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Abstract 

In this paper, a novel terrain traversability prediction method is proposed for new operation environments. When an 
off-road vehicle is operated on rough terrains or slopes made up of unconsolidated materials, it is crucial to accurately 
predict terrain traversability to ensure efficient operations and avoid critical mobility risks. However, the prediction 
of traversability in new environments is challenging, especially for possibly risky terrains, because the traverse data 
available for such terrains is either limited or non-existent. To address this limitation, this study proposes an adaptive 
terrain traversability prediction method based on multi-source transfer Gaussian process regression. The proposed 
method utilizes the limited data available on low-risk terrains of the target environment to enhance the prediction 
accuracy on untraversed, possibly higher-risk terrains by leveraging past traverse experiences on multiple types of 
terrain surface. The effectiveness of the proposed method is demonstrated in scenarios where vehicle slippage and 
power consumption are predicted using a dataset of various terrain surfaces and geometries. In addition to predict-
ing terrain traversability as continuous values, the utility of the proposed method is demonstrated in binary risk level 
classification of yet to be traversed steep terrains from limited data on safer terrains.
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Introduction
The demand for mobile robots and/or autonomous 
ground vehicles in off-road operations has steadily 
increased. Examples of such applications are found in 
the construction, forestry, mining, disaster response, and 
planetary exploration industries. To safely and efficiently 
operate these vehicles, it is necessary to predict and assess 
the traversability of the target terrains. Depending on the 
operation, terrain traversability is conventionally meas-
ured by the existence of geometric obstacles, vehicle pos-
ture alterations, vibrations, required energy, and slippage.

Predicting terrain traversability is particularly impor-
tant when a vehicle is expected to traverse potentially 
high-risk terrains, such as slopes made up of loose mate-
rials. One of the dangers of traversing such terrains is the 
slippage of vehicles. Slippage inhibits the smooth traverse 

of a vehicle, which increases the time and energy required 
for the operation. Furthermore, if the slip becomes sig-
nificant, the vehicle cannot make successful forward pro-
gress, thereby requiring its operators to replan the route 
or even the entire mission. Therefore, to ensure success-
ful operations, it is important to detect risky terrains so 
that effective routes can be properly selected.

However, the accurate prediction of vehicle motion on 
natural terrains is difficult owing to complicated vehi-
cle-terrain interactions. Vehicle behaviors are generally 
influenced by several factors including terrain geom-
etry (slope and roughness), surface type (sand, cohesive 
soil, rocks, bedrock, or mixtures of these), and surface-
accumulated conditions (compacted or not, depth, and 
moisture content) as well as the vehicle size, weight, and 
locomotion configurations [1].

Numerous studies have investigated ways to improve 
the prediction of traversability on natural terrains [2, 3]. 
Although many of the developed methods are relatively 
promising, sufficient traverse data on target environments 
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are still required for the accurate prediction of travers-
ability. For example, if a vehicle’s target is an ascending 
slope, traverse data related to that possibly hazardous ter-
rain is primarily required for making an accurate predic-
tion. However, during operations, vehicles usually avoid 
risky terrains for safety reasons. Therefore, traverse data 
on such terrains might be limited or even non-existent. 
Model parameters solely trained on benign terrains can 
overfit the limited data, resulting in either overestimat-
ing the traversability or underestimating the risks on more 
difficult terrains. This makes the traversability prediction 
of risky environments highly challenging.

This study addresses the above problem, which is inher-
ent to the prediction of terrain traversability. Specifically, 
this study aims to improve the prediction accuracy of tra-
versability on challenging terrains in new operation envi-
ronments on the basis of (1) traverse data on relatively 
safe areas and (2) past experiences (Fig. 1). Accordingly, 
this study proposes an adaptive terrain traversability pre-
diction method based on multi-source transfer Gauss-
ian process regression (MS-TGPR) [4]. The proposed 
method leverages traverse experiences obtained from 
multiple terrain surfaces and improves the prediction 
accuracy on possibly risky terrains in the target mission 
environment, where in-situ traverse data are only avail-
able from benign terrains beforehand.

The contributions of this study are as follows. 

1.	 The development of a method for predicting terrain 
traversability on untraversed, possibly risky terrains 
based on multi-source transfer learning.

2.	 The application of the proposed method to vehicle 
slip prediction, which is a significantly difficult tra-

versability prediction challenge when training data is 
severely limited, owing to complicated terrain–vehi-
cle interactions.

3.	 The evaluation of the effectiveness of the proposed 
method using a dataset collected with a mobile robot 
on multiple terrain geometries and surface types.

The basic concept of the proposed method was previ-
ously proposed and partially validated by using synthetic 
and real datasets in earlier works [5, 6]. The work in this 
paper newly demonstrates the utility of the proposed 
method in 1) slip risk level classification and 2) power 
consumption prediction on slopes from limited in-situ 
data. This paper also presents thorough additional evalu-
ations of the traversability prediction performance from 
the viewpoint of the usability of the method in real oper-
ations, with added data on more terrain surface types and 
conditions compared to the previous work [6].

The rest of the paper is organized as follows. The next 
section describes related works of this study. After that, 
the transfer learning-based traversability prediction 
method is proposed. Then, the experiments for collect-
ing the traverse data of a mobile robot on multiple types 
of terrain are described. Following that, the proposed 
method is evaluated using the collected dataset and dis-
cusses its usability and extendibility. Finally the last sec-
tion summarizes this study and concludes this paper with 
future work.

Related works
The prediction of terrain traversability for safe autono-
mous vehicle navigation has been studied for the last sev-
eral decades [2, 3]. Most of the developed methods are 
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Fig. 1  Concept of proposed traversability prediction based on multi-source transfer regression. By leveraging past experiences on multiple 
terrain surfaces, the proposed method improves the prediction accuracy on possibly risky terrains only from traverse data on safer terrains in new 
environments [6]
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sufficiently robust for indoor or partial outdoor situations 
thanks to their detection and avoidance of dangerous 
geometric obstacles. However, conventional approaches 
are not applicable when a vehicle is required to traverse 
more difficult terrains characterized by unconsolidated 
materials, where vehicle behaviors are not easy to predict 
from pure-terrain geometry or visual information.

Learning or model updating using in-situ traverse data 
is a straightforward way to improve the prediction accu-
racy of the terrain traversability. The work presented in [7] 
proposed a learning method that repeatedly improves the 
prediction accuracy of terrain traversability or the vehicle 
responses during traversals of the same operation area 
multiple times. In [8], models of control disturbances are 
learned and iteratively improved from repeated drives on 
the same terrain. The learned models are then used for 
better path tracking on the same off-road terrain. These 
methods are effective for vehicles deployed over a long 
duration in confined environments. However, if the vehi-
cles are not supposed to traverse the same locations mul-
tiple times, this type of approach is not applicable.

Self-supervised learning approaches have been applied 
for terrain classification and traversability prediction 
[9–11], where proprioceptive sensing information is 
correlated to visual terrain information and utilized to 
supervise a vision-based terrain classifier, and vice versa. 
These approaches classify terrains and predict the tra-
versability of distant fields by comparing underfoot ter-
rain responses (such as slip, vibration, or force/torque) to 
visual cues at the learning phase. Because these methods 
only require a small amount of labeled data to train the 
terrain classifiers, they are relatively promising for clas-
sifying terrains from data on safe regions. However, they 
are limited when large variabilities in vehicle behaviors 
exist among intra-classes (sub-classes). For example, the 
behaviors of a vehicle can be significantly different even 
on similar-looking sandy surfaces depending on the accu-
mulation conditions. In addition, even if the terrain clas-
sification is successful, it is still challenging to predict the 
traversability on higher-risk terrains of the corresponding 
class where training data are not available. The predic-
tion model learned on limited available data can possibly 
be overfit on a low-risk terrain, thereby resulting in an 
underestimation of the risk of untraversed terrains.

Several approaches have been proposed to address the 
challenge of intra-class variability. In [12], the prediction 
accuracy of terrain traversability is improved by globally 
and locally modeling traversability. The local variations 
of vehicle motions are captured by learning travers-
ability as a function of positions in addition to the global 
model constructed on the basis of terrain appearance and 
geometry. In [13], a first-in-first-out data structure was 
utilized to update traversability models. In this method, 

older data are removed from the training data whenever 
new local traverse data are observed, thereby improving 
the adaptation of the model to new operation environ-
ments. To address the intra-class variability challenge, 
[14] adopted a thermal sensor to examine the correla-
tions between soil properties and the thermal inertia of 
terrains and showed that a mixture-of-experts approach 
utilizing surface thermal information can differentiate 
high-slip sand surfaces from low-slip sandy terrains and 
improve the slip prediction accuracy on sand-type sur-
faces. However, none of the above-mentioned studies 
explicitly address the challenge of the data limitation in 
traversability model learning in new environments.

One possible method for improving the prediction 
accuracy on high-risk terrains might be to aggressively 
explore such terrains and acquire the traverse data nec-
essary for learning a better model [15]. However, this 
action can trigger critical conditions in the vehicle, 
and therefore should be avoided if the risk is uncertain. 
Another work [16] proposed a method to learn terrain 
traversability from physical simulations. As the authors 
also mentioned as a limitation, since the traversability is 
learned solely from terrain geometry for solid surfaces, 
this method is not applicable to deformable, slip-induc-
ing terrains that are hard to realistically simulate without 
rigorous parameter tuning from real data. Another pos-
sible approach is simply to assume that terrains for which 
no data is available are untraversable.

In contrast to the above approaches, this study attempts 
to accurately predict the traversability of untraversed ter-
rains by avoiding an overly conservative prediction for 
scenarios where the vehicle is required to traverse such ter-
rains. The proposed method leverages data obtained from 
relatively safe terrains in the target environment and from 
past experiences of traversing multiple types of terrain sur-
face, and it improves the prediction accuracy for challenging 
terrains without actually having to traverse such terrains. 
The proposed method is fundamentally a general traversa-
bility learning and prediction method, and as such, it can be 
integrated with the earlier developed self-supervised terrain 
classification approaches to develop an end-to-end learning 
framework for operations in new environments.

Proposed method
This study assumes that vehicle behaviors on any terrain 
can be represented by combinations of behaviors on the 
base terrains that constitute the target terrain. On the 
basis of this hypothesis, this study develops a traversabil-
ity prediction method for new operation environments.

The proposed method is developed in accordance with 
two machine learning paradigms: transfer learning and 
ensemble learning. Transfer learning [17] is a method 
that applies data or learned models in one or more 
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applications/tasks (source domains) to the model for 
another application/task (target domain). By transferring 
the model information from the source domain appropri-
ately, transfer learning can improve the performance in 
the target domain, which has only limited training data. 
In contrast, ensemble learning [18] is a method that com-
bines multiple models learned from the same training 
dataset but with different data subsets. This enables the 
generalization performance of the learned model to be 
improved; hence, its prediction performance is suitable 
for unseen data.

Problem definition
In this study, the traversability prediction is formalized as 
a regression problem in which the relationship between 
various input features x and an output traversability 
index of continuous values f (x) , along with its predictive 
uncertainty, is learned from training data in a supervised 
learning fashion. As described earlier, the traversability 
index can include, for example, vehicle posture alterna-
tions, vibration, required energy, or slippage. The input 
features x represent terrain geometries (terrain pitch, 
roll, and/or surface roughness). In general, x can also 
include other features, such as vehicle locations [7, 12], 
visual features of the terrain [19], or control inputs to the 
vehicle [8]. This study aims at predicting the probabilis-
tic distribution of the traversability (i.e., p(f (x) ) rather 
than performing deterministic predictions, as the vehicle 
motions can be significantly varied in difficult off-road 
environments even when the same vehicle traverses the 
same terrain and location multiple times. Operating a 
vehicle based on deterministic traversability prediction 
can lead to unexpected hazardous situations in such 
environments.

This study makes two key assumptions. First, the 
vehicle is able to estimate the terrain geometry x ahead 
of it by using on-board exteroceptive sensors (such 
as a stereo camera or range sensor) before traversing 
the terrain. In addition, the vehicle can estimate the 
traversability measurement y that corresponds to the 
predictive target traversability f (x) from the vehicle 
response during its traverse on the terrain correspond-
ing to the input x by using on-board sensory informa-
tion. The measurement is assumed to have a random 
noise ε that follows a zero-mean Gaussian distribu-
tion with variance σ 2 , i.e., ε ∼ N (0, σ 2) . Then, y can be 
expressed as

Second, there exist a variety of terrain surface 
classes, or domains. Among these domains, the vehi-
cle has collected a set of traverse data, which cov-
ers a range of terrain geometries from safe to 

(1)y = f (x)+ ε.

risky terrains, in N surface types (source domains) 
S = {Si : 1 ≤ i ≤ N } beforehand. The data of nSi obser-
vations in each source domain Si are denoted as 
D(Si) = {X(Si), y(Si)} = {(x

(Si)
j , y

(Si)
j )|j = 1, · · · , nSi} . In 

contrast, in a specific surface type (target domain) T, only 
traverse data of nT observations in relatively safe, benign 
terrains have been obtained by the vehicle. Similarly to 
the source domains, the target training data are denoted 
as D(T ) = {X(T ), y(T )} = {(x

(T )
j , y

(T )
j )|j = 1, · · · , nT } . 

Each item of source and target domain data has been 
separately labeled and classified in accordance with the 
corresponding domain either by human experts or on the 
basis of an existing classification method (e.g., [9, 10]).

Under these assumptions, the objective of this 
study is to stochastically predict the traversabil-
ity f (T )(x∗) , which corresponds to the input point 
x∗ in the target domain, using the already described 
available data samples, i.e., to predict the distribu-
tion p(f (T )(x∗)|x∗,D(S1), · · ·D(SN ),D(T )) , before actu-
ally traversing that point. Specifically, this study builds 
the predictive target traversability model p(f ∗(x)) as a 
weighted sum of multiple weak traversability models 
{p(f (Si ,T )(x)) : 1 ≤ i ≤ N } learned from the available data 
in the target domain T and those in the source domains 
S, as expressed below:

where wi represents the weight of the model learned from 
the target data and the i-th source domain data, and sat-
isfies 

∑

wi = 1 . Although any algorithm can be adopted 
to learn the base model f (Si ,T )(x) and the weight wi of 
that model, this study applies the MS-TGPR algorithm 
[4], a variant of Gaussian process regression (GPR) [20], 
for multi-source transfer learning.

Gaussian process regression
GPR is a data-driven, nonparametric approach to learn-
ing a regression model that does not require strong 
assumptions in its forms (e.g., linear, polynomial, or 
exponential), with the shape of the model determined on 
the basis of the training data. In addition, GPs can express 
the prediction uncertainties as variances, together with 
the predictive means. Owing to these features, GPR is 
suitable for modeling complicated vehicle behaviors in 
off-road environments. Several studies (e.g., [7, 12, 21]) 
have demonstrated the effectiveness of GPR for model-
ling terrain traversability when sufficient amounts of data 
are available.

The GPR-based traversability method assumes that 
the traversability latent function values f(X) of the input 
data X follow a multivariate Gaussian distribution, which 

(2)

p(f ∗(x)|x,D(S),D(T )) =

N
∑

i=1

wi · p(f
(Si ,T )(x)|x,D(Si),D(T )),
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is determined by the mean µ(X) and covariance matrix 
K(X,X) . In this study, the mean µ(X) is a zero vector assum-
ing that the training traversability data are normalized before 
learning. The (k,  l)-th element of the covariance matrix is 
computed on the basis of a covariance function (kernel func-
tion) as Kk ,l = k(xk , xl) . In this study, the exponential covar-
iance function defined below is adopted in both the GPR and 
the transfer GPR (TGPR) for slip-slope modeling:

where a1 is a constant scalar and A2 is a constant diago-
nal matrix given by A2 = diag(a2) , where a2 is a constant 
vector of the same length as that of the input feature x . 
The constants a1 , a2 and the measurement noise variance 
σ 2 are a set of hyper-parameters to be tuned. For mod-
eling the relationship between the electric power con-
sumption of actuators and the terrain slope, the following 
linear covariance function is adopted:

where a3 and a4 are another set of hyper-parameters 
for the power modeling. Note that the linear covariance 
function was selected for power consumption because 
strong linear relations can be observed between power 
consumption and terrain slope, as reported in [22] 
and also later demonstrated in this paper. While GPR 
is a data-driven approach and does not need a strong 
assumption of its model shape, as mentioned earlier, the 
model shape can also be restricted by specifying a certain 
covariance function if prior knowledge on the shape is 
available.

Given the training data D = {X, y} of n data points, the 
joint distribution of the latent function and measurements, 
y , can be learned by tuning the hyper-parameters of the 
model. In the prediction step, the predictive distribution 
of the traversability at the point x∗ can be computed by 
p(f (x∗)|x∗,D) = N (m(x∗), v(x∗)) , where the predictive 
mean m(x∗) and variance v(x∗) are given by the following 
equations, respectively:

where K(·, ·) denotes the covariance matrix evaluated 
with the pairs of training input points or the prediction 
point x∗ based on Eq.  (3) or Eq.  (4), and In denotes an 
n× n identity matrix.

(3)k(x, x′) = a1 exp
(

−(x − x′)TA2(x − x′)
)

,

(4)k(x, x′) = a3 + a4x
Tx′,

(5)m(x∗) = K(x∗,X)(K(X,X)+ σ 2In)
−1y,

(6)
v(x∗) = k(x∗, x∗)− K(x∗,X)(K(X,X)+ σ 2In)

−1K(X, x∗),

Transfer Gaussian process regression
In TGPR [23], the regression for the target domain is mod-
eled from the rich data in the source domain Si and the 
small data in the target domain T on the basis of the cor-
relation between the two domain. This correlation is cap-
tured in addition to the correlation between data points by 
using the transfer covariance function k∗(x, x′) , as

where �i ∈ [−1, 1] denotes the similarity coefficient 
between the source domain Si and the target domain T, 
with a higher �i value indicating a higher similarity.

On the basis of the transfer covariance function, the 
covariance matrix for a single TGPR is defined as

where KSi and KT represent the covariance matrices 
of the individual domains Si and T, respectively, while 
KSiT = KT

TSi
 is the covariance matrix between the two 

domains. These covariance matrices are computed from 
Eq. (3) or Eq. (4).

Given the source domain data D(Si) = {X(Si), y(Si)} and 
the training data of the target domain D(T ) = {X(T ), y(T )} , 
the joint distribution of the latent function, f (Si ,T )(x) , 
and the measurements, y(Si ,T ) = {y(Si), y(T )} , can be 
learned by tuning the hyperparameters in the covariance 
function and the similarity coefficient �i.

The prediction in the target domain is given by

with the predictive mean and variance respectively rep-
resented by

where K∗(·, ·) denotes the transfer covariance matrix 
computed by Eq. (7), X(Si,T ) = {X(Si),X(T )} , and

with σ 2
Si

 and σ 2
T representing the variances of the meas-

urement noise in domains Si and T, respectively.

(7)

k∗(x, x
′) =







�ik(x, x
′) x ∈ X(Si) & x′ ∈ X(T ) or

x ∈ X(T ) & x′ ∈ X(Si)

k(x, x′) otherwise

,

(8)K̃SiT =

[

KSiSi �iKSiT

�iKTSi KTT

]

,

(9)
p(f (Si ,T )(x∗)|x∗,D

(Si),D(T )) = N (m(Si ,T )(x∗), v
(Si ,T )(x∗)),

(10)
m(Si ,T )(x∗) = K∗(x∗,X

(Si,T ))(K̃SiT +�)−1y(Si ,T ),

(11)
v
(Si ,T )(x∗) = k(x∗, x∗)− K∗(x∗,X

(Si,T ))

(K̃SiT
+�)−1K∗(X

(Si,T )
, x∗),

(12)� =

[

σ 2
si
InSi 0

0 σ 2
t InT

]

,
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Multi‑source transfer Gaussian process stacking
In the proposed terrain traversability prediction method, 
the weak TGPR models from multiple source domains are 
stacked to build the target prediction model in an ensemble 
learning fashion from Eq. (2). The predictive distribution of 
the traversability can be expressed as

This can also be viewed as a mixture of Gaussian pro-
cesses [24, 25], where the weight wi corresponds to the 
gating function for the i-th transfer regression model. 
Figure  2 illustrates the general concept of the model 
learning.

To appropriately combine the multiple TGPR models 
incorporating domain similarities, the weight wi of the 
source domain Si is determined on the basis of the simi-
larity coefficient �i , as in [4]. Specifically, in this study, the 
following softmax function is adopted to assign a higher 
weight to a source domain with a higher, positive source-
target similarity.

(13)

p(f ∗(x)|x,D(S),D(T )) =

N
∑

i=1

wi · p(f
(Si ,T )(x)|x,D(Si),D(T ))

=

N
∑

i=1

wi ·N (m(Si ,T )(x), v(Si ,T )(x)).

In addition, a threshold �th for the similarity coeffi-
cient is introduced in this study. If the domain similar-
ity �i is lower than the threshold, the weight wi of the 
corresponding source domain is set to zero by setting 
�i = −∞ in Eq. (14). This threshold controls the amount 
of low-similarity domains included in the final model. 
The weight function and threshold can together avoid 
the negative transfer [26] from irrelevant source domains 
that would deteriorate the final learned model.

In summary, by learning the similarity coefficient �i , 
as well as by tuning the hyper-parameters in the TGPR 
models, {p(f (Si ,T )(x)) : 1 ≤ i ≤ N } , from the target train-
ing data and the source domain data, the proposed tra-
versability prediction method develops the prediction 
model of the target domain p(f ∗(x)) based on Eq.  (13). 
Here, the set of model (hyper-)parameters, � , to be tuned 
includes the domain similarity, �i , for each source–target 
combination, the variance of the measurement noise in 
the target domain, σ 2

T , that of each source domain, σ 2
Si

 , 
and the hyper-parameters in the covariance function, 
a1i and a2i for slip or a3i and a4i for power consumption, 
for each source domain Si . There are thus (3+ l)N + 1 
(hyper-)parameters to learn for a slip model, where l 

(14)wi =
exp(�i)

∑N
i=1 exp(�i)

Fig. 2  Outline of traversability model learning based on multi-source transfer Gaussian process regression [6]. The domain similarity �i between 
each source Si and target T domain, as well as the single TGPR model between them, are learned from the data present in Si and T. The prediction 
model for the target domain is then built as an ensemble of all TGPR models. The importance of each model is determined from �i
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denotes the length of the input feature vector x , and 
4N + 1 for a power consumption model. In this study, 
these (hyper-)parameters, � , are learned such that the 
following log-likelihood of the joint distribution of the 
target training measurement y(T ) is maximized:

As the derivative of Eq. (15) cannot be analytically solved 
in a closed form, random/grid search and k-fold cross 
validation are adopted in this study. Specifically, the �i of 
each source domain is determined by random search and 
the σT by grid search with 5-fold cross validation. Other 
hyper-parameters, σSi , a1i , a2i , a3i , and a4i for the TGPR 
of the source Si , are adopted from those of a pre-tuned 
GPR model for the corresponding source domain to 
reduce the computation burden and also to increase the 
learning stability. Although this may limit the accuracy 
of the learned model, reasonable results can be obtained, 
as presented later in the Evaluation and Discussion sec-
tion. Alternatively, the Expectation-Maximization (EM) 
algorithm [27] or gradient descent-based methods with a 
mean-squared error loss (as used in [4]) are other pos-
sible approaches for tuning all of the hyper-parameters.

In the prediction phase, the geometry of the terrain 
ahead of the vehicle, x∗ , is input to the learned model to 
obtain the predictive distribution of the traversability, 
p(f ∗(x∗)) , on the target terrain surface.

Risk level classification
In addition to predicting the traversability as a continu-
ous value, the learned regression model can also be used 
to predict a discrete risk level of the target terrain, e.g., 
“high risk” or “low risk”. In some missions, it may be more 
useful to output such discrete labels rather than continu-
ous traversability values.

One straightforward way to achieve this is to categorize 
the regression output from the proposed method into 
one of the risk levels based on pre-defined thresholds. 
For example, the risk of immobility on deformable ter-
rains can be inferred by checking whether the predicted 
slip value y∗ is above a threshold or not, similarly to the 
approaches in [13, 28, 29]. Although some of the exist-
ing works classify the risk level in a deterministic manner 
by assessing mean predictive slip for this risk categoriza-
tion, it would be more appropriate to do so in a stochas-
tic fashion by taking into account uncertainties in the slip 
prediction for the risk leveling. As the proposed regres-
sion method can provide predictive distributions of a tra-
versability index, the method can be easily applied to that 
direction. While a stochastic risk classification approach 
has also been proposed ([13]), where a risk level is 

(15)

ln p(y(T )|X(T ),D(S);�)

= ln
∏nT

j=1

{

∑N
i=1 wi ·N (m(Si ,T )(x

(T )
j ), v(Si ,T )(x

(T )
j )+ σ 2

t )

}

.

categorized by counting the number of data points above 
a threshold, this study adopts a predicted traversability 
distribution for the same assessment.

Specifically, this study considers an estimation of the 
risk label lrisk of the target terrain x∗ on the basis of the 
predicted traversability index, as

where prisk(x∗) denotes the risk probability that is esti-
mated as the probability of the traversability index y(x∗) 
being greater than or equal to a threshold ythreshold , as

The risk probability threshold pthreshold in Eq.  (16) con-
trols the extent to which the amount of uncertainty in 
the prediction y(x∗) to be incorporated in the classifica-
tion with a lower threshold makes the classification more 
conservative.

Data collection experiments
To evaluate the effectiveness of the proposed method, 
a set of experiments was conducted to collect traverse 
data on multiple terrain surfaces and geometries using a 
mobile robot. In this study, vehicle longitudinal slippage 
and electric power consumption of actuators are adopted 
as the terrain traversability to be predicted. The traverse 
data required for estimating these were collected in the 
experiments, along with some other data for future use.

Experimental setting and procedures
Figure  3 shows the test vehicle and field used in the 
experiments.

In the experiments, a small mobile robot developed at 
JAXA/ISAS was used to collect traverse data. The dimen-
sions of the robotic vehicle are 0.85 m × 0.80 m × 0.65 m, 
and its mass is approximately 50 kg. The vehicle has four 
wheels with independent driving and steering actuators, 
including a differential link for making all wheels come 
into contact with the surface on uneven terrains. The 
actuators are controlled by an on-board computer and 
motor drivers, and their rotation angles are measured 
by rotary encoders. The vehicle is also equipped with a 
Stereolabs ZED 2 stereo camera featuring a built-in iner-
tial measurement unit (IMU). The 6-degrees-of-freedom 
vehicle motion (position and orientation) is estimated 
along with the terrain geometry using the stereo visual-
inertial simultaneous localization and mapping (VI-
SLAM) software provided by Stereolabs.

An external PC generates the operation commands and 
sends them to the on-board computer of the vehicle via 

(16)lrisk(x∗) =

{

High if prisk(x∗) ≥ pthreshold
Low otherwise

,

(17)prisk(x∗) = P(y(x∗) ≥ ythreshold),
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Wi-Fi. The stereo camera is wire-connected to another 
PC and the VI-SLAM is run on the machine owing to the 
limited computing capability of the on-board computer 
and the compatibility of the software.

The size of the test field is 1.8 m × 1.8 m, as shown in 
Fig. 3a. The field can be manually tilted by hydraulic jacks 
and a lifting table, which enables the vehicle to be tested 
on a variety of terrain geometries.

Nine surface materials and/or conditions (shown in 
Fig. 4) were set in the test field: rough sand, loose sand, 
compacted sand, small rocks, gravel, gravel with sand, 
sand over bedrock, sand-covered bedrock, and (clean) 
bedrock. The details of each surface type are summa-
rized in Table  1. In addition, several large rocks were 

positioned on the field to improve the accuracy of the 
VI-SLAM.

Before each experiment, the test surface was prepared 
and the vehicle was positioned in front of the field. The 
vehicle was then commanded to drive at a speed of 
approximately 5.5  cm/s in the longitudinal slope direc-
tion without any steering maneuver.

During each experiment, the encoder count and the 
applied current and voltage of the right front and rear 
wheel motors were obtained from the motor drivers 
at 10 Hz. The VI-SLAM computed and recorded the 
6-degrees-of-freedom vehicle pose and registered point 
clouds at 30 Hz and 1 Hz, respectively. In addition, the 
ground truth of the vehicle pose was recorded at 100 Hz 
using a set of motion capture cameras placed around the 
test field. The motion capture data was only used to eval-
uate the accuracy of the VI-SLAM. The position errors 
of the VI-SLAM were at most a couple of centimeters 
in the 1-meter linear traverse without steering. Raw ste-
reo camera images and IMU data were also recorded for 
future use; however, they were not utilized in this study.

Data processing
From each recorded traverse data, terrain inclina-
tion, vehicle slippage, and electric power consumption 
were extracted as data points in the following way. The 
recorded data were divided into non-overlapping time 
windows of a duration �t . Then the terrain inclination, 
vehicle slippage, and power consumption corresponding 
to each time window were estimated. In this study, �t 
was set to 1.0  s to capture local vehicle responses. Fig-
ure 3b shows the flow of the data processing.

Point cloud

Visual-
inertial  
SLAM

Stereo 
camera

+
IMU

Motor
drivers

Wheel odometry
Slip 

estimation

VI odometry

Slope
estimation

Power 
estimation

Motor voltage & current

Time profiles

Slip

Slope

Power

(a) Test field and mobile robot (b) Sensing system and data processing flow
Fig. 3  Experiment system. The tiltable test field is covered with one of the surface materials in Fig. 4. The four-wheeled test vehicle is equipped 
with motor encoders, motor drivers, and a stereo camera with a built-in IMU for traverse data collection. The vehicle slip and terrain inclination are 
estimated from the wheel odometry and VI-SLAM. The electric power consumption of actuators is estimated from the voltage and current applied 
to the motors, which are monitored at the motor drivers

Rough sand Loose sand Compacted sand

Small rocks Gravel Gravel with sand

Sand over bedrock Sand-covered bedrock Bedrock

Fig. 4  Images of terrain surfaces tested in the experiments
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The longitudinal vehicle slippage is measured by the 
slip ratio [1] as follows:

where dw represents the longitudinal travel distance in 
�t , which is estimated from the wheel odometry, and 
dvi denotes the estimated distance from the VI-SLAM. 
A positive slip ratio indicates that the vehicle moves a 
shorter distance than commanded, and sx = 1.0 indicates 
that the vehicle does not make any forward movement. 

(18)sx =

{

1− dvi/dw (if dvi ≤ dw)
dw/dvi − 1 (otherwise)

,

A negative slip indicates that the vehicle travels further 
than commanded.

The total electric power consumption P of the motors 
was estimated from the recorded voltage Vi and current 
Ii of the i-th motor ( i ∈ [1, 4] ) as P =

∑

i Vi × Ii . Only 
the voltage and current of the right wheels were recorded 
due to device limitations. Therefore, the total power was 
roughly estimated by using the same motor current and 
voltage values for the left wheels as for the right, assum-
ing they are not significantly different when the vehicle 
travels on longitudinal slope.

Table 1  Description of surface types used in the experiments

Surface domain Description

Rough sand Dry silica sand loosened and left in a rough surface condition

Loose sand Dry silica sand loosened and then slightly leveled

Compacted sand Dry silica sand loosened, then compacted and leveled

Small rocks Small volcanic rocks randomly and densely arranged on sand

Gravel Small pieces of river gravel

Gravel with sand Mixture of gravel and dry sand

Sand over bedrock Silica sand accumulated over flagstones with ∼2 cm depth

Sand-covered bedrock Flagstones covered with millimeter-layer of silica sand

Bedrock Textured flagstones arranged without large gaps between each
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Fig. 5  Dataset of slip vs. slope and power consumption vs. slope collected on nine different surfaces. The slip values higher than 1.0 on small rocks 
and sand-covered bedrock were triggered by the downhill skid as the vehicle attempted to move uphill. The negative slip values mainly resulted 
from errors in the wheel and visual-inertial odometries, as well as the incomplete time synchronizations of these data. Individual data of each 
domain is plotted in Fig. 6 for slip and Fig. 7 for power consumption
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The terrain inclination was estimated using the point 
clouds obtained from the VI-SLAM. For each time win-
dow, the positions of the vehicle wheels were estimated 
from the vehicle’s position and geometry. The point 
clouds included in the volume swept by the wheels were 
then extracted, and a best-fit plane to the point clouds 
was computed using linear regression. The terrain pitch 
and roll angles were determined from the slope of the 
plane. The terrain roughness was also measured by the 
residual of the fitted plane from the points. The accuracy 
of the slope estimation was approximately 1 ◦.

Slip‑slope and power‑slope dataset
The collected slip vs. slope data and power consumption 
vs. slope data are plotted in Fig.  5, with different colors 
representing the surface domains. Individual data in each 
surface domain are shown in Figs.  6 and 7 for slip and 
power consumption, respectively.

The slip on the rough sand, loose sand, and compacted 
sand surfaces used in this study exhibited a relatively 
similar trend, as the slip rapidly increased along with the 
increase in the terrain slope angle. The slip on the rough 

sand had more variability and became higher than that 
on the other sand surfaces.

The largest slip variability was observed on the small 
rocks, where the average slip gradually increased with the 
terrain inclination. On the slopes of approximately 20◦ , 
the vehicle repeatedly made slight uphill progress and 
then slid downhill, which resulted in no successful slope 
ascent. The slip ratio values higher than 1.0 on small 
rocks represent the downhill skid motion.

On the gravel and gravel with sand, a moderate increase 
of the slip was observed compared to the sand types. The 
slip on the gravel was relatively higher than that on the 
gravel with sand.

On the bedrock, the average slip was around zero, even 
on the slope of approximately 25◦ , owing to the high fric-
tional texture of the surfaces. On the 30◦ slope, the slip 
slightly increased, but the vehicle could make steady 
uphill progress. Although a similar vehicle behavior was 
observed on shallow slopes of the sand-covered bedrock, 
the slip suddenly increased on more than 15◦ , and the 
vehicle could not make continuous forward progress on 
the 25◦ slope.
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Fig. 6  Reference GP regression model for the slip vs. slope characteristics of each surface class. Each model was learned from 75% of all the data 
in the corresponding surface domain. The red curve represents the predictive mean while the blue-shaded area represents the confidence interval 
with 2-standard deviation around the mean
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The slip on the sand over bedrock type differed from that 
on the loose and compacted sand despite the similar visual 
outlooks. The slip behavior of the sand over bedrock was 
relatively similar to that on the sand-covered bedrock.

Note that the negative slip values of some data points 
were triggered by errors in the wheel and VI odometries, 
and also owing to the imperfect time synchronizations of 
the signals of these odometries.

The power consumption showed a linear relationship 
to the terrain slope (as seen in Fig.  7) in every surface 
domain. Other than that, the trends of the power con-
sumption between different surface domains were simi-
lar to those of the slippage, as surface types that induced 
higher slippage tended to require higher power for the 
vehicle to drive.

Results and discussion
This section evaluates the effectiveness of the proposed 
method for predicting terrain traversability using the 
dataset described in the previous section.

The terrain slope pitch angle was used as the input fea-
ture x to model the separate latent functions fsx(x) and 

fP(x) for the longitudinal slip and power consumption, 
respectively.

Reference GPR models
First, GP regression models for the slip-slope character-
istics and for the power-slope in all surface domains were 
learned for reference. The hyper-parameters of the refer-
ence models were also adopted for the TGPR models of 
the corresponding source domains in the later evalua-
tions. In the learning of each model, 75% of the data were 
adopted for training and the remaining 25% for testing. 
Additional artificial slip data of sx = 0.0 was inserted at 
approximately zero degrees, and those of sx = 1.0 were 
added over the slope angles, where no uphill progress was 
expected, to stabilize the slip model curves around the 
two edges, where no test data was obtained. The learned 
models are presented in Fig.  6 for slip and in Fig.  7 for 
power consumption. As shown, given sufficient train-
ing data, GPR could capture the trends of slip and power 
consumption in all surface types to a certain extent. 
Better models for slip might be obtained by imposing a 
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Fig. 7  Reference GP regression model for the power consumption vs. slope characteristics of each surface class. Each model was learned from 
75% of all the data in the corresponding surface domain. The red curve represents the predictive mean while the blue-shaded area represents the 
confidence interval with 2-standard deviation around the mean
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constraint of monotonic increase of the slip against the 
increase in the slope, as in [12].

The root-mean-square errors (RMSEs) and log-like-
lihoods (LOGLIKs) of the reference GPR models were 
evaluated on the test data, and are presented in Table 2. 
RMSEs indicate the accuracy of the predictive mean 
(lower is better), while the LOGLIKs relatively indicate 
the feasibility of the predictive distribution (higher is bet-
ter). The surface type with a larger slip variability resulted 
in a larger RMSE and a lower LOGLIK.

Evaluation 1: Comparison of MS‑TGPR and GPR
In the first evaluation, the proposed MS-TGPR-based tra-
versability prediction method was compared with GPR-
based methods in a slip prediction scenario. Four surface 
types, namely, compacted sand, small rocks, gravel, and 
bedrock, were adopted as source domains, and four sur-
face types, namely, rough sand, gravel with sand, sand 
over bedrock, and sand-covered bedrock, were set as tar-
get domains. The data presented in each target domain 
with slopes shallower than 5 ◦ , as well as the entire data 
in the source domains, were used for training each MS-
TGPR. Each model was then tested with the correspond-
ing target domain data of the slopes steeper than 5 ◦ . This 
simulates the prediction of traversability on slopes in a 
new environment from the data on relatively benign ter-
rains. In this evaluation, the threshold of the domain sim-
ilarity, �th , was set to 0.8.

In addition to the proposed method, two GPR-based 
approaches were tested for comparison. The first 
approach, GPR-naive, learns a GPR model solely from 
the limited training data of the target domain. The sec-
ond approach, GPR-conventional, utilizes the slip data 
in source domains with similar visual outlooks. In this 
latter approach, the training data comprises the tar-
get training data and the data in the source domains. 
Similar data augmentation methods have been conven-
tionally adopted in practice when the available train-
ing data is limited [12]. Alternatively, this approach 
is also considered a type of online model updating, in 
which the pre-trained GPR model for a source domain 
is updated using the newly obtained in-situ traverse 
data. In this study, the data from the compacted sand 
were introduced to train the models for the rough sand 
and sand over bedrock, whereas the data on gravel 
were added to train the model for gravel with sand, 
and the data obtained from the bedrock were added 
to train the model for the sand-covered bedrock. No 
pre-processing was performed on the source data for 
the augmentation. The augmented source data was 
restricted to the range of the terrain inclination, which 
is not included in the target domain, i.e., slopes steeper 
than 5 ◦.

The learned slip-slope models for the rough sand and 
sand-covered bedrock domains are plotted in Fig.  8 
as examples. The RMSEs and LOGLIKs of the models 
learned for all four of the target domains are presented 
in Table 3. In addition, this evaluation assesses how the 
learned predictive distribution p(f (x)) can represent 
the true distribution q(f (x)) based on the Kullback-
Leibler divergence (KLD) [27]. The KLD measures the 
difference between two probability distributions, with 
a lower value indicating a higher similarity and KLD 
= 0 indicating that the two distributions are identical. 
Since the true distributions from which the traverse 
data were generated are unknown, the distributions 
predicted by the reference GPR, presented in Fig.  6, 
were adopted instead to compute the KLDs. Figure 8a, 
c, e presents the prediction models for the rough sand 
learned using GPR-naive, GPR-conventional, and MS-
TGPR, respectively. Owing to the very limited data, 
the model learned by GPR-naive predicted just zero 
slips on every slope, as shown in (a). This result indi-
cates that the prediction is a challenging extrapolation 
problem. In contrast, by adopting the data augmented 
from the compacted sand domain, GPR-conventional 
could predict the slip on the test slopes better than 
GPR-naive, as shown in (c). GPR-conventional worked 
well owing to the relatively similar trends in the slip-
slope curves for the rough sand and compacted sand. 
However, some test data were outside of the confi-
dence interval, indicating that the model sometimes 
underestimated the possible vehicle slippage. The pro-
posed MS-TGPR could also capture the slip trends 
of the rough sand on the test slopes, as shown in (e), 
with more test data included in the confidence inter-
val. The source-target similarity �i and the weight wi 
for each source domain are presented in Table 4. High 
similarity values were learned for the compacted sand, 
small rocks, and gravel, while the similarity to the bed-
rock was relatively less significant. As the threshold of 
�th = 0.8 was set, the TGPR models from the former 
three domains were selected to develop the predic-
tion model. As presented in Table  3, although GPR-
conventional exhibited the lowest RMSE, the proposed 
method achieved the highest LOGLIK and lowest KLD, 
indicating the best modeling of the predictive distribu-
tion and the prediction uncertainty among the three 
methods.

The slip prediction models for the sand-covered 
bedrock are presented in Fig. 8b, d, f. Again, although 
GPR-naive in (b) could capture the trends of the train-
ing data, the model predicted an almost constant slip 
on steeper slopes without available training data. At 
this point, GPR-conventional could not predict the 
abrupt increase in the slip over approximately 20◦ , as 
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it is biased by the augmented data from the bedrock 
domain, as illustrated in (d). In contrast, MS-TGPR 
could improve the slip prediction more than the other 
two approaches, as demonstrated in (f ) and presented 
in Table  3. Although the predictive mean was slightly 
lower than the actual slip at slopes higher than 20◦ , the 
test data was covered by the confidence interval with 
low KLD. For this target domain, high similarity values 
were learned for the small rocks and bedrock domains, 
as presented in Table  4, so the TGPR models of these 
domains were selected to develop the prediction model.

As presented in Table 3, similar results were obtained 
for the other two target domains.

Evaluation 2: Influence of source domains
In the second evaluation, the effect of the number of 
source domains on the performance of the learned model 
was analyzed. The same four surface domains as Evalua-
tion 1 were set as the target domains, with data shallower 
than 5◦ adopted for training and that steeper than 5 ◦ for 
testing. The number of source domains N was set to 1, 
2, 3, 5, or 8 (all source domains). For each case except 
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Fig. 8  Results of Evaluation 1. Slip predictions with and without the data transferred from multiple source domains are plotted. The red curve 
represents the predictive mean while the blue-shaded area represents 2-standard deviation around the mean. The blue and orange points 
represent the training and test data, respectively. The green crosses in GPR-conventional ((c) and (d)) depict the augmented data from a source 
domain
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N = 1 and N = 8 , 20 random combinations of source 
domains were chosen for learning, and the RMSE and 
KLD of each learned model were evaluated.

Figure  9 shows the statistics of the RMSE and KLD 
values of the MS-TGPR models learned with the varied 
number of source domains for each target domain. Note 
that, with N = 8 , only one combination of the source 
domains is possible. Therefore, the RMSE and KLD are 
plotted with a cross that represents the single result for 
each target domain.

When only one or two source domains were used, both 
the RMSE and KLD showed large variability due to the 
difference in the available source domains to transfer. 
Basically, lower RMSE and KLD were achieved when 

domains more similar to the target domain were included 
in the source domain sets, e.g., loose sand and compacted 
sand for the rough sand domain. On the other hand, 
higher RMSE and KLD resulted when the source domain 
sets only included non-similar surface types, e.g., sand 
over bedrock, sand-covered bedrock, and/or bedrock for 
the rough sand.

When the number of source domains increased, the 
variability in the RMSE and KLD decreased, whereas 
the median value did not significantly differ depending 
on the number of source domains. This is because when 
the number of source domains increases, the possibil-
ity of similar domains being included in the source sets 
increases. The minimum RMSE and KLD rose when the 
number of source domains increased.

The above results indicate that the improvement of the 
predictive performance does not depend on the available 
number of source domains; rather, it depends on whether 
similar domains are included in the sources. The model 
performance does not significantly improve even if the 
available source domains increase, but they are limited 
to irrelevant ones. For most of the target domains, the 
best model with the minimum RMSE and KLD could 
be attained when the model was learned with the single 
most similar source domain. An exception was the large 
KLD of the sand over bedrock domain, for which no sin-
gle source domain could achieve an accurate predictive 
distribution when transferred. However, in actual usage, 
the true most similar domain cannot be known until the 
traverse data on slopes are obtained. Therefore, it may 

Table 2  RMSEs and LOGLIKs of reference GPR models for slip 
(Fig. 6) and power consumption (Fig. 7)

Surface domain Slip Power

RMSE LOGLIK RMSE LOGLIK

Rough sand 0.092 84.690 1.804 – 185.559

Loose sand 0.049 91.877 1.724 –112.760

Compacted sand 0.053 102.406 1.394 –117.295

Small rocks 0.286 –11.315 3.022 –133.898

Gravel 0.145 18.488 2.075 –113.108

Gravel with sand 0.091 61.798 1.728 –126.181

Sand over bedrock 0.215 3.857 1.983 –72.022

Sand-covered bedrock 0.159 12.642 1.562 –62.648

Bedrock 0.110 17.169 2.267 –56.038

Table 3  RMSEs, LOGLIKs, and KLDs of slip models learned in 
Evaluation 1. Bold numbers indicate best results among the three 
methods for each target domain

Target domain Method RMSE LOGLIK KLD

Rough sand GPR-naive 0.749 –4414.641 366.378

GPR-conventional 0.151 –304.836 39.989

MS-TGPR (pro-
posed)

0.213 144.511 23.088

Gravel with sand GPR-naive 0.489 –2525.338 488.280

GPR-conventional 0.142 102.149 11.091
MS-TGPR (pro-
posed)

0.104 131.126 15.669

Sand over bedrock GPR-naive 0.572 –2586.805 900.773

GPR-conventional 0.356 –2178.509 350.095

MS-TGPR (pro-
posed)

0.314 –87.785 15.430

Sand-covered 
bedrock

GPR-naive 0.460 –2002.584 861.105

GPR-conventional 0.388 –1005.425 421.268

MS-TGPR (pro-
posed)

0.227 –111.624 7.758

Table 4  Domain similarity �i and weight wi learned for each 
source domain for the slip modeling in Evaluation 1

Target domain Source domain �i wi

Rough sand Compacted sand 0.974 0.338

Small rocks 0.929 0.324

Gravel 0.973 0.338

Bedrock 0.719 0.000

Gravel with sand Compacted sand –0.419 0.000

Small rocks 0.929 0.325

Gravel 0.973 0.339

Bedrock 0.962 0.336

Sand over bedrock Compacted sand 0.954 0.250

Small rocks 0.929 0.244

Gravel 0.973 0.255

Bedrock 0.962 0.252

Sand-covered bedrock Compacted sand –0.476 0.000

Small rocks 0.923 0.490

Gravel –0.476 0.000

Bedrock 0.962 0.510
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be preferable to learn the model with several available 
source domains instead of learning with a single, possibly 
similar source domain.

Evaluation 3: Influence of target training data
This evaluation assessed the influence of the terrain incli-
nations included in the target training data on the pre-
dictive accuracy of the slippage. The rough sand, gravel 
with sand, sand over bedrock, and sand-covered bedrock 
were again set as the target domains. When training the 
model for each target, all of the eight surface domains 
except for the target domain itself were adopted as source 
domains for the transfer learning. All data in the target 
domain were first divided into training and test data at 
a ratio of 3:1. Multiple training datasets were then cre-
ated from the training data with each dataset contain-
ing the data with upper boundaries of the slope angle 
varied from 2.5◦ to 30◦ . Prediction models were learned 
from each dataset and then evaluated with the test data. 
For MS-TGPR, five different domain similarity threshold 
�th values ( −∞ , 0.0, 0.5, 0.8, 0.9) were tested. �th = −∞ 

represents a model learned without the threshold, mean-
ing that all TGPRs were adopted regardless of similari-
ties. In contrast, �th = 0 excludes domains with negative 
similarities, and �th = 0.9 only accepts domains with very 
high similarities.

Example MS-TPGR models trained from different tar-
get datasets for the rough sand domain are presented in 
Fig. 10. As shown, the model trained on the target data 
up to 2.5◦ could capture the test slip data on steeper 
slopes in the confidence interval. While the confidence 
interval, or prediction uncertainty, was large in the 
model, the proposed method could rapidly improve the 
predictive distribution, which made the confidence inter-
val tighter when additional target training data on slightly 
steeper terrains were available.

Figure  11 shows the RMSEs and KLDs of the models 
learned based on GPR-naive, GPR-augmented, and MS-
TGPR for the varied maximum slope angles included 
in the training dataset. Those of the reference GPR are 
also plotted. As shown, the proposed MS-TGPR-based 
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Fig. 9  Results of Evaluation 2. Stats of the RMSE and KLD are plotted for the models learned with various numbers of source domains for the four 
target domains. The result with eight source domains is represented by the cross. The variability in RMSE and KLD decreases along with the increase 
in the number of source domains
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method could learn the prediction model with relatively 
smaller RMSE and KLD even when the target terrain 
data was limited to up to 2.5◦ . The model was improved 
with the additional traverse data on steeper terrains, and 
depending on the target domain, its performance reached 
almost the same level as the reference GPR model from 
the data up to 7.5–15◦ , which indicates that a signifi-
cantly shallower terrain is required to train MS-TGPR 
models than the reference GPR models.

Figure 12 shows the RMSEs and KLDs of the models 
learned based on MS-TGPR with various domain simi-
larity thresholds �th . The model learned with �th = 0.9 
achieved a lower RMSE or KLD than the other settings 
in the rough sand and sand-covered bedrock domains, 
especially when the training data were very limited on 
shallow slopes. This can be attributed to the fact that 
the high threshold in the domain similarity excluded 

the irrelevant source domains to be transferred, and 
thus avoided negative transfer. However, when more 
data were available on steeper terrains, the character-
istics of the target domains started becoming distinct 
from those of the source domains. Therefore, domain 
similarities between the target and sources decreased. 
In this regard, the threshold �th = 0.9 might have been 
too strict to transfer source models of moderate simi-
larities to construct a good model. This resulted in the 
large fluctuation in the performances of the model with 
the high threshold value. Overall, �th = 0.5 showed a 
relatively better stability in the performance over varied 
training datasets and various target domains.

Evaluation 4: Slip risk classification
In this evaluation, the proposed risk classification 
method was assessed in a scenario where the immobility 

0 10 20 30
Slope (degrees)

0.0

0.5

1.0

Sl
ip

ra
tio

Max. slope in train data=2.5◦
RMSE=0.312, KLD=26.942

0 10 20 30
Slope (degrees)

0.0

0.5

1.0

Sl
ip

ra
tio

Max. slope in train data=5◦
RMSE=0.315, KLD=26.906

0 10 20 30
Slope (degrees)

0.0

0.5

1.0

Sl
ip

ra
tio

Max. slope in train data=7.5◦
RMSE=0.096, KLD=6.905

0 10 20 30
Slope (degrees)

0.0

0.5

1.0

Sl
ip

ra
tio

Max. slope in train data=10◦
RMSE=0.107, KLD=15.375

0 10 20 30
Slope (degrees)

0.0

0.5

1.0

Sl
ip

ra
tio

Max. slope in train data=15◦
RMSE=0.100, KLD=7.278

0 10 20 30
Slope (degrees)

0.0

0.5

1.0

Sl
ip

ra
tio

Max. slope in train data=25◦
RMSE=0.091, KLD=3.901

training data test data predictive mean

Fig. 10  Models trained on different target training data in Evaluation 3. Slip-slope models learned based on the proposed method are shown for 
a series of increased target training datasets with increased slope steepness. By using additional target training data, the proposed method could 
rapidly improve the model distribution with a tighter confidence interval. Results for the rough sand surface class are presented. Note that the 
shape of the model trained on the data up to 5 ◦ (upper center) is slightly different from that shown in Fig. 8e because the source domains used for 
training are not the same

Fig. 11  Influence of target training data on learned models in Evaluation 3. a RMSE of the slip prediction and b KLD of the distribution are 
plotted for the models learned from the training data with different upper boundaries of terrain inclination. The results for the four target domains 
are shown. RMSE and KLD decrease along with the increase of the maximum terrain inclination included in the training data. The proposed 
MS-TGPR-based method (green) learned the model with relatively smaller RMSE and KLD even when the target data was limited to approximately 
3 ◦ . Its performance was almost as good as that of the reference GPR model with data up to approximately 7.5–15◦ , depending on the target 
domain

(See figure on next page.)
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Fig. 11  (See legend on previous page.)
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Fig. 12  Influence of target training data on models with different �th in Evaluation 3. a MSE and b KLD of the predictive slip models are presented 
for various domain similarity threshold values �th . The results for the four target domains are shown. �th = 0.5 (green) shows a relatively stable 
performance for varied training datasets
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risk of a vehicle was predicted. The slip prediction mod-
els trained for the target domains in Evaluation 1 were 
adopted to classify the risk. Here, as the slip threshold 
in Eq.  (16), ythreshold = 0.6 was adopted for classifying 
the risk level lrisk into high or low. This threshold value 
is also utilized in NASA’s Mars exploration rover mis-
sions as one of the slip threshold values [30]; detecting 
a single slip event over this value will immediately stop 
the vehicle from driving. Another possible slip threshold 
may include 0.2 or 0.8, where the former provides rigor-
ous risk assessment and the latter may be used when the 
vehicle is required to travel over high-slip terrains.

In this evaluation, the risk probability threshold 
pthreshold in Eq. (16) was varied from 0.01 to 0.50, and the 
classification performance of the different pthreshold vari-
ations was compared. The lower the threshold, the more 
predictive uncertainty is taken into consideration, with 
pthreshold = 0.50 corresponding to classifying the risk 
only from the mean slip prediction.

Example classification results for the rough sand 
domain are presented in Fig. 13 for pthreshold = 0.01, 0.05, 
0.10, and 0.50. The slopes classified as high and low risk 
are colored red and green, respectively. As shown in the 

figure, the lower pthreshold moved the boundary of the two 
risk levels toward the shallower slope, indicating a more 
conservative risk assessment.

Figure 14 presents the confusion matrices correspond-
ing to the classification results shown in Fig. 13. With the 
lower pthreshold , more true high-risk data were correctly 
classified as high risk, while miss-classification of true 
low-risk samples to high risk slightly increased.

The classification performance was quantitatively eval-
uated based on the following recall and precision scores 
for the high-risk class.

Higher recall indicates that a smaller number of high-
risk samples are erroneously underestimated as low risk. 
On the other hand, higher precision indicates a smaller 
number of low-risk samples are incorrectly classified as 
high risk. Generally, recall and precision are in a trade-off 

(19)

Recall =
No. of correctly classified high-risk samples

No. of true high-risk samples

(20)

Precision =
No. of correctly classified high-risk samples

No. of samples classified as high-risk
.
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Fig. 13  Classification results of risk levels in Evaluation 4. The red and green areas represent the classified “ high-risk” and “ low-risk” slopes, 
respectively. The blue curve represents the predictive slip mean, while the blue-shaded area represents the confidence interval corresponding to 
the risk probability threshold pthreshold . The dashed line represents the slip threshold value ythreshold = 0.6 with which the risk level was classified. 
The red and green points represent the data of high and low risk, respectively. The slip regression model was trained from the target data on slopes 
shallower than 5 ◦ . Lower pthreshold makes the risk level boundary shift to a shallower slope and provides more conservative risk prediction. Results 
for the rough sand surface class are presented
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relationship, as trying to increase recall can result in a 
conservative classifier in which most of the samples are 
classified as high risk, resulting in low precision. In tra-
versal risk assessment, miss-classifications of high-risk 
terrains as low risk and that of low-risk terrains as high 
risk cannot be treated equally. While the latter may result 
in an inefficient operation (e.g., taking a longer route to 
avoid terrains that are actually not hazardous), the for-
mer can lead to a catastrophic event, such as wheels 
embedded in the sand or vehicle turnover. Therefore, it 
is preferable for a risk level classifier to obtain high recall 
and moderate-to-high precision scores so that it can 
probably detect true risky terrains while not over-con-
servatively assessing the risk. Note that F-1 score, a har-
monic average of the recall and precision, is often used 
for evaluating the classification performance. However, 

for the above reason, this study adopts recall and preci-
sion to assess both scores individually rather than using 
the integrated F1-score.

Figure  15 presents the recall and precision scores 
resulting from the varied risk probability threshold 
pthreshold in the four tested target domains. As qualita-
tively observed in Fig. 13, increasing the risk probability 
threshold pthreshold results in a lower recall and increased 
precision, meaning a higher possibility of miss-classifying 
high-risk terrain as low risk, which is undesirable.

This result implies that it may be better to select 
pthreshold between 0.05 and 0.3 (depending on the mis-
sion) to keep the recall score high while not sacrific-
ing the precision, and to correctly detect high-risk 
terrains with a moderate possibility of incorrectly pre-
dicting true low-risk terrain as high risk. How much 
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Fig. 14  Confusion matrices in Evaluation 4. Example confusion matrices of the risk level classification for different risk probability threshold pthreshold 
values. The risk level classifiers were tested on the target data of slopes steeper than 5 ◦ , which were not used for training the model. With lower 
pthreshold , more true high-risk data were correctly classified as high risk while miss-classification of true low-risk samples to high risk increased 
slightly. Results for the rough sand surface class are presented
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uncertainty should be incorporated also depends on 
the accuracy of the regression model, and on the vari-
ability of the traversability.

The relatively low precision in the risk classification 
for the sand-covered bedrock domain is attributed to 
the relatively wide confidence interval for the domain. 
Note that the slip prediction model was learned from 
the target training data on slopes shallower than 5 ◦ 
and tested on the data of slopes steeper than 5 ◦ . As 
the proposed MS-TGPR-based traversability learn-
ing method can improve the prediction model with 
increased data from slightly steeper slopes, a higher 
risk classification score should be possible with the 
improved model.

The above results demonstrate the effectiveness of 
the proposed traversability prediction method for clas-
sifying the risk level from limited target data with a 
simple risk probability assessment. However, classify-
ing the risk level on the basis of a more sophisticated 
measure, such as conditional value at risk (CVaR), 
would provide a better risk assessment [31].

Evaluation 5: Learning and prediction of power 
consumption
The final evaluation assesses how well the proposed 
method can learn and predict a traversability metric 
other than vehicle slippage, specifically, power con-
sumption. The conditions of the source domains and 
target domains adopted are the same as those used in 
Evaluation 1.

The resulting models for power consumption vs. 
slope are presented in Fig.  16. The RMSE and KLD of 
the learned models are listed in Table  5. Overall, the 
models learned on the basis of the proposed method 
could addequately predict the power consumption on 
slopes that were not used for training, as the confidence 
intervals covered most of the test data.

The reason for the relatively large error on the sand 
over bedrock domain was the miss-learning of the 
domain similarities and the assignation of a high simi-
larity only to the small rocks domain, resulting in a 
model learned only from the TGPR of that domain. 
The learned domain similarity � and weight w of each 
source domain are presented in Table 6.

When comparing the learned domain similarities for 
the power consumption model (Table  6) and for the 
slip model (Table  4), it is clear that different similari-
ties are learned for these two models. These differences 
occurred because the power and slip models were inde-
pendently learned. It might be possible to improve the 
predictive accuracy of both models by learning them in 
a coupled fashion, where the same similarity coefficient 
set is assigned to models of different traversability met-
rics. Adopting a multi-output GP method [32] could be 
one way of accomplishing that.

Overall, the results indicate the possible capability of 
the proposed method to predict traversability indices 
other than vehicle slippage.

Discussion
The above evaluations demonstrate that the proposed 
method can improve traversability prediction accuracy 
and its predictive distribution when available training 
data are limited to only those obtained on benign terrains 
in the target environments. The results also indicate that 
the required terrains to traverse for obtaining a mature 
learned model are significantly shallower than those for 
the models trained without transfer learning.

If sufficient target domain data for learning the pre-
diction model are available, the performance improve-
ment by the proposed learning will be very limited. In 
such cases, it is preferable to adopt the basic GPR alone 
owing to its lower computational cost and better learn-
ing stability compared to MS-TGPR.
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Fig. 15  Classification scores in Evaluation 4. a Recall and b precision 
scores of varied risk probability thresholds, pthreshold , are plotted for 
the four target domains. The mean of the four domains is also plotted
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One of the limitations of the current approach is that 
the method determines the source-target similarity 
�i from limited target data and assumes that the simi-
larity does not significantly differ over different ter-
rain geometries. However, this is not always the case. 
Sometimes high similarity can be assigned to irrelevant 
domains, resulting in a low prediction accuracy, and 
also in a wide predictive distribution, or uncertainty. 
The large uncertainties can be triggered because the 
predictive distribution is estimated as a mixture of the 
distributions of the multiple TGPRs included in the 
model. To improve the traversability prediction, it is 

important to better estimate the similarity coefficient 
from the limited data. One possible approach to achiev-
ing this would be to use additional feature inputs, such 
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Fig. 16  Results of Evaluation 5. Prediction of power consumption for the four target domains with MS-TGPR-based approach. The red curve 
represents the predictive mean, while the blue-shaded area represents 2-standard deviation around the mean. The blue and orange points 
represent the training and test data, respectively

Table 5  RMSEs and KLDs of power consumption models 
learned based on MS-TGPR in Evaluation 5

Target domain RMSE KLD

Rough sand 1.974 14.117

Gravel with sand 1.982 8.038

Sand over bedrock 5.135 35.221

Sand-covered bedrock 2.526 10.421

Table 6  Domain similarity �i and weight wi learned for each 
source domain for the power consumption modeling in 
Evaluation 5

Target domain Source domain �i wi

Rough sand Compacted sand 0.999 1.000

Small rocks –0.105 0.000

Gravel –0.466 0.000

Bedrock –0.446 0.000

Gravel with sand Compacted sand 0.999 0.351

Small rocks 0.740 0.000

Gravel 0.937 0.329

Bedrock 0.907 0.320

Sand over bedrock Compacted sand 0.576 0.000

Small rocks 0.945 1.000

Gravel 0.356 0.000

Bedrock 0.719 0.000

Sand-covered bedrock Compacted sand 0.790 0.000

Small rocks 0.945 0.509

Gravel 0.628 0.000

Bedrock 0.907 0.491
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as exteroceptive sensor information (e.g., visual fea-
tures) or other proprioceptive sensor information (e.g., 
vehicle vibration). Adopting a multi-output regression 
approach might also improve the predictive perfor-
mance by learning models for multiple traversability 
indices in a coupled manner, thus making the best use 
of the underlying relationships between these indices.

As clarified in the evaluations, the predictive capability 
of the proposed method differs depending on the target 
domain, as well as on the available source domains to be 
transferred. The key concept of the proposed method is 
the extrapolation of limited traverse data on the target 
terrain by interpolating the data from source domains. 
Accordingly, if the target terrain geometry is located out-
side the data range in the source domains, the proposed 
method may fail in its prediction. Similarly, if the terrain 
traversability of the target domain is significantly outside 
the traversability characteristic envelope covered by the 
source domain data, the improvement of the prediction 
accuracy by the proposed method would also be lim-
ited, as interpolating the data from the source domain 
data is no longer possible in such situations. For exam-
ple, because the bedrock class is located at the edges of 
all domains, the proposed method cannot perfectly pre-
dict the traversability for this class. Developing a method 
that can utilize available source domain data when the 
traversability characteristic of the target domain sig-
nificantly differs from that of the source domains is an 
important future work.

As discussed earlier, the proposed method learns the 
traversability model in the target domain by learning the 
similarities between the small amount of target domain 
data and the data in source domains. Therefore, it is 
fundamentally not applicable if the vehicle has not been 
driven on the target environment yet, or when in-situ 
data are completely unavailable even on safe terrains. In 
such cases, the operators are required to implement some 
existing terrain classification and/or traversability predic-
tion methods using information from on-board extero-
ceptive sensors or orbital/aerial observations. However, 
due to the lack of in-situ traverse data, the prediction 
result may not always be reliable enough. Once the vehi-
cle obtains even a few traverse data on the target envi-
ronment, the proposed method can contribute to better 
predicting the traversability on the new environment.

There are several directions in which the proposed 
method can be extended. For example, it could be imple-
mented as part of an end-to-end learning framework by 
combining it with a self-supervised terrain classifica-
tion method (e.g., [9, 10]), in the following fashion. First, 
traverse data newly obtained in a target environment are 
classified using a pre-trained proprioceptive terrain clas-
sifier. If the data are classified to one of the pre-defined 

terrain classes with a high confidence, a traversability 
regression model already learned for that class is adopted 
to predict the traversability of the same terrain in a dis-
tant field. If not, the data is assumed to belong to a novel 
terrain class. In this case, a new traversability prediction 
model is learned for the novel terrain class by using the 
method proposed in this study. A vision-based classifier, 
if available, can be also updated with the newly defined 
class at this stage in a self-supervised manner for detect-
ing the same surface class in distant fields. Once a suf-
ficient amount of data samples are collected, the new 
terrain class is added as a new source domain for future 
use. The evaluation results presented in the previous sec-
tion indicate that the model performance and robustness 
can be improved when more source domains are availa-
ble for learning. This suggests that the proposed method, 
combined with self-supervised terrain classification, can 
lead to a lifelong learning paradigm [33], as the vehicle 
will become more adaptive to newly encountered terrains 
by utilizing more traverse experience on multiple types of 
terrain in its lifetime.

Furthermore, the proposed prediction method can be 
combined with path planning. In addition to the pre-
dictive mean accuracy, the proposed method showed a 
capability in improving the predictive distribution, which 
is crucial for generating a safe path if a significant vari-
ability and/or uncertainties in the vehicle motion exist. 
When combined with a stochastic planning approach 
(e.g., [34]), the proposed method can enable vehicles to 
be more safely and efficiently operated in novel and/or 
difficult off-road environments.

Conclusion
This study proposed a transfer regression method to 
improve the traversability prediction accuracy when in-
situ traverse data are only available on gentle terrains. 
Combined with the limited in-situ data, the proposed 
method leverages past traverse experiences on multiple 
types of surface to improve the prediction accuracy of 
the traversability on untraversed slopes. The effectiveness 
of the proposed method was demonstrated in evalua-
tions using a traverse dataset collected from experiments. 
The results showed that the proposed method can learn 
a more accurate prediction model than conventional 
methods, both in terms of the predictive mean and dis-
tribution, from just data on almost flat surfaces of the 
target domain. In addition, the proposed method can 
rapidly improve the model performance with additional 
data obtained from significantly less steep terrains com-
pared to methods without transfer learning. These find-
ings demonstrate the high adaptability of the proposed 
method to new environments.
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The proposed prediction method was also applied to 
traversal risk classification in which the slip distribu-
tions predicted from the learned regression model were 
used for binary classification of immobilization risk. 
The learned regression models showed a reasonable risk 
detection capability on yet to be traversed slopes. In addi-
tion, the proposed method was adopted to learn and pre-
dict the power consumption of the vehicle actuators on 
various terrains. The results demonstrate the applicability 
of the proposed method to various traversability indices.

Although this study evaluated the proposed method for 
the prediction of the vehicle’s slippage in its longitudinal 
direction, it can also be used in more general cases where 
the vehicle traverses 2.5-dimensional terrain surfaces 
with steering actions. In such scenarios, the proposed 
method can be adopted to learn and predict the vehicle’s 
lateral and/or yaw slippage in addition to the longitudi-
nal one with additional input features, e.g., the slope roll 
angle and roughness as well as the control input to the 
vehicle. Moreover, it can be fundamentally applied to any 
type of traversability metric, such as vibration or attitude 
change on rough/deformable terrains. Also, while the 
evaluation results reported in this paper were for specific 
vehicles and terrain surfaces, the authors feel that thanks 
to the general form of the proposed method, the quali-
tative trends observed in this study will not significantly 
vary with regard to vehicle size, weight, locomotion con-
figuration, or terrain type.

One possible direction of future efforts would be to 
investigate ways of improving the proposed method to 
enhance the selection and utilization of source domains 
for transfer, especially in cases where the target data are 
severely limited. Currently, the proposed approach solely 
utilizes proprioceptive data for learning the weight of 
each source domain. Adding other sensory information, 
such as features from IMU data and/or camera images, 
may be effective in improving the predictive perfor-
mance. Validating the proposed method in fields with a 
longer traverse and in an online learning and prediction 
fashion is another important direction of future research.
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