currently running. Thus, we
will design an efficient interface to present detailed and
comprehensive information, including the task status,
location of humans and robots, and human conditions.

Acknowledgements
This work was partially supported by the Cabinet Office (CAO) Cross-Ministe-
rial Strategic Innovation Promotion Program (SIP), “An intelligent knowledge
processing infrastructure, integrating physical and virtual domains” (funding
agency: NEDO).

Authors’ contributions
TI drafted the manuscript. RK constructed the study concept. AK and RK man-
aged the study. TI and MS developed the system and carried out the experi-
ments. All members verified the content of their contributions. All authors
read and approved the final manuscript.

Funding
This work was partially supported by the Cabinet Office (CAO), Cross-Ministe-
rial Strategic Innovation Promotion Program (SIP), “An intelligent knowledge
processing infrastructure, integrating physical and virtual domains” (funding
agency: NEDO).

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 25 September 2021 Accepted: 28 December 2021

References
	1.	 Sakamoto J, Kiyoyama K, Matsumoto K, Pyo Y, Kawamura A, Kurazume R

(2018) Development of ros-tms 5.0 for informationally structured environ-
ment. ROBOMECH J 5:24. https://​doi.​org/​10.​1186/​s40648-​018-​0123-9

	2.	 ROS.org | Powering the world’s robots. https://​www.​ros.​org/. Accessed 3
Aug 2021

	3.	 ROS 2 Documentation: Foxy. https://​docs.​ros.​org/​en/​foxy/​index.​html.
Accessed 30 July 2021

	4.	 Macenski S, Martin F, White R, Clavero JG (2020) The Marathon 2: a naviga-
tion system. In: 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp 2718–2725. https://​doi.​org/​10.​1109/​IROS4​
5743.​2020.​93412​07. https://​github.​com/​ros-​plann​ing/​navig​ation2https://​
ieeex​plore.​ieee.​org/​docum​ent/​93412​07/

	5.	 Sato T, Nishida Y, Mizoguchi H (1996) Robotic room: symbiosis with
human through behavior media. Robot Auton Syst 18(1–2):185–194.
https://​doi.​org/​10.​1016/​0921-​8890(96)​00004-8

	6.	 Brooks RA (1997) The intelligent room project. In: Proceedings of the 2nd
International Conference on Cognitive Technology (CT ’97). CT ’97, p 271.
IEEE Computer Society, USA

	7.	 Park KH, Bien Z, Lee JJ, Kim BK, Lim JT, Kim JO, Lee H, Stefanov DH, Kim
DJ, Jung JW, Do JH, Seo KH, Kim CH, Song WG, Lee WJ (2007) Robotic
smart house to assist people with movement disabilities. Auton Robots
22(2):183–198. https://​doi.​org/​10.​1007/​s10514-​006-​9012-9

	8.	 Amazon Alexa Voice AI | Alexa Developer Official Site. https://​devel​oper.​
amazon.​com/​en-​US/​alexa. Accessed 23 Aug 2021

	9.	 Google Assistant. https://​assis​tant.​google.​com/. Accessed 23 Aug 2021
	10.	 Kwak SS, San Kim J, Moon BJ, Kang D, Choi J (2020) Robots versus

speakers: what type of central smart home interface consumers prefer?
In: 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp 11397–11404. https://​doi.​org/​10.​1109/​IROS4​5743.​
2020.​93417​48. https://​ieeex​plore.​ieee.​org/​docum​ent/​93417​48/

	11.	 Melo N, Lee J, Suzuki R (2018) Identification of the User’s Habits based
on Activity Information. In: 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp 2014–2019. https://​doi.​org/​10.​
1109/​IROS.​2018.​85938​73. https://​ieeex​plore.​ieee.​org/​docum​ent/​85938​
73/

https://doi.org/10.1186/s40648-018-0123-9
https://www.ros.org/
https://docs.ros.org/en/foxy/index.html
https://doi.org/10.1109/IROS45743.2020.9341207
https://doi.org/10.1109/IROS45743.2020.9341207
https://github.com/ros-planning/navigation2
https://ieeexplore.ieee.org/document/9341207/
https://ieeexplore.ieee.org/document/9341207/
https://doi.org/10.1016/0921-8890(96)00004-8
https://doi.org/10.1007/s10514-006-9012-9
https://developer.amazon.com/en-US/alexa
https://developer.amazon.com/en-US/alexa
https://assistant.google.com/
https://doi.org/10.1109/IROS45743.2020.9341748
https://doi.org/10.1109/IROS45743.2020.9341748
https://ieeexplore.ieee.org/document/9341748/
https://doi.org/10.1109/IROS.2018.8593873
https://doi.org/10.1109/IROS.2018.8593873
https://ieeexplore.ieee.org/document/8593873/
https://ieeexplore.ieee.org/document/8593873/

Page 19 of 19Itsuka et al. ROBOMECH Journal (2022) 9:1 	

	12.	 Cavallo F, Limosani R, Manzi A, Bonaccorsi M, Esposito R, Di Rocco M,
Pecora F, Teti G, Saffiotti A, Dario P (2014) Development of a socially
believable multi-robot solution from town to home. Cognit Comput
6(4):954–967. https://​doi.​org/​10.​1007/​s12559-​014-​9290-z

	13.	 Simoens P, Dragone M, Saffiotti A (2018) The internet of robotic things:
a review of concept, added value and applications. Int J Adv Robot Syst
15(1):1–11. https://​doi.​org/​10.​1177/​17298​81418​759424

	14.	 ROS2 Design | Actions. http://​design.​ros2.​org/​artic​les/​actio​ns.​html.
Accessed 4 Feb 2020

	15.	 Double Robotics - Telepresence Robot for Telecommuters. https://​www.​
doubl​erobo​tics.​com/​doubl​e2.​html. Accessed 2 Feb 2020

	16.	 Double Robotics—Telepresence Robot for the Hybrid Office. https://​
www.​doubl​erobo​tics.​com/​doubl​e3.​html. Accessed 15 Sept 2021

	17.	 Overview | Google Assistant SDK | Google Developers. https://​devel​opers.​
google.​com/​assis​tant/​sdk/​overv​iew. Accessed 2 Feb 2020

	18.	 Julius. https://​julius.​osdn.​jp/. Accessed 14 Sept 2021
	19.	 Janome v0.3 documentation (ja). https://​mocob​eta.​github.​io/​janome/.

Accessed 2 Feb 2020
	20.	 https://​github.​com/​irvs/​ros2_​tms. Accessed 16 Sept 2021
	21.	 Zafari F, Gkelias A, Leung KK (2019) A survey of indoor localization sys-

tems and technologies. IEEE Communications Surveys and Tutorials 21(3),
2568–2599. https://​doi.​org/​10.​1109/​COMST.​2019.​29115​58. arxiv:​1709.​
01015

	22.	 Martin F, Gines J, Vargas D, Rodraguez-Lera FJ, Matellan V (2018) Planning
topological navigation for complex indoor environments. In: 2018 IEEE/
RSJ International Conference on Intelligent Robots and Systems (IROS),
pp 1–9. https://​doi.​org/​10.​1109/​IROS.​2018.​85940​38https://​ieeex​plore.​
ieee.​org/​docum​ent/​85940​38/

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1007/s12559-014-9290-z
https://doi.org/10.1177/1729881418759424
http://design.ros2.org/articles/actions.html
https://www.doublerobotics.com/double2.html
https://www.doublerobotics.com/double2.html
https://www.doublerobotics.com/double3.html
https://www.doublerobotics.com/double3.html
https://developers.google.com/assistant/sdk/overview
https://developers.google.com/assistant/sdk/overview
https://julius.osdn.jp/
https://mocobeta.github.io/janome/
https://github.com/irvs/ros2_tms
https://doi.org/10.1109/COMST.2019.2911558
http://arxiv.org/abs/1709.01015
http://arxiv.org/abs/1709.01015
https://doi.org/10.1109/IROS.2018.8594038
https://ieeexplore.ieee.org/document/8594038/
https://ieeexplore.ieee.org/document/8594038/

	Development of ROS2-TMS: new software platform for informationally structured environment
	Abstract
	Introduction
	Related works
	From ROS-TMS to ROS2-TMS

	ROS2-TMS modules
	Architecture

	Robots, sensors, and user request devices
	Robot controller module (TMS_RC)
	Sensor system module (TMS_SS)
	User request module (TMS_UR)

	Task execution flow
	Voice interfaces (TMS_UR)
	Database (TMS_DB)
	Task scheduler (TMS_TS)
	Two-layer service structure: tasks and subtasks
	Method of adding a subtask
	Implementation of subtasks
	Subtask for communication robot (tms_rc_double)
	Subtasks for robotic bed (tms_rc_bed)
	Other subtasks

	Connecting subtasks within a task
	Integrate tasks and databases
	Method of adding a task
	Implementation of tasks
	A task related to the communication robot (1 type)
	Tasks related to the robotic bed (8 types)
	Tasks related to the lights (2 types)
	Tasks that combine multiple devices (2 types)

	Task execution
	Cancel function
	Error termination
	Tasks that combine subtasks

	Service experiments using ROS2-TMS and big sensor box
	Daily conversation
	Lighting control
	Robotic bed control
	Robot control
	Execution of complex tasks
	“Good morning” task
	“Good night” task
	Cancel tasks

	Conclusions
	Low-cost localization system
	Services by health status
	Dynamic planning of tasks, such as autonomous robot movement

	Acknowledgements
	References

