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Abstract 

This study proposes a new software platform, called ROS2-TMS, for an informationally structured environment. An 
informationally structured environment is vital for developing intelligent service robots by embedding various sensors 
in the environment to enhance the sensing capability and intelligence of robots. Thus far, we have been developing 
a software platform, named ROS-TMS, for an informationally structured environment, which connects various sensors 
and robots using ROS architecture. In recent years, ROS2, a next-generation version of ROS, has been released. ROS2 
has many advantages, such as enhanced security, QoS control, and support for various platforms. ROS2-TMS, a new 
version of ROS-TMS, is developed not only by porting existing modules in ROS-TMS, such as the control system for 
a communication robot, but also by adding useful functions utilizing new features in ROS2. For instance, we added 
a voice user interface to control robots and various devices in the environment, such as lights or a bed. In addition, 
we implemented a new task scheduler that provides a cancelation function to stop running tasks and improve the 
security of the platform.
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Introduction
In recent decades, with the decline in birthrate and aging 
of population, labor shortage has become a crucial issue 
in various fields such as medical and nursing care. As a 
solution to this problem, the realization of life support 
services using artificial intelligence and service robots has 
attracted considerable attention. However, unlike robots 
operated in factories, the environment in which service 
robots work for daily life support is diverse and dynami-
cally changing. Therefore, it is difficult to fully under-
stand the surrounding situation based on the embedded 
sensors of the robot alone. One of the key solutions to 
this problem is an informationally structured environ-
ment (ISE), in which sensors are distributed throughout 

the surrounding environment to collect, analyze, and 
retain environmental information. As a software platform 
for an ISE, we have been developing ROS-TMS [1], which 
realizes service robots that coexist with humans. ROS-
TMS connects various sensors embedded in the environ-
ment and service robots using a robot operating system 
(ROS) [2], which is a general-purpose robot middleware. 
In recent years, ROS2  [3], a next-generation version of 
ROS, has been released. ROS2 has many advantages, 
such as enhanced security, QoS control, support for vari-
ous platforms, and advanced navigation algorithms [4].

In this study, we propose a novel software platform for 
an ISE, named ROS2-TMS. The characteristics of ROS2-
TMS are as follows. (1) Upgradation of the middleware 
from ROS to ROS2: Enhanced security, QoS control, 
and latest navigation algorithms are available. (2) Uni-
fied task management mechanism: Regardless of the 
type of device (for example, robots, room lighting, and 
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intelligent home appliances), service tasks can be man-
aged uniformly as subtasks in the task manager. This 
makes it easier to perform advanced coordination of vari-
ous devices. (3) Cancelation function: By managing sub-
tasks in all devices using the ROS2 Action protocol, all 
service tasks can be terminated during execution regard-
less of the complexity of the task, thus, increasing safety.

Related works
ISE enables the flexible operation of service robots by 
collecting, analyzing, and managing data for a complex 
environment by deploying distributed sensors not only 
on the robot but also in the environment. Several systems 
have been developed on ISE thus far. In the “Robotic 
Room”  [5] at The University of Tokyo, an approach to 
deploy various sensors in the environment was pro-
posed to observe the status of patients. In the “Intelligent 
Room”  [6] at MIT, AILab deployed multiple cameras in 
a room to track the location of humans and determine 
their direction to provide services. “Intelligent Sweet 
Home” [7] proposed a robotic platform that includes an 
intelligent bed with pressure sensors and an autonomous 
mobile wheelchair in the context of ambient assisted liv-
ing (AAL), which aims to promote independent living 
for the elderly and disabled. These studies on ISEs have 
focused on two aspects: (1) deploying sensors in the 
environment to collect advanced information regarding 
humans, robots, and objects, and (2) providing services 
to assist humans through robots and intelligent home 
appliances.

In recent years, various systems related to ISE have 
been proposed and commercialized, such as AAL, smart 
houses, and the Internet of Robotic Things (IoRT). In 
the field of smart homes, smart speakers, such as Ama-
zon’s “Alexa” [8] and Google’s “Google Assistant” [9], are 
widely used in households, and the technology to control 
home appliances, lighting, and other Internet of Things 
(IoT) devices through voice interfaces is widely adopted 
in households. In [10], it was stated that the presence 
of a central interface, such as a smart speaker, increases 
the quality of the robot service. IoRT is a field that incor-
porates IoT technology, in which various devices in the 
home environment are connected to the Internet and 
robotics technology. As a method of component coor-
dination using IoT technology, there is coordination 
between sensors to collect information using multiple 
sensors, as well as coordination on actuators to perform 
various services; for example, [11] identifies user activi-
ties and habits by collecting information from a group 
of sensors installed in a smart house, such as a pressure 
sensor installed in a bed. In [12], a service robot was con-
nected to an elevator control unit to move the service 
robot across multiple floors of an apartment building. 

Various research topics and references on IoRT are intro-
duced in [13].

The robot operating system (ROS) [2], an open source 
platform, has contributed significantly to the develop-
ment and research of mobile and service robots. The 
new generation of ROS, ROS2 [3], has enhanced security 
and QoS control and supports the latest development 
environments, such as C++14 and Python3. The latest 
robot autonomous mobility package Navigation2 is also 
available in ROS2. Navigation2 [4] consists of a behavior 
tree, which represents a management mechanism that is 
higher than the autonomous movement of the robot, and 
it is easy to describe complex control such as temporary 
avoidance behavior for environments wherein autono-
mous movement is difficult. Consequently, it has the 
potential to cope with complex everyday environments. 
One of the important updates in the internal design is the 
action protocol  [14], which is useful for time-consum-
ing tasks, such as the moving task of a robot or a pick-
ing up task of a manipulator. With the evolution of the 
design, an identifier is issued for each action protocol to 
distinguish each action. This action protocol is incorpo-
rated into the task scheduler proposed in this research 
and plays a major role in connecting individual tasks and 
subtasks.

From ROS‑TMS to ROS2‑TMS
The authors began to develop an ISE in the “Robot Town 
Project” in 2005 and have been developing a software 
platform named Town Management System (TMS). 
In [1], we proposed a software platform, ROS-TMS 5.0 
(Fig. 1), and a hardware platform, Big Sensor Box (Fig. 2), 
for an ISE. ROS-TMS 5.0 is developed as a core software 
platform for IoRT and has some novel functions, such as 
a care receiver-watching service and a voice control for 
service robots.

However, there were four concerning points about 
ROS-TMS: 

1.	 Using ROS as middleware: ROS initially supported 
Python2; thus, the ROS-TMS executable used 
Python2. However, support for Python2 was dis-

Fig. 1  ROS-TMS
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continued in 2020. We believe that the platform 
should support Python3 and the latest development 
resources.

2.	 Difficulty in task implementation: The ROS-TMS 
microphone module, which is responsible for voice 
input, transcribes the user’s speech, searches for ser-
vice tasks, and executes tasks specific to those ser-
vices (sending commands to devices such as robots, 
lightings, and robotic beds using ROS topics, ser-
vices, socket communication, etc.). Therefore, the 
dependency between task implementation and the 
microphone module is high, and it is necessary to 
develop the microphone control node again when 
tasks are added.

3.	 Limited subtasks: In ROS-TMS, the objects to be 
managed by the task scheduler were limited to 
robots only, and there were only three types of sub-
tasks: robot movement, robot arm grasp, and release. 
Together with the problems discussed in 2) above, 
it was difficult to implement services that scheduled 
robot movements and other devices.

4.	 Cannot stop a task while it is running: For example, 
when a robot is moving and bumps into something 
inadvertently, it is necessary to perform an emer-
gency stop of the service task. However, ROS-TMS 
does not allow the user to perform an emergency 
stop while the task is in progress.

Therefore, we developed a new software platform for an 
ISE, named ROS2-TMS. This platform has the following 
four features to solve these four problems: 

1.	 Using ROS2 as middleware: While ROS uses C++03 
/ Python2 as its development environment, ROS2 
can now use C++14 / Python3. Therefore, ROS2-
TMS ports the core modules of ROS-TMS to ROS2, 

which can be used in the C++14 / Python3 environ-
ment. Also, advanced ROS2 technologies such as 
QoS control and Navigation2 are applicable in ROS2-
TMS.

2.	 Redesign of task execution: In ROS-TMS, the micro-
phone module was responsible not only for under-
standing the user’s speech but also for task search 
and task execution. In addition, ROS2 does not have 
SMACH, the task execution machine used in ROS-
TMS; therefore, the task execution had to be rebuilt. 
Therefore, we separated task search and task execu-
tion from the roles of the microphone module and 
implemented task search in the task search node and 
task execution and management in the task scheduler 
module. Furthermore, task execution was performed 
using ROS2 actions, and we were able to add func-
tions for failure behavior and stopping during execu-
tion.

3.	 Redesign of tasks and subtasks: In ROS-TMS, there 
were only three types of subtasks: moving the robot 
and grasping and releasing by the robot hand. In 
ROS2-TMS, the scope of subtasks was expanded to 
include robots as well as robotic beds, room light-
ing, and speakers. As a result, all service tasks can 
be managed using a task scheduler. In addition, tasks 
linked to multiple devices can be added simply by 
entering the configuration information of these sub-
tasks in the database.

4.	 Addition of cancel function: In ROS-TMS, a user 
cannot stop a task in the middle of the execution. 
ROS2-TMS has a newly developed task scheduler 
with ROS2 action, which can stop a task in the mid-
dle of an execution according to the user’s request. 
Each subtask defines its behavior when canceled 
such that adding a task does not need to define a new 
behavior.

The rest of the paper is organized as follows: The ROS2-
TMS modules section describes the structure of the 
modules in ROS2-TMS. The Robots, Sensors, and User 
Request Devices section describes the modules related 
to the devices in ROS2-TMS, such as robots and robotic 
beds. The Task execution flow section describes an 
overview of task execution. The Voice interfaces (TMS_
UR) section describes the design of the voice user inter-
face. The Database (TMS_DB) section describes the 
design of the database. The Task scheduler (TMS_TS) 
section describes the design of the task scheduler. The 
Robot service experiment section describes the service 
tasks that can be provided by ROS2-TMS and provides 
examples of their execution. Finally, the section  Con-
clusions provides the conclusion.

Fig. 2  Big sensor box
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ROS2‑TMS modules
ROS2-TMS has a wide variety of functions as an ROS2 
node. ROS2-TMS is composed of modules connected 
in a hierarchical manner as shown in Fig. 3. In a ROS2-
TMS service, various modules play roles by intercon-
necting with each other, such as interpreting the user’s 
speech, selecting a task to be executed, planning, and 
even the robot’s behavior. The contents of each module 
are described below.

Architecture

Database module (TMS_DB) Stores environmental 
information managed by ROS2-TMS in a database. 
The database is developed with mongoDB.
User request module (TMS_UR) Receives task 
requests from users and sends task execution 
requests to TMS_TS.
Task scheduler module (TMS_TS) The requested ser-
vice is executed by combining subtasks. In the pre-
vious study (ROS_TMS), only robots were subject 
to subtask management, whereas in this study, we 
expanded the scope of task management to intelli-
gent home appliances such as beds and speakers.
Robot planning module (TMS_RP) From some sub-
tasks of the robot commanded by TMS_TS, motion 
planning was performed to correctly execute the 
subtasks.
Robot controller module (TMS_RC) This is a module 
that executes the planned subtasks using the robot. 
A dedicated module is implemented for each robot.
Sensor driver module (TMS_SD) The system acti-
vates various sensors embedded in the environment 
and publishes the acquired sensor data.

Sensor system module (TMS_SS) Sensor  data are 
interpreted and converted into higher-level environ-
mental information and stored in TMS_DB.
State analyzer module (TMS_SA) This module 
receives information from TMS_SS and estimates 
the state of the environment. For example, we plan 
to estimate the user’s health status, but we are still in 
the concept stage. Details are given in the “Conclu-
sions” section.

Robots, sensors, and user request devices
In this study, we upgraded the middleware for each 
device from ROS to ROS2, improved the communica-
tion quality of the Data Distributed Service (DDS), and 
expanded the functions of ROS2, such as the cancelation 
function. Some sensors and robots used in Big Sensor 
Box and ROS2-TMS are shown in Fig. 4.

Robot controller module (TMS_RC)

Robotic bed An electric bed (Rakusho Z KQ-7302, 
Paramount Bed) is controlled by RaspberryPi Zero, 
which can raise the upper body and the height of the 
bed.
Communication robot (Double 2, Double 3) Double 
2 [15] and Double 3 [16] are communication robots 
manufactured by Double Robotics. Double 2 and 
Double 3 are controlled by attached iPad and Linux 
PC, respectively. We implemented a moving task for 
the robots to a specified position and angle using a 
motion capture system and the ROS2 Navigation2 
package.

Sensor system module (TMS_SS)

Wearable Heart rate sensor (WHS-1) Whs-1 is a 
wearable heart rate sensor developed by Union Tool 
Corporation that updates the heart rate information 
in the database at each timestep at which the user’s 
heart rate is measured.
Motion capture system (VICON) VICON is a motion 
capture system that uses multiple motion-tracking 
cameras to recognize the position of an object. We 
used it to estimate the position of the robot.

User request module (TMS_UR)

Microphone device A USB microphone is attached to 
Intel’s NUC to receive voice requests from users.

User

TMS_UR: User Request

TMS_TS: Task Scheduler

TMS_SD: 
Sensor Driver

Sensor Robot

TMS_RC: 
Robot Controller

T
M

S
_
D

B
: D

atab
ase

TMS_SS
Sensor System

TMS_SA
State Analyzer

TMS_RP
Robot Planning

Fig. 3  ROS2-TMS architecture
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Speaker device A USB speaker is attached to the 
Raspberry Pi 3 to play a conversation with the user 
using the Google Assistant API, as well as announce-
ments and sound effects when the task starts using 
TMS_TS.

Task execution flow
To run the ROS2-TMS service, the modules shown in the 
previous sections need to control corresponding devices 
and tasks coordinately. In TMS_RC, the robots and the 
robotic bed are controlled. In TMS_RP, the robots are 
connected to TMS_TS through Navigation2, and the 
robotic bed is connected directly to TMS_TS. The micro-
phones and the speakers are managed in TMS_UR. 

TMS_TS, TMS_DB, and the task search node in TMS_
UR were executed on a dedicated ROS2-TMS server in 
our experiments.

An overview of task execution from a user’s voice com-
mand to the robot and lighting control is presented in 
Fig. 5. The following bullet points correspond to the fol-
lowing figure: 

1.	 The user requests a command from the microphone.
2.	 The microphone control node transcribes the voice 

and sends a string to the task search node.
3.	 The task search node searches for related task IDs 

and objects in the database.
4.	 The task search node passes the task IDs and objects 

to TMS_TS.

Motion capture

Heart rate sensor

Sensor System
Collect sensor infomation

Robot Controller
Robot Intelligent appliances

Robotic bed

User Request
Interface with users

Mic

Speaker
Communication

Robot

Fig. 4  Sensors and robots in TMS_SS, TMS_RC, TMS_UR modules

TMS_DB: Database

TMS_UR TMS_TS

U
ser

TMS_RC
Mic Find a task

Robot

Bed

Lighting

Manage tasks Thread

Thread

Subtask

Subtask

TMS_RP
(Navigation2)

Subtask

1. 2.

3.

4.

5.

6.

7.

8.

8.

9.

9.

9.

Microphone 
control node

Task search node Task management 
node

Task control node

Task control node

Subtask node

Fig. 5  Flowchart of processes from user request to task execution in ROS2-TMS
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5.	 The task management node integrates task and 
object information.

6.	 The task management node creates a task control 
node to execute the task.

7.	 If necessary, more task control nodes are generated 
and coordinated by an additional number of tokens 
for parallel execution.

8.	 Each task control node eventually requests one sub-
task node.

9.	 Each subtask node executes its process.

The subsequent sections on “Voice interfaces (TMS_
UR),” “Task scheduler (TMS_TS),” and “Database (TMS_
DB)” describe the function of the individual modules in 
detail.

Voice interfaces (TMS_UR)
Currently, smart speakers are being released by various 
companies, and home automation, in which home appli-
ances are controlled by smart speakers, is also gaining 
popularity. In ROS2-TMS, we implemented a voice inter-
face using the Google Assistant API [17], a voice assistant 

service that is also installed in Google’s smart speakers, 
to transcribe text and provide simple responses.

Note that the Google Assistant API is only used for 
speech recognition and transcription, weather forecast-
ing, and other general-purpose responses, and not for 
operating devices such as robotic beds. All device opera-
tions on ROS2-TMS were performed via ROS2.

The ROS-TMS also had a voice interface. However, a 
microphone control node implemented the task search 
and execution functions, which had to be developed 
when a task was added (Fig. 6a). In ROS2-TMS, the task 
search and execution functions are outsourced to the 
other nodes. In particular, the task scheduler can manage 
the execution of all tasks. As a result, the development of 
a microphone module is no longer necessary when tasks 
are added or changed. In addition, tasks that combine 
multiple devices can be realized using only the task infor-
mation in the database (Fig. 6b).

First, the wake word “ROS-TMS” is detected by 
Julius  [18]. Once the wake word is detected, Google 
Assistant transcribes the request. The transcribed text is 
separated into words by Janome  [19] and then matched 
to tags in the database for task execution by ROS2-TMS. 

Fig. 6  Task execution flow of User Interface (TMS_UR) and Task Scheduler (TMS_TS)
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If an appropriate task is found, TMS_TS schedules the 
execution of the task. If a proper task cannot be found, 
the speaker outputs the response using Google Assistant.

“Cancel” is also a wake word recognized by Julius. 
When Julius recognizes “cancel,” TMS_TS is requested to 
terminate the current task immediately.

Database (TMS_DB)
The database stores tasks and environmental informa-
tion, such as a map of the environment, task information, 
and robot, human, and object positions.

The task information included an ID of the task, a 
sequence of subtasks that complied with the task, tags 
used for voice search, and the text that was announced 
when the task was started.

In addition to these tasks, other objects can be added 
to the database. The following four pieces of information 
are required to work with the voice interface:

ID: A unique ID in the database.
Name: A name that represents this object.
Type: The name of the type that the object repre-
sents, such as “room_place.” The same type must 
have the same properties.
Tags for searching: Store several related words for 
searching the object. In addition to this, there shold 
be properties for each type.

The information in the database can be referenced 
from other information. For example, the robot move-
ment task (ID: 9001) refers to the patrol points speci-
fied by the user and stored in the database; thus, the 
robot moves autonomously along these points (Fig. 7). 
It is described in detail in the “Integrate tasks and data-
bases” subsection under the “Task Scheduler (TMS_
TS)” section.

Task Information Object (location) information
“Robot movement task” “Nearly bed”

“ROS-TMS, Double, 

go to the bed.”
Search in the 

database

(a) Searching for tasks and objects in the database

9001${“position”: (room_place.position), 

“orientation”: (room_place.orientation)}

Subtask composition of “Move” task

type: “room_place”

position: [8.65, 1.62, 0.0]

orientation: [0.0, 0.0, 0.28, 0.96]

“Nearly bed” data

9001${“position”: [8.65, 1.62, 0.0], 

“orientation”:[0.0, 0.0, 0.28, 0.96]}

Composition of subtasks to be executed

(b) Linking movement tasks with location information
Fig. 7  Task definition in database
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Task scheduler (TMS_TS)
The task scheduler module (TMS_TS) receives the task 
requested from the user request (TMS_UR), analyzes 
the request, and executes the task while interpolating the 
necessary information in cooperation with the database.

In our previous study  [1], we adopted the approach 
named “task information structuring.” In this approach, 
a task is defined as a combination of subtasks, which are 
basic actions shared among different tasks. We imple-
mented moving, grasping, and handling subtasks, all of 
which are fundamental functions for service robots. In 
addition to these subtasks, we implemented new sub-
tasks in ROS2-TMS, which control not only robots but 
also devices such as speakers, beds, and room lighting. In 
addition, all tasks can be canceled using the ROS2 Action 
protocol.

Consequently, ROS2-TMS has the following advan-
tages compared to ROS-TMS.

•	 Controllable devices are increased. Various devices, 
such as speakers, room lighting, and beds, can be 
controlled simultaneously to provide service tasks 
with robots (Fig. 8).

•	 Since all operations are centrally controlled by the 
task manager using the ROS2 Action protocol, any 
task can be terminated or canceled immediately.

Two‑layer service structure: tasks and subtasks
We defined and provided services using a two-layer 
structure in ROS2-TMS, that is, the task and subtask 
layers.

A task is defined by a one-to-one correspondence with 
a service that can be requested in ROS2-TMS. The task 

consists of the following contents. All tasks are stored 
as data structures in the database and thus have no sub-
stance as programs.

•	 Tags for searching by a requested text
•	 Set of subtasks
•	 Text announced when starting a task

If a task needs to refer to environmental information in 
the database, such as the destination of a robot in a mov-
ing task, the type of necessary information is also speci-
fied in the data structure above.

A subtask is implemented as an ROS2 node that can be 
executed by robots or devices. A subtask is composed of 
the following contents.

•	 Unique ID for each subtask
•	 Processing implementation
•	 Implementation of the cancelation process

Because a task is defined as a set of subtasks, a new task 
can be represented as a set of existing subtasks; thus, it is 
not necessary to implement the execution code of robots 
or devices for each task individually.

Method of adding a subtask
It is implemented by inheriting the SubtaskNodeBase 
class, which inherits from the ROS2 Node class and then 
overrides the following items:

Name: Name of the ROS2 node.
The ID of the subtask: Assign a number between 
9000 and 9999.

9

9102: Raise the head side of the bed

300: Announce "Raised the bed "

9300: Announce "Good morning"

9900: Wait 3 seconds

9200: Lighting on

9300: Announce "Turned on the lights "

9001: The robot moves to "Nearly Bed"

9300: Announce "Double has arrived "

Robot subtask

Speaker subtaskLights subtask

Bed subtask

Connect

Subtasks “Good morning” task
Fig. 8  “Good morning” task consisting of subtasks for various devices
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Function at runtime: Define the process at runtime. 
Because arguments assigned by the task scheduler 
are allocated, it is possible to change the behavior 
according to the arguments.
Function when canceled: The action to be taken can 
be defined when cancelation is requested.

Implementation of subtasks
Subtasks are implemented as the minimum processes 
executed by the robots and various devices. All subtasks 
were implemented as nodes in the ROS2. IDs from 9000 
to 9999 were assigned to the subtasks. Currently, 13 sub-
tasks are defined in the database. The detailed behaviors 
when executing the subtasks are shown in Table 1.

Subtask for communication robot (tms_rc_double)
ID 9001 is a subtask for a robot, such as the communica-
tion robot Double 2, to move to a destination. The desti-
nation is defined with a position and an orientation and 
specified when the subtask is called. This movement sub-
task uses the Navigation2 package and a behavior tree to 
move.

•	 Double 2 moves to the destination (9001).

Subtasks for robotic bed (tms_rc_bed)
IDs in the 9100s are subtasks for a robotic bed. For each 
subtask, the execution time in seconds is defined as an 
argument.

•	 Raise (9100) or lower (9101) the head and leg sides of 
the bed.

•	 Raise (9102) or lower (9103) the head side of the bed.
•	 Raise (9104) or lower (9105) the leg side of the bed.
•	 Raise (9106) or lower (9107) the height of the bed.

Other subtasks

•	 Turn on (9200) or off (9201) the lights in the room.
•	 Play a text from the speaker (9300).
•	 Wait for specified seconds (9900).

Connecting subtasks within a task
A task is defined as a set of subtasks and stored with 
string information in the database. The subtask execu-
tion token is represented by “subtask_id” or “subtask_id $ 
json_format_argument,” and the task is specified by con-
necting them with the sequential execution token “+” or 
the parallel execution token “|.” Examples of connecting 
multiple subtasks using this notation are shown in Fig. 9.

More complex tasks can be represented with the 
Backus-Naur Form (BNF) notation as follows:

�task − structure� ::= �task�

�task� ::= �task� �task� �operator�

| �subtask�

�operator� ::= “+′′ | “|′′

�subtask� ::= “subtask − id′′

| “subtask − id$json− arguments′′

Table 1  Definition of the implemented subtasks

Name IDs Arguments Behavior Behavior on cancelation

Robot movement subtask 9001 Goal position (x, y, z)
Goal angle (w, x, y, z)

Requests the Navigation2 package to autonomously move the 
robot to the target location using ROS2 action communication. If 
the request fails, it informs the upper-level task control node that 
it has failed.

Cancels the currently 
executed request to Navi-
gation2 by ROS2 action.

Subtasks for robotic bed 9100
9101
9102
9103
9104
9105
9106
9107

Execution seconds Requests the bed control node (websocket operation) in TMS_RC 
to perform the respective operation via a websocket, such as rais-
ing the bed. If another task has already made the bed request, this 
subtask informs the upper task control node of the failure.

Sends a stop command 
to the bed control node 
via a websocket.

Subtasks for the lights 9200
9201

None An HTTP request is sent to the lighting management server 
located in the big sensor box to turn the lights on and off. Failure 
is reported to the upper task control node if no response is 
received from the server within the 5-second timeout period.

None

A subtask for the speaker 9300 Text to be spoken Request the speaker control node in TMS_UR to speak using the 
ROS2 service.

None

A subtask for the speaker 9900 Execution seconds Wait for the specified time. None
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�task − structure� represents the connection between the 
subtasks. “subtask − id′′ is the ID of the subtask to be 
executed, and “subtask − id$json− arguments′′ is the ID 
and some arguments. For example, the string command 
for raising the height of the bed for 17 s is represented as

This command implies that the subtask to raise the height 
of the bed (ID: 9106) is executed for 17 s.

Integrate tasks and databases
The task description in the database can be linked with 
other objects.

The syntax above can be replaced by writing it in the 
subtask structure or the startup readout property. 
�object − type� is the type of information in the database, 

9106${′′sec′′ : 17.0}

(�object − type�.�property− name�)

and �property− name� is the property’s name of the data-
base object.

The integration of object information and the task 
is performed by the task search node in TMS_UR and 
the task management node in TMS_TS. For example, 
details of the operation from 3 to 5 shown in the “Task 
execution flow” section are as follows: 

1.	 The task search node in TMS_UR checks the string 
against the task tag in the database and obtains the 
task ID and object.

2.	 The task search node sends the task ID and objects to 
the task management node in TMS_TS.

3.	 The task management node retrieves the task from 
the task ID. After that, it replaces the above syntaxes 
of the startup readout text and subtask structure with 
the information of the object.

4	 A task control node is generated, and the task is exe-
cuted.

Fig. 9  Task notations
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Here is an example of a robot moving task. When a user 
says “ROS-TMS, Double, go to the bed,” a task search 
node in TMS_UR retrieves the “Robot movement task” 
and the “Nearly bed” location information from the tags 
in the database (Fig. 7a). Subsequentry, the task manage-
ment node in TMS_TS replaces the information in the 
“Robot movement task” with the contents of the “Nearly 
bed” (Fig. 7b). It then executes the task.

Method of adding a task
Adding a task is performed by storing the following infor-
mation in the database.

ID: Set a unique number that does not overlap with 
any other object in the database.
Name: Give a name to the task content.
Type: Set the string “task” to distinguish it from 
other objects in the database.
Subtask composition: Set the composition of the 
subtasks using the syntax described in the “Con-
necting subtasks within a task” subsection.
Required tags and tags: If a word in a required tag 
is included in a sentence, this task is searched. If a 
word in the tag is included in a sentence, the priority 
of this task is increased in the searched tasks.
Announcement text: An announcement at startup 
and when object integration fails (optional). Set the 
text to be spoken by the speaker at startup. The text 
can also be set when the integration with the data-
base fails; for example, when the target point of the 
robot’s movement task does not exist in the database.

Implementation of tasks
Currently, there are 13 types of tasks. Tasks exist in a 
database, and their behavior can be based on a single 
subtask or a combination of subtasks.

A task related to the communication robot (1 type)

•	 Double 2 moves to the destination.

	 Currently, there are 3 target locations in the database: 
near the entrance, near the kitchen, and the bed, and 
Double2 can move to them.

Tasks related to the robotic bed (8 types)

•	 Raise or lower the head and leg sides of the bed for a 
certain period.

•	 Raise or lower the head side of the bed for a certain 
period.

•	 Raise or lower the leg side of the bed for a certain 
period.

•	 Raise or lower the height of the bed for a certain 
period.

Tasks related to the lights (2 types)

•	 Turn on or off the lights in the room.

Tasks that combine multiple devices (2 types)

•	 “Good morning” task
•	 “Good night” task

Task execution
TMS_TS dynamically allocates a thread to execute the 
requested task when the execution of a task is requested 
by TMS_UR (Fig.  10a). The number of threads is set to 
n+ 1 , where n is the number of tokens “| ” that represent 
the parallel execution.

A control node is an ROS2 node that corresponds to 
each thread. Several control nodes are created when tasks 
start, and these nodes are connected to each other by 
the ROS2 action protocol in the tree structure. The task 
scheduler represents the root, the control nodes repre-
sent the branches, and the subtask execution nodes rep-
resent the leaves. Action communication in ROS2  [14] 
handles accept or reject requests, and if accepted, the 
status of the action is returned when the action is con-
cluded, such as succeeded, failed, or canceled. In addi-
tion, a cancelation request can be accepted while the 
action is being executed.

Cancel function
In ROS-TMS, a user cannot stop a task in progress. To 
implement this cancelation function, an update to the 
action function in ROS2 is required. ROS action commu-
nication consists of two types of entities: clients and serv-
ers. However, the server could not recognize which client 
requested it. In ROS2, when a client requests the server, 
the client generates a UUID [14]. This UUID is used as an 
identifier of the request between the server and the cli-
ent to manage each request individually. This new feature 
was used to map tasks to subtasks in the task scheduler.

In ROS2-TMS, even when a task is running, the task 
can be stopped immediately by receiving a “cancel” voice 
request issued by the user or other cancelation com-
mands. The cancel operation is realized by sending a 
cancel command to the subtasks currently running. It is 
an emergency stop function, and there is currently no 
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function to resume a task that has been stopped in the 
middle.

Even if the execution time is specified when start-
ing subtasks, the execution is stopped immediately, and 

further serial operations of subtasks are terminated 
(Fig. 10b, c).

Error termination
If the subtask is not completed or canceled, its subtask 
node informs the task search node in the TMS_UR of 
the failure through the requested task control node or 
its upper-level task management node. When the task 
search node is informed of the failure, it sends a mes-
sage to the speaker that the task has failed or has been 
canceled.

Tasks that combine subtasks
The task scheduler in ROS2-TMS can manage not only 
robots but also IoT devices such as beds, lights, and 
microphones, and ROS2-TMS can provide various ser-
vices by combining robots and intelligent home appli-
ances. Examples of services that are newly added to the 
ROS2-TMS, such as the “Good morning” and “Good 
night” tasks, are shown in Fig.  11. Both tasks combine 
the subtasks for the communication robot Double 2, 
a robotic bed, lighting, and speaker. For example, the 
“Good morning” task is defined as shown in Fig. 12.

As shown above, these tasks consist of sequential and 
parallel executions of several subtasks and are highly 
complicated. We confirmed that the cancel function is 
appropriately executed even for these complex tasks.

Service experiments using ROS2‑TMS and big 
sensor box
We conducted an experiment to verify the operation of 
services with a voice interface using ROS2-TMS in Big 
Sensor Box (Fig. 2).

The big sensor box is a hardware platform for an infor-
mationally structured environment. As described in [1], 
it is located on the second floor of the COI building at 
the Ito campus of Kyushu University and is a habitable 
space with a living room, bedroom, and kitchen. In the 
room, there is a service robot, such as Double 2 and Dou-
ble 3, and a motion capture system that can acquire the 
robot’s position, a robotic bed, and a server that manages 
the room lighting. In this study, we interconnected them 
using ROS2 communication and experimented with pro-
viding services using ROS2-TMS.

We confirmed that ROS2-TMS can launch proper tasks 
according to a user’s voice request through the micro-
phone device and perform tasks such as user interaction 
(daily conversation), bed operations, lighting control, and 
robot motion by combining the proper information in 
the database.

The following subsections show how each task was per-
formed. Detailed timecharts of each task are shown in 
Figs. 13 and 14.

|

|

9102 9300

+

+

9900 9200

9300

+

9001 9300

+

9300

+ : sequential execution

| : parallel execution

Run in thread-1

Run in thread-2

Run in thread-3

(a) Threading

|

|

9102 9300

+

+

9900 9200

9300

+

9001 9300

+

9300

Run in thread-1

Run in thread-2

Run in thread-3

In operation

In operation

Successful
termination

+ : sequential execution

| : parallel execution

(b) In operation

|

|

9102 9300

+

+

9900 9200

9300

+

9001 9300

+

9300

Run in thread-1

Run in thread-2

Run in thread-3

Canceled

Successful
termination

+ : sequential execution

| : parallel execution

(c) Canceling
Fig. 10  Thread allocation for “Good morning” task
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Daily conversation
When a user asks ROS2-TMS questions such as “ROS-
TMS, What’s the weather today?” or “ROS-TMS, How 

high is Mount Fuji?,” proper responses were provided 
by Google Assistant (Fig. 15).

Lighting control
When a user requests tasks related to the lighting such as 
“ROS-TMS, turn on the lights” or “ROS-TMS, turn off the 
lights,” ROS2-TMS chooses and executes the proper tasks 
by sending commands to the lighting management server 
in Big Sensor Box (Fig. 16).

Robotic bed control
When a user requests tasks related to a robotic bed, such 
as “ROS-TMS, raise the height of the bed,” ROS2-TMS exe-
cutes the proper tasks to control the robotic bed (Fig. 17a).

Robot control
When the user requests “ROS-TMS, Double, go to the 
kitchen,” TMS_TS in ROS2-TMS generates a motion plan 
for the communication robot Double 2 to move to the 
kitchen. The coordinates of the kitchen are stored in the 
database and interpolated to generate motion commands 
in TMS_TS. In addition, if the user requests “ROS-TMS, 
Double, go to the bed,” Double 2 moves to the vicinity of 
the bed by linking with the bed coordinates stored in the 
database. (Fig. 18a, b).

Execution of complex tasks
We implemented the “Good morning” and “Good night” 
tasks to confirm the sequential and parallel executions of 
subtasks. Both tasks consisted of several subtasks related 
to robot motion, bed operation, and room lighting control 
connected sequentially or in parallel. To confirm the flex-
ibility of the task representation, we implemented these 
tasks with several different connections of subtasks and 
confirmed that these tasks were executed appropriately 
even with complex task structures.

“Good morning” task
The “Good morning” task performs the following three 
subtasks in parallel.

•	 Raise the upper body of the bed and announce “Raised 
the bed” from the speaker.

•	 Wait for 3 s, turn on the lights, and announce “Turned 
on the lights.”

9102: Raise the head side of the bed

9300: Announce "Raised the bed"

9300: Announce "Good morning"

9900: Wait 3 seconds

9200: Lighting on

9300: Announce "Turned on the lights"

9001: The robot moves to "Nearly Bed"

9300: Announce "Double has arrived"

(a) “Good morning” task

9300: Announce "Lay down the bed" 9103: Lower the head side of the bed

9300: "Turn off the lights" 9201: Lighting off

9001: The robot moves to "Kitchen"

9300: Announce "Double has returned to the kitchen"

9300: Announce "Good night"

(b) “Good night” task
Fig. 11  Example of tasks combining subtasks

9102${“sec”: 20.0} 9300${“announce”: “Raised the bed”} + 9900${“wait sec”: 3.0} 9200 + 9300${“announce”:
“Turned on the lights”} + | 9001${“position”: [8.65, 1.62, 0.0], “orientation”: [0.0, 0.0, 0.280, 0.960]}

9300${“announce”: “Double has arrived”} + | 9300${“announce”: “Good morning”} +

Fig. 12  Task notation of “Good morning” task
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(a)

“Weather forecast” time chart. User 0: Ask the weather to microphone. Speaker 1: Answer the weather.

(b)

“Switching off the light” time chart. User 0: “ROS-TMS, turn off the lights”. Speaker 1: Announcement at
task startup. Light 2: Turned off.

(c)

“Lower the head side of the bed” time chart. User 0: “ROS-TMS, lower the head side of the bed”.
Speaker 1: Announcement at task startup. Bed 2: Lowered the head side.

(d)

“Canceling bed control task” time chart. User 0: “ROS-TMS, lower the head side of the bed”. Speaker 1:
Announcement at task startup. Bed 2: Lowered the head side. User 3: “Cancel”. Speaker 4: Announcement at task
cancelation.

(e)

“Double goes to the kitchen” time chart. User 0: “ROS-TMS, Double, go to the kitchen”. Speaker 1:
Announcement at task startup. Robot 2: Went to the kitchen.

(f)

“Double goes to the bed” time chart. User 0: “ROS-TMS, Double, go to the bed”. Speaker 1: Announcement
at task startup. Robot 2: Went to the near side of the bed.

(g)

“Canceling move task” time chart. User 0: “ROS-TMS, Double, go to the bed”. Speaker 1: Announcement
at task startup. Robot 2: Went to the near side of the bed. User 3: “Cancel”. Speaker 4: Announcement at task
cancelation.

Fig. 13  Time chart of task execution (1 of 2)
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(a)

Execute “Good morning” task time chart. User 0: “ROS-TMS, good morning”. Speaker 1: Announcement
at task startup. Robot 2: Went to the near side of the bed. Speaker Robot 3: Announced “Double has arrived”. Bed 4:
Raise the head side of the bed. Speaker Bed 5: Announced “Raised the bed”. Light 6: Turned on. Speaker Light 7:
Announced “Turned on the lights”. Speaker GoodMorning 8: Announced “Good morning”.

(b)

Canceling “Good morning” task time chart. User 0: “ROS-TMS, good morning”. Speaker 1: Announcement
at task startup. Robot 2: Went to the near side of the bed. Bed 4: Raise the head side of the bed. Light 6:
Turned on. Speaker Light 7: Announced “Turned on the lights”. User Cancel 9: “Cancel”. Speaker Cancel 10: An-
nouncement at task cancelation.

(c)

Execute “Good night” task time chart. User 0: “ROS-TMS, good night”. Speaker 1: Announcement at task
startup. Robot 2: Went to the near side of the kitchen. Speaker Robot 3: Announced “Double has returned to the
kitchen”. Speaker Bed 4: Announced “Lay down the bed”. Bed 5: Lowered the head side of the bed. Speaker Light 6:
Announced “Turn off the lights”. Light 7: Turned off. Speaker GoodNight 8: Announced “Good night”.

(d)

Canceling “Good night” task time chart. User 0: “ROS-TMS, good night”. Speaker 1: Announcement at
task startup. Robot 2: Went to the near side of the kitchen. Speaker Bed 4: Announced “Lay down the bed”. Bed 5:
Lowered the head side of the bed. User Cancel 9: “Cancel”. Speaker Cancel 10: Announcement at task cancelation.

Fig. 14  Time chart of task execution (2 of 2)



Page 16 of 19Itsuka et al. ROBOMECH Journal             (2022) 9:1 

•	 Move the communication robot Double 2 close to 
the bed and announce “Double has arrived.”

After completing all the subtasks, “Good morning” is 
announced from the speaker (Fig. 19a).

“Good night” task
The “Good night” task executes two subtasks in parallel. 
In addition, there is a further parallel operation within 
the first operation. The following two operations are exe-
cuted in parallel.

•	 A task lays the head side of the bed down and 
announces “Lay down the bed” from the speaker and 
then turns off the lights in the room and announces 
“Turn off the lights.”

•	 After Double 2 returns to the kitchen, the speaker 
announces, “Double has returned to the kitchen.”

After completing all the subtasks, “Good night” is 
announced from the speaker (Fig. 20a).

Cancel tasks
If the word “cancel” is included in the user’s command, 
TMS_TS sends a cancel command to the control nodes 
in all subtasks executing currently. When the control 
node in the subtask receives the cancel command, the 
control node sends the cancel command to the subtasks 
and the control nodes of the child subtasks executing 

ROS-TMS, What’s the weather today?

User

Today in Fukuoka, it’ll be sunny,

with a forecast high of 13 and a low of 2.

System

21

Fig. 15  Weather forecast

ROS-TMS, turn off the lights.

User

2

Turn off the lights.

System

1

Fig. 16  Switching off the light

21

ROS-TMS, lower the head side 

of the bed.

User

Lower the head side of the bed.

System

(a) Lower the head side of the bed

Stop lowering the bed.

21 3

ROS-TMS, lower the 

head side of the bed.

User

Lower the head 

side of the bed.

System

Cancel.

User

Canceled the 

task.

System

(b) Canceling bed control task
Fig. 17  Bed control task

SystemUser

SystemUser

User System User System

21

Double goes to the kitchen.

3

ROS-TMS, Double, go to the kitchen.

(a) Double goes to the kitchen

21

Double goes to the bed.

3

ROS-TMS, Double, go to the bed.

(b) Double goes to the bed

Stop moving midway.

21 3
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bed.
Cancel.

Canceled the 

task.

(c) Canceling move task
Fig. 18  Move task for communication robot
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in parallel. When all the control nodes in the sub-
tasks receive the cancel command, the task is stopped 
(Figs. 17b, c, 19b, and 20b).

Conclusions
In this study, we presented a new software platform for 
an ISE, named ROS2-TMS, and demonstrated a few 
robot services using ROS2-TMS. ROS2-TMS is publicly 
available and can be downloaded from [20]. The differ-
ences between ROS2-TMS and the previous ROS-TMS 
system are summarized as follows.

•	 The middleware was changed from ROS to ROS2, 
and various modules were ported and newly devel-
oped.

	 Currently, ROS2-TMS does not actively use secu-
rity and QoS settings. However, as we continue our 
research, QoS will used to configure sensor streams, 
such as cameras, which have a large amount of data. 
For the robot movement subtask, we used Naviga-
tion2 and the behavior tree. The application of ROS2-
TMS with this behavior tree is more flexible than 
ROS-TMS for moving in complex environments.
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Fig. 19  “Good morning” task
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Fig. 20  “Good night” task
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•	 The interaction with a user was realized using the 
Google Assistant API.

•	 The task scheduler was extended to manage not only 
robots but also various IoT devices such as intelligent 
beds, lighting, and speakers. This makes it possible to 
provide various services that combine robots and IoT 
devices.

•	 To improve safety, we added a new function that 
allows the user to stop running tasks by issuing a 
cancelation request to the ROS nodes using the 
ROS2 Action protocol.

Future works includes the following improvements.

Low‑cost localization system
In this study, an optical motion capture system was used 
to estimate the position of the robot. Although this sys-
tem can identify the robot position with high accuracy, 
it is considerably expensive. Currently, we are testing 
less expensive range-based localization systems such as 
Wi-Fi, RFID, UWB, and visible light  [21], and we believe 
that low-cost autonomous mobile services can be pro-
vided by applying these technologies.

Services by health status
In this study, we developed a module for a wearable heart 
rate sensor. We will develop a service robot that recog-
nizes not only the human’s location but also the health 
condition using environmental sensors as a state analyzer 
module (TMS_SA, in Fig. 3) and provides proper services 
according to the health status of the individual.

Dynamic planning of tasks, such as autonomous robot 
movement
The autonomous movement of robots in large areas, 
including doors or elevators, requires coordination with 
surrounding actuators  [12, 22]. Therefore, even for the 
same autonomous movement, the composition of the 
subtasks differ significantly between movement in a 
room and movement in a large area across rooms. For 
such environment-dependent tasks, we will extend the 
task scheduler so that the necessary functions can be 
dynamically linked.

In addition, when several tasks are executed simultane-
ously, it is necessary to monitor and appropriately control 
the progress of all the tasks currently running. Thus, we 
will design an efficient interface to present detailed and 
comprehensive information, including the task status, 
location of humans and robots, and human conditions.
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