
Ozaki et al. ROBOMECH Journal (2021) 8:26
https://doi.org/10.1186/s40648-021-00213-5

RESEARCH ARTICLE

LiDAR DNN based self‑attitude estimation
with learning landscape regularities
Ryota Ozaki*  , Naoya Sugiura and Yoji Kuroda 

Abstract 

This paper presents an EKF (extended Kalman filter) based self-attitude estimation method with a LiDAR DNN (deep
neural network) learning landscape regularities. The proposed DNN infers the gravity direction from LiDAR data. The
point cloud obtained with the LiDAR is transformed to a depth image to be input to the network. It is pre-trained with
large synthetic datasets. They are collected in a flight simulator because various gravity vectors can be easily obtained,
although this study focuses not only on UAVs. Fine-tuning with datasets collected with real sensors is done after the
pre-training. Data augmentation is processed during the training in order to provide higher general versatility. The
proposed method integrates angular rates from a gyroscope and the DNN outputs in an EKF. Static validations are
performed to show the DNN can infer the gravity direction. Dynamic validations are performed to show the DNN can
be used in real-time estimation. Some conventional methods are implemented for comparison.

Keywords:  Attitude estimation, Mobile robotics, Deep learning, Extended Kalman filter

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Estimating the attitude of a robot is one of the classic
problems in mobile robotics. In particular, real-time esti-
mation is required for real-time attitude control. The atti-
tude is generally estimated with inertial sensors such as
accelerometers and gyroscopes. However, mobile robots
have their own acceleration. Moreover, on-road robots
also receive pulses from the ground, and UAVs suffer
from vibration of their multi-rotor. These need to be fil-
tered out from the accelerometer. On the other hand,
integration of gyroscopic angular rate has problems of
drift and bias. These disturbances worsen the accuracy
of the estimation. To complement each other, these iner-
tial data are fused, generally [1]. Nevertheless, dealing
with the disturbances with only inertial sensors is quite
difficult.

To reduce the influence of these disturbances, many
kinds of LiDAR odometry, VO (visual odometry) and
SLAM (simultaneous localization and mapping) [2] have

been proposed. LiDAR-based methods register point
clouds by ICP [3], NDT [4], and so on. Visual methods
often track features in image sequences [5, 6]. However,
these odometry methods and SLAMs often contain accu-
mulative error since relative pose changes with error are
summed up. In order to correct the accumulative error,
prior information such as 3D maps is often used [7].
These methods correct the error by matching the prior
information against the sensor data. However, they work
only in environments where maps are available. Moreo-
ver, creating a map is time-consuming, and updating is
also required. Some methods [8–10] estimate the atti-
tude under Manhattan world assumption. They assume
that planes or edges in the environment are orthogonal to
each other. It helps achieving drift-free estimation. How-
ever, it is difficult for this kind of method to avoid being
affected by objects which do not satisfy the assumption.
We presented a method in [11] using looser restraints
than Manhattan world assumption. It exploited a regu-
larity which most buildings are built vertically. Therefore,
the method can be applied not only to Manhattan world,
but also to environments where planes are not orthogo-
nal to each other. Vertical planes are extracted from

Open Access

*Correspondence: ce192021@meiji.ac.jp
Graduate School of Science and Technology, Meiji University, 1‑1‑1,
Higashimita, Tama‑ku, Kawasaki‑shi, Kanagawa 214‑8571, Japan

http://orcid.org/0000-0002-7459-6500
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40648-021-00213-5&domain=pdf

Page 2 of 12Ozaki et al. ROBOMECH Journal (2021) 8:26

LiDAR point cloud, and the gravity direction is estimated
based on normals of the planes. However, the method
misses many features even though there are more regu-
larities in environments, since it uses only completely flat
planes. Besides, it requires tuning many hyperparameters
such as the searching radius for PCA (principal compo-
nent analysis), and the threshold for the number of the
normals, and the threshold for the clustering angle. In
addition, the processing of the 3D point clouds takes
much time.

Deep learning has been used for attitude estimation in
recent years. In [12], IMU-based odometry by end-to-
end learning has been proposed. In [13], a deep neural
network identifies the measurement noise characteris-
tics of IMU. In [14], a neural network estimates angular
rates from sequential images. It was trained with syn-
thetic and real images. The large synthetic dataset was
collected in AirSim [15] which offers visually realistic
graphics. In [16], a gravity vector is directly estimated
from a single shot image. The method can infer the orien-
tation at which a picture was taken simply by looking at
the picture, like a human. It implies there are regularities
between the gravity direction and landscapes. Since the
method is a camera-based one, it is cost effective, but it
does not work well in nighttime.

To address these issues above, we present an EKF-
based self-attitude estimation method with a LiDAR
DNN learning the landscape regularities. By using a
LiDAR, the method can estimate the attitude regardless
of day or night. Moreover, problems of rule-based meth-
ods such as [11] described above can be solved by using
deep learning. The main contributions of this paper are
summarized below:

•	 A LiDAR-based DNN which infers an absolute grav-
ity direction which does not contain the robot’s own
acceleration nor vibration is proposed. Unlike cam-
era-based methods, the DNN can estimate it regard-
less of day or night.

•	 The DNN inference is integrated with a gyroscope
for real-time estimation.

•	 A data transformation and augmentation method for
the LiDAR and IMU data is proposed. Converting
the 3D point cloud into a 2D depth image reduces the
computation time in the DNN.

•	 Pre-training the DNN with large synthetic data
before fine-tuning it with real data makes the learn-
ing efficient, while the related work [16] uses only
real one.

The datasets and the source code used in this paper have
been released in open repositories (see ‘Availability of
data and materials’).

DNN estimating gravity vector
The proposed method makes the DNN learn landscape
regularities for estimating the gravity vector.

Coordinate definition
A world frame is defined as a standard right-handed
coordinate system. A robot frame is defined as a right-
handed coordinate system which is fixed on the robot
pose. Its x axis is on the robot’s heading direction. They
are shown in Fig. 1.

Dataset collection
Both synthetic and real data are collected in this study.
The synthetic datasets are used for pre-training, and the
real ones are used for fine-tuning. The datasets consist
of LiDAR data and corresponded gravity vectors g in the
robot frame. Technically, lidar data represents 2D depth
images transformed from 3D point clouds. The details
about the transformation are described in the next sec-
tion. Fig. 2 shows examples of the datasets.

The synthetic data is collected in AirSim [15]. AirSim
is a simulator for drones, cars and more, built on Unreal
Engine, which provides visually realistic graphics. An
IMU and a LiDAR which has 32 layers are installed to
a drone in the simulator. The robot pose and weather
parameters are randomized, and the LiDAR data and a
gravity vector are recorded at each pose. The range of the
random Z is limited as [2 m, 3 m] in this work. The ranges
of the random roll φ and pitch θ are limited as [−30 deg,
30 deg], respectively. The reason for limiting Z , φ and θ is
that this study mainly focuses on on-road robots that tilt
their bodies on which a LiDAR can be installed.

Fig. 1  Screenshot of AirSim with coordinate description. An IMU and
a LiDAR are equipped to the drone in the simulator. The purpose of
the proposed DNN is estimating a gravity vector in the robot frame
from LiDAR data

Page 3 of 12Ozaki et al. ROBOMECH Journal (2021) 8:26 	

The real datasets are collected with an IMU (Xsens
MTi-30) and a LiDAR (Velodyne VLP-32) installed
on a top of a stick (Fig. 3). The stick is hand-carried,
and point clouds and linear acceleration vectors are
recorded. They are saved only when the stick is shaking
less than 0.001 m and 0.1 deg in 0.5 s, and when it is at
least 5 deg away from the last saved pose. The IMU is
regarded as ground truth because it has enough accu-
racy (within 0.2 deg) in static according to the specifi-
cation. Learning the static IMU is valuable because the
DNN can reproduce it even in dynamic.

Data preprocessing
Each input and label data are transformed, and are aug-
mented in each epoch of training. Data augmentation

is especially important for real data because collecting
real data is time-consuming. Figure 4 shows an example
of data transformation.

LiDAR data transformation
The point clouds obtained with the LiDAR are trans-
formed to depth images as follows.

Fig. 2  Examples of datasets. The datasets consist of depth images and corresponded gravity vectors g[m∕s2] in the robot frame

Fig. 3  Sensors installed on stick. Point clouds and acceleration are
recorded with this stick when it is still. The judge whether it is static is
processed by programing

Fig. 4  Preprocessing scheme. Each 3D point cloud is transformed
to a 2D depth image. The depth image is randomly flipped and slid.
Flipping, rotation, and L2 normalization are also applied to the gravity
vector. In this example, the virtual yaw variant is �ψ = 90 deg

Page 4 of 12Ozaki et al. ROBOMECH Journal (2021) 8:26

where pixel[row, col] denotes a pixel value at [row, col] of
the depth image, pi denotes a point in the cloud, FOV
denotes the vertical field-of-view of the LiDAR, resv and
resh denote the angle resolution of the LiDAR, and #row ,
#col denote the numbers of the pixels in each row and
col, respectively.

Each generated depth image is flipped in 50% of prob-
ability for augmenting the data. After the flipping process,
the pixels of each depth image are randomly slid horizon-
tally. The virtual yaw variant �ψ is computed as below.

where Δcol denotes the number of the slid pixels.

IMU data transformation
The gravity vector is also flipped and rotated according to
�ψ . Since the network does not need to learn the norm
of the gravity, L2 normalization is applied to the vector in
order to make the training efficient.

(1)

pixel[row, col] =

��
p2
i,x
+ p2

i,y

−1 (no return)

row =

FOVupper − tan−1
pi,z√
p2
i,x
+p2

i,y

resv

resv =
FOVupper − FOVlower

#row − 1

col = (#col − 1) −

tan−1
pi,y

pi,x
+ �

resh

resh =
2�

#col

(2)Δ� = 2�
Δcol

#col

(3)

ĝ =

{
Rotz

(−Δ𝜓)

g

|g| (w∕o flip)

Rotz
(−Δ𝜓)

(gx ,−gy ,gz)
T

|g| (w∕ flip)

Rotz
(Δ𝜓)

=

(
cos(Δ𝜓) − sin(Δ𝜓) 0
sin(Δ𝜓) cos(Δ𝜓) 0

0 0 1

)

Network
The proposed DNN is shown in Fig. 5. It consists of CNN
(convolutional neural network) layers and FC (fully con-
nected) layers. The input to the network is the depth
image, and the output is a gravity vector � . Technically,
the output of the FC layers is normalized. The CNN lay-
ers are expected to learn extracting features such as edges
and planes. The FC layers are expected to learn the regu-
larities between the features and the gravity direction.

It is expected that the CNN layers learn extracting fea-
tures such as edges and planes, and the FC layers learn
landscape regularities. All layers, except the final output
layer, use the ReLU function [17] as an activation func-
tion. All FC layers, except the final output layer, use the
10% Dropout [18] to avoid the over-fitting problem.

Loss function
The MSE (mean square error) between the outputs and
labels is used as a loss function of this model.

where � denotes the parameters of the network, and #D
denotes the number of samples. The network minimizes
the loss by updating �.

Optimization
Adam (adaptive moment estimation) [19] is used to
optimize the parameters. For the training with the syn-
thetic data, the learning rates are set as lrCNN = 0.00001 ,
lrFC = 0.0001 , where lrCNN is a value for the CNN lay-
ers, lrFC is a value for the FC layers. For the fine-tuning
with real data, they are set smaller as lrCNN = 0.000001 ,
lrFC = 0.00001.

(4)�̂ =
(𝜇x,𝜇y,𝜇z)

T

|(𝜇x,𝜇y,𝜇z)
T|

(5)l(�) =
1

#D

#D∑
𝜄=0

|ĝ 𝜄 − �̂𝜄|2

Fig. 5  Proposed network architecture. It consists of CNN layers and FC layers. The MSE between the outputs and the labels is used as a loss function
of this model

Page 5 of 12Ozaki et al. ROBOMECH Journal (2021) 8:26 	

EKF‑based real‑time estimation
The outputs from the DNN are integrated with gyro-
scopic angular rate in an EKF. The proposed EKF archi-
tecture is shown in Fig. 6. It is based on [16] which
simplifies the attitude estimator in [20]. The state vec-
tor x of the proposed Kalman filter consists of the roll φ
and pitch θ of the robot pose.

Both of the vector x and the covariance matrix P are
computed in a prediction process and an update process.
The prediction process is computed by integrating angu-
lar velocity from a gyroscope. The update process is com-
puted by observing the outputs of the DNN. Note that
the covariance matrices for the prediction and obser-
vation are determined experimentally. Here, t denotes
the time step, S� , C� , T� are short for sin� , cos� , tan� ,
respectively in the following sections.

Prediction process
The state vector x and the covariance matrix P are
respectively computed as follows.

where f is a state transition model, u denotes a control
vector, � denotes the angular velocity measured with a
gyroscope, and Rotrpy denotes a rotation matrix for angu-
lar velocities.

(6)x =
(
� �

)T

(7)

x̄t = f(xt−1,ut−1)
= xt−1 + Rot

rpy

(xt−1)
ut−1

ut−1 = �t−1Δt =

⎛⎜⎜⎝

𝜔xt−1
Δt

𝜔yt−1
Δt

𝜔zt−1
Δt

⎞⎟⎟⎠
Rot

rpy

(xt−1)
=

�
1 S𝜙t−1

T𝜃t−1
C𝜙t−1

T𝜃t−1

0 C𝜙t−1
− S𝜙t−1

�

(8)

P̄t = Jf t−1
Pt−1Jf

T

t−1
+Qt−1, Jf t−1

=
∂f

∂x

∣

∣

∣

∣

xt−1,ut−1

where Jf denotes f Jacobean, and Q denotes a covariance
matrix of the process noise.

Update process
The observation vector is z as below.

where �̂ denotes a gravity which is output from the DNN.
The observation model is h.

where g
�����

 denotes a gravity vector in the world frame
i.e. gworld ≒ 9.8 m∕s2 , Rotxyz denotes a rotation matrix for
vectors. The state vector x and the covariance matrix P
are respectively computed as follows.

where Jh denotes h Jacobean, K denotes a gain matrix, R
denotes the covariance matrix of the process noise, and I
denotes an identity matrix.

Validation
Static and dynamic experiments were performed on
both synthetic and real data.

Static validation of DNN
The proposed DNN was trained with training datasets,
and was evaluated with test datasets.

(9)z = �̂

(10)

h(xt) = Rot
xyz

(−xt)

g
�����

�g
�����

� , g
�����

=

�
0
0

gworld

�

Rot
xyz

(xt)
=

⎛⎜⎜⎝

C�t
C�t

S�t
S�t C�t

− C�t
S�t

C�t
S�t C�t

+ S�t
S�t

C�t
S�t

S�t
S�t S�t

+ C�t
C�t

C�t
S�t S�t

− S�t
C�t

−S�t S�t
C�t

C�t
C�t

⎞⎟⎟⎠

(11)

x̌t = xt + K t(zt − h(xt)), P̌t = (I − K tJht)Pt

Jht =
∂h

∂x

∣

∣

∣

∣

xt

, K t = PtJh
T
t (JhtPtJh

T
t + R)−1

Fig. 6  Proposed EKF architecture. Gyroscopic angular rates are integrated in the prediction process in the EKF. The DNN outputs are integrated in
the update process in the EKF

Page 6 of 12Ozaki et al. ROBOMECH Journal (2021) 8:26

Method list
Definitions of methods which were used in this valida-
tion are summarized here.

•	 LiDAR DNN (ours): ‘LiDAR DNN (ours)’ denotes the
proposed method described in the section above.

•	 Camera DNN: ‘Camera DNN’ denotes a DNN where
the input to it is a color image, and the output is a
gravity vector. Its CNN module is the same feature
module as VGG16 [21], which means this network is
almost the same as the related work [16].

•	 Statistics: ‘Statistics’ denotes a method using the
average of the label vectors as outputs for all samples,
which means

∑#D
ι=0 g ι is used for estimating attitudes

of all samples. Computing the error of this method
is equivalent to calculating the standard deviation of
the dataset. This method is regarded as the baseline
in this study.

Training
The datasets used in this validation are listed in Table 1.
The DNN was trained with 10000 synthetic samples
(Dataset#1) with a batch size of 200 samples for 200
epochs. Another 1000 samples (Dataset#2) were used for
test. They were collected in ‘Neighborhood’ of AirSim.
The training dataset and the test dataset were not mixed.
A computer which has W-2133 CPU and Quadro GV100
GPU with 32 GB memory was used for the training. The
training took about 1.1 h with the computer.

The loss values during the training are plotted in
Fig. 7(a). Table 2 shows the loss values after 200 epochs
of training.

Fine‑tuning
Fine-tuning with the real data was done after the training
with the synthetic data. The DNN was tuned with 1941
real data samples (Dataset#3) with a batch size of 200
samples for 200 epochs. Another 1217 samples (Data-
set#4–6) were used for test. Dataset#3–5 were collected
in the same campus of Meiji University, but not in the
same area. Dataset#6 was collected on a slope without
surrounding buildings. Figure 8 shows pictures of one
part of each environment.

The loss values during the fine-tuning are plotted in
Fig. 7(b). Table 3 shows the loss values after 200 epochs of
the fine-tuning. The loss value on the real dataset became
smaller by the fine-tuning. However the loss value on the
test dataset is larger than one on the training dataset. To
reduce the difference of the results between the train-
ing data and the test data, a wider variety of datasets are
needed for training.

Attitude estimation
The MAE (mean absolute error) and the variance of the
static estimation are computed as below.

Table 1  Dataset list

id# Environment #Samples Usage

1 Sim. AirSim’s 10000 Training

2 ---"--- ‘Neighborhood’ 1000 Test

3 Real Area-I 1941 Fine-tuning

4 ---"--- Area-II (daytime) 443 Test

5 ---"--- Area-II (nighttime) 447 Test

6 ---"--- Slope 327 Test

Table 2  Loss after 200 epochs of training

MSE [ m2∕s4] Training (#1) Test (#2)

LiDAR DNN (ours) 0.0028 0.0015
Camera DNN 0.0014 0.0033

Fig. 7  Loss plotting. The DNNs converged the loss values by deep learning. The fine-tuning made the loss values on the real data smaller

Page 7 of 12Ozaki et al. ROBOMECH Journal (2021) 8:26 	

The MAE and the variance of the estimation on the syn-
thetic datasets is shown in Table 4. Those on the real

(12)

e𝜄 = cos−1
ĝ 𝜄 ⋅ �̂𝜄

|ĝ 𝜄||�̂𝜄|

MAE =
1

#D

#D∑
𝜄=0

e𝜄, Var. =
1

#D

#D∑
𝜄=0

|e𝜄 −MAE|2

datasets are shown in Table 5. Both of ‘LiDAR DNN
(ours)’ and ‘Camera DNN’ inferred the attitude with
small errors, except with Dataset#6. The DNNs did not
work well on Dataset#6. The distribution of error in
Fig. 9(a) implies that the LiDAR DNN before fine-tun-
ing underfit the dataset. On the other hand, Fig. 9(b)
implies that the inferences given by LiDAR DNN after
fine-tuning are biased. We consider it had an illusion
that the slope is horizontal because the training data-
sets do not contain many samples of slopes. It might
also have an illusion that the wall (in Fig. 8(c)) is verti-
cal. Therefore, it should be noted that the DNNs do
not perform well in situations which are not contained
in the datasets. At the point in Fig. 8(c), the ground
truth is �gt = 9.23 deg, �gt = −11.51 deg , and the
inference given by LiDAR DNN after fine-tuning is
�est = 3.83 deg, �est = 1.50 deg . According to this result,
establishing a way to collect more data including slopes is

our future work. On the other hand, the DNNs perform
well even in unknown environments when regularities
such as vertical buildings exist.

Focusing on the data collected in the nighttime (data-
set #5), ‘Camera DNN’ showed a good result thanks to
streetlights, but it had larger error than in the daytime.
The variance is also much larger. On the other hand,
‘LiDAR DNN’ is not affected by the light condition.

Fig. 8  Environments for collecting datasets. Dataset#3 was collected in (a). Dataset#4, 5 were collected in (b). Dataset#6 was collected in (c)

Table 3  Loss after 200 epochs of fine-tuning

Bold value represents the best result in each experiment/validation

MSE [ m2∕s4] Training Test

(#3) (#4+#5) (#6)

LiDAR DNN (ours) 0.0040 0.0041 0.0337

Camera DNN 0.0023 0.0095 0.0239

Table 4  MAE and variance of static estimation on synthetic data

Bold value represents the best result in each experiment/validation

MAE [deg] {Var. [ deg2]} Dataset#

1 2

LiDAR DNN (ours) 1.82 {9.87} 1.86 {11.41}

Camera DNN 3.57 {24.98} 3.18 {19.83}

Statistics 22.91 {71.54} 22.82 {71.74}

Table 5  MAE and variance of static estimation on real data

Bold value represents the best result in each experiment/validation

MAE [deg] {Var. [ deg2]} Dataset#

3 4 5 6

Before fine-tuning LiDAR DNN (ours) 11.68 {108.84} 13.71 {105.20} 11.29 {77.18} 24.31 {157.94}

---"--- Camera DNN 6.67 {25.92} 6.42 {22.90} 8.72 {83.84} 14.95 {38.24}

After fine-tuning LiDAR DNN (ours) 4.08 {6.88} 5.27 {8.65} 5.72 {11.80} 16.60 {61.97}

---"--- Camera DNN 4.82 {18.13} 4.83 {16.03} 5.83 {55.13} 14.28 {33.51}

Statistics 23.61 {96.13} 22.28 {98.97} 27.33 {86.82} 15.91 {85.83}

Page 8 of 12Ozaki et al. ROBOMECH Journal (2021) 8:26

Comparing ‘before fine-tuning’ and ‘after fine-tun-
ing’, the fine-tuning with the real datasets makes the
error smaller. The number of the samples for the fine-
tuning is not large, but it worked enough. It implies the
pre-training with the large synthetic dataset is valid.
Before the fine-tuning, the error of ‘LiDAR DNN’ is
large. It is considered to be because the LiDAR in the
simulator does not fully reproduce specifications of the
real one, such as non-linear spacing of FOV (Fig. 10).
This problem is solved by the fine-tuning.

Validation of real‑time estimation in simulator
The proposed EKF-based real-time estimation was vali-
dated on synthetic flight data of a drone since ground
truth is available in the simulator. Videos of the experi-
ments have been released in public (see ‘Availability of
data and materials’).

Method list
Definitions of methods which were used in this valida-
tion are summarized here.

•	 Gyro: ‘Gyro’ denotes an estimation method integrat-
ing angular velocity from a gyroscope.

•	 Gyro+Acc: ‘Gyro+Acc’ denotes an EKF-based esti-
mation method integrating angular velocity and lin-
ear acceleration from an IMU.

•	 Gyro+NDT: ‘Gyro+NDT’ denotes NDT SLAM [4]
using 32 layers of LiDAR. Angular velocity from a
gyroscope, linear velocity of ground truth, and the
NDT output are integrated in an EKF. Note that lin-
ear velocity of the ground truth is available because
the environment is a simulator.

•	 Gyro+DGSphere [11]: ‘Gyro+DGSphere’ denotes
a method described in [11]. Vertical planes are
extracted from the LiDAR point cloud, and the
cross product of the planes’ normals is used as an
estimated gravity direction. ‘DGSphere’ is short for
‘depth-Gaussian sphere’.

•	 DNN: ‘DNN’ denotes a method using the proposed
DNN directly without EKF.

•	 Gyro+DNN (ours): ‘Gyro+DNN (ours)’ denotes the
proposed method described in the section above.

Experimental conditions
Flight data of a drone was recorded in ‘Neighborhood’
of AirSim. The sampling frequency of the IMU and the
LiDAR are approximately 100 Hz, 20 Hz, respectively.

Fig. 9  Distribution of inference error

Fig. 10  LiDAR FOV. The LiDAR in the simulator does not reproduce
non-linear spacing of FOV which the real sensor has

Fig. 11  Driving courses. The AirSim’s drone flew for about 9 min in
(a). The sensors were carried for about 5 min in (b)

Page 9 of 12Ozaki et al. ROBOMECH Journal (2021) 8:26 	

Virtual noise was added to the IMU’s 6-axis data. It was
randomly added following a normal distribution with a
mean of 0 rad∕s , 0 m∕s2 and a standard deviation of 0.5
rad∕s , 0.5 m∕s2 , respectively. Note that the simulator
does not reproduce the motion distortion of the LiDAR
data. The flight course is shown in Fig. 11. A computer
which has i7-6700 CPU and GTX1080 GPU with 16 GB
memory was used for the estimation. The DNN inference
computation takes around 0.005 s with the computer,
while ‘DGSphere’ takes around 0.4 s every step.

Experimental results
The estimated attitudes in ‘Neighborhood’ are plot-
ted in Fig. 12. Table 6 shows the MAE of the estimated

attitude. The MAE of ‘Gyro+DNN (ours)’ is smaller
than ones of the other methods. ‘Gyro’ had large accu-
mulative error. That is natural because noise was added
and the method does not have any other observation.
‘Gyro+Acc’ did not have accumulative error. However
it had error constantly, since the acceleration values
of the sensor contained own acceleration of the robot
and noise. On the other hand, the proposed method
can observe the gravity vector which does not contain
them. ‘Gyro+NDT’ accumulated error slower than
‘Gyro’ did by using the LiDAR, but it could not remove
the accumulation. ‘Gyro+DGSphere’ and ‘Gyro+DNN’
corrected the accumulative error by observing the esti-
mated gravity. Comparing their MAE, the deep learning
surpasses the rule-based method. Moreover, the DNN

Fig. 12  Real-time plotting in ‘Neighborhood’. ‘Gyro+DNN (ours)’ suppressed accumulative error by observing the DNN outputs

Table 6  MAE of dynamic estimation in simulator

Bold value represents the best result in each experiment/validation

Roll [deg] Pitch [deg]

Gyro 36.786 28.473

Gyro+Acc 6.451 5.387

Gyro+NDT 32.514 23.995

Gyro+DGSphere [11] 9.272 7.534

DNN 3.148 1.748

Gyro+DNN (ours) 2.865 1.973

Table 7  MAE of dynamic estimation in mocap area

Bold value represents the best result in each experiment/validation

Roll [deg] Pitch [deg]

Gyro 6.012 5.100

Gyro+Acc 2.509 1.648
Gyro+DGSphere 4.272 3.147

DNN 6.153 3.494

Gyro+DNN (ours) 2.506 1.854

Page 10 of 12Ozaki et al. ROBOMECH Journal (2021) 8:26

outputs the estimation much faster than ‘DGSphere’
which processes 3D point clouds.

Validation of real‑time estimation in real world
To see the fine-tuned DNN can work in real world, two
types of experiments with the real sensors (Fig. 3) were
performed.

Indoor experiment with motion capture
The sensors were hand-carried in an indoor environment
of 4.5 m × 6 m for about 23 min. Motion capture cameras
(Vicon Vero v1.3X) were used for measuring the ground
truth. Note that the DNN was not trained in this area.

Table 7 shows the MAE of the estimated attitude. The
proposed method suppressed accumulation of error also
in the real world. In the flat indoor environment, the
MAE given by the proposed method is almost the same
as that of ‘Gyro+Acc’. The acceleration measured with
the IMU is not integrated in the proposed EKF in this
paper just for making the validation simple, but it actually
can be integrated, and it would be a more stable estima-
tion. For reference, the error given by ‘Gyro+Acc+DNN’
was �error = 2.503 deg, �error = 1.637 deg. ‘DNN’ with-
out EKF showed worse performance compared with
‘Gyro+DNN (ours)’ although they performed similarly
in the simulator. One of the reasons may be because the
sensors moved more intensely in this real experiment. In
order to see this, Fig. 13 plots the sensor attitude during

the experiment. The DNN had larger error when the sen-
sors moved rapidly. Motion distortion of the LiDAR data
might affect the DNN in the real world, while the simu-
lator does not reproduce the distortion. Another reason
may be because ‘DNN’ does not interpolate the state
between inferences unlike ’Gyro+DNN (ours)’ .

Outdoor experiment
The motion capture cameras measure the attitude accu-
rately, but the captured area is limited. To complement
that, a long distance experiment was also performed.
Detailed quantitative evaluation of the accuracy was done
in the previous section, thus this section is just for seeing
that the proposed method also be able to work outdoors.

The sensors were hand-carried for around 5 min in
Area-II (Fig. 11(b)) where the DNN was not trained.
Since the ground truth is not available while the sen-
sors are being carried, the estimated attitude at the end

Fig. 13  Real-time plotting in indoor experiment. The DNN had larger error when the sensors moved intensely

Fig. 14  Dynamic experiment. The ground truth on the flat floor is
assumed to be �gt = 0 deg, �gt = 0 deg

Page 11 of 12Ozaki et al. ROBOMECH Journal (2021) 8:26 	

of carrying was evaluated to see error accumulation.
The sensors were placed on a flat floor at the start and
end of the experiment as Fig. 14, and the ground truth
was assumed as �gt = 0 deg, �gt = 0 deg . This evalua-
tion method is based on the related study [16].

Table 8 shows the error of the estimation at the last
pose. The proposed method suppressed accumulation
of error during the driving outdoor. ‘Gyro+Acc’ had
very small error at the final pose because the sensor
was still. The intermediate estimation results are also
shown in Fig. 15 as reference.

Conclusions and future work
The proposed method integrates a gyroscope and the
DNN for estimating self-attitude in real-time. The pro-
posed network estimates the gravity direction from
LiDAR data. It was trained with synthetic data, and was

fine-tuned with real data. Pre-training with the large
synthetic data and augmenting the data help making
the learning efficient. The static experiment showed the
DNN can infer the gravity direction from only single shot
LiDAR data. It showed good results regardless of day or
night. For dynamic estimation, angular rates from a gyro-
scope and the DNN’s outputs are integrated in the EKF.
The dynamic experiments showed the proposed method
can be used for real-time estimation.

However, it should be noted that the proposed DNN
did not perform well in the situations which are not
contained in the training datasets, especially without
buildings. A way to collect more variety of data or judg-
ing the difficulty of inferences is necessary in our future
work. Besides, the proposed method does not cope with
the distortion of the LiDAR data in this paper. It worked
well in the experiments, but the distortion may affect
the inference when the LiDAR moves much faster. Test-
ing the effects and coping with it are our future work. As
our other future work, adopting the invariant extended
Kalman filter (IEKF) [22] as the estimator instead of the
EKF should be considered. Combining the camera DNN
and the LiDAR DNN, or using other sensors for estimat-
ing the attitude is another future work.

Table 8  Error of estimated attitude at last pose in outdoor
experiment

Roll [deg] Pitch [deg]

Gyro +5.268 −5.047

Gyro+Acc −0.269 +0.303

Gyro+DNN (ours) −1.347 −0.654

Fig. 15  Real-time plotting in outdoor experiment. Note that the ground truth while the sensors were being carried is not available in the outdoor
environments

Page 12 of 12Ozaki et al. ROBOMECH Journal (2021) 8:26

Acknowledgements
The authors are thankful for the generous support from the New Energy and
Industrial Technology Development Organization (NEDO) for this study. This
study was conducted under ‘Autonomous Robot Research Cluster’ at Meiji
University.

Authors’ contributions
RO proposed the method described in this paper, implemented all the pro-
graming, conducted some of the experiments, and drafted the manuscript. NS
conducted one of the experiments. YK provided the inspiration for this study,
provided advice, and checked and corrected the manuscript. All authors read
and approved the final manuscript.

Funding
This study was supported by the New Energy and Industrial Technology
Development Organization (NEDO).

Availability of data and materials
Source code and dataset: https://​github.​com/​ozaki​ryota/​depth_​image_​to_​
gravi​ty. The code is implemented using Python, C++, PyTorch API and ROS
API. Video of experiments: https://​photos.​app.​goo.​gl/​m1F2v​9taKw​9sEjR​z6.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 9 January 2021 Accepted: 5 November 2021

References
	1.	 Vaganay J, Aldon MJ, Fournier A (1993) Mobile robot attitude estima-

tion by fusion of inertial data. In: Proceedings of 1993 IEEE International
Conference on Robotics and Automation (ICRA), pp. 277–282

	2.	 Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. The MIT Press,
Cambridge, pp 309–336

	3.	 Rusinkiewicz S, Levoy M (2001) Efficient variants of the icp algorithm. In:
Proceedings of Third International Conference on 3-D Digital Imaging
and Modeling, pp. 145–152

	4.	 Biber P, er WS (2003) The normal distributions transform: a new approach
to laser scan matching. In: Proceedings of 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)

	5.	 Engel J, Stueckler J, Cremers D (2014) Lsd-slam: large-scale direct
monocular slam. In: Proceedings of European Conference on Computer
Vision (ECCV), pp. 834–849

	6.	 Mur-Artal R, Montiel JMM, Tardós JD (2015) Orb-slam: a versatile and
accurate monocular slam system. IEEE Trans Robotics 31(5):1147–1163

	7.	 Quddus MA, Ochieng WY, Noland RB (2007) Current map-matching
algorithms for transport applications: state-of-the art and future research
directions. Transportation Res Part C Emerg Tech 15(5):312–328

	8.	 Kim P, Coltin B, Kim HJ (2018) Linear rgb-d slam for planar environments.
In: Proceedings of European Conference on Computer Vision (ECCV), pp.
333–348

	9.	 Hwangbo M, Kanade T (2011) Visual-inertial uav attitude estimation
using urban scene regularities. In: Proceedings of 2011 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2451–2458

	10.	 Goto T, Pathak S, Ji Y, Fujii H, Yamashita A, Asama, H (2018) Line-based
global localization of a spherical camera in manhattan worlds. In: 2018
IEEE International Conference on Robotics and Automation (ICRA), pp.
2296–2303

	11.	 Ozaki R, Kuroda Y (2019) Real-time 6dof localization with relative poses to
walls of buildings. Trans JSME 85(875):19–00065 (in Japanese)

	12.	 do Lima JPSM, Uchiyama H, Taniguchi RI (2019) End-to-end learning
framework for imu-based 6-dof odometry. Sensors 19(17):3777

	13.	 Al-Sharman MK, Zweiri Y, Jaradat MAK, Al-Husari R, Gan D, Seneviratne LD
(2020) Deep-learning-based neural network training for state estimation
enhancement: application to attitude estimation. IEEE Trans Instrum
Meas 69(1):24–34

	14.	 Mérida-Floriano M, Caballero F, Acedo D, García-Morales D, Casares F,
Merino L (2019) Bioinspired direct visual estimation of attitude rates with
very low resolution images using deep networks. In: Proceedings of 2019
IEEE International Conference on Robotics and Automation (ICRA), pp.
5672–5678

	15.	 Shah S, DeyChris D, Kapoor L (2017) Airsim: high-fidelity visual and physi-
cal simulation for autonomous vehicles. Field Serv Robotics 5:621–635

	16.	 Ellingson G, Wingate D, McLain T (2017) Deep visual gravity vector detec-
tion for unmanned aircraft attitude estimation. In: Proceedings of 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)

	17.	 Nair V, Hinton GE (2010) Rectified linear units improve restricted boltz-
mann machines. In: Proceedings of ICML 2010, pp. 807–814

	18.	 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014)
Dropout: a simple way to prevent neural networks from overfitting. J
Mach Learn Res 15(1):1929–1958

	19.	 Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In:
Proceedings of the 3rd International Conference for Learning Representa-
tions (ICLR)

	20.	 Beard RW, McLain TW (2012) Small unmanned aircraft: theory and prac-
tice. Princeton University Press, Princeton, NJ

	21.	 Simonyan K, Zisserman A (2014) Very deep convolutional networks for
large-scale image recognition. In: arXiv Preprint, pp. 1409–1556

	22.	 Bonnable S, Martin P, Salaün E (2009) Invariant extended kalman filter:
theory and application to a velocity-aided attitude estimation problem.
In: Proceedings of the 48h IEEE Conference on Decision and Control
(CDC), pp. 1297–1304

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/ozakiryota/depth_image_to_gravity
https://github.com/ozakiryota/depth_image_to_gravity
https://photos.app.goo.gl/m1F2v9taKw9sEjRz6

	LiDAR DNN based self-attitude estimation with learning landscape regularities
	Abstract
	Introduction
	DNN estimating gravity vector
	Coordinate definition
	Dataset collection
	Data preprocessing
	LiDAR data transformation
	IMU data transformation

	Network
	Loss function
	Optimization

	EKF-based real-time estimation
	Prediction process
	Update process

	Validation
	Static validation of DNN
	Method list
	Training
	Fine-tuning
	Attitude estimation

	Validation of real-time estimation in simulator
	Method list
	Experimental conditions
	Experimental results

	Validation of real-time estimation in real world
	Indoor experiment with motion capture
	Outdoor experiment

	Conclusions and future work
	Acknowledgements
	References

