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Abstract 

This paper presents an EKF (extended Kalman filter) based self-attitude estimation method with a LiDAR DNN (deep 
neural network) learning landscape regularities. The proposed DNN infers the gravity direction from LiDAR data. The 
point cloud obtained with the LiDAR is transformed to a depth image to be input to the network. It is pre-trained with 
large synthetic datasets. They are collected in a flight simulator because various gravity vectors can be easily obtained, 
although this study focuses not only on UAVs. Fine-tuning with datasets collected with real sensors is done after the 
pre-training. Data augmentation is processed during the training in order to provide higher general versatility. The 
proposed method integrates angular rates from a gyroscope and the DNN outputs in an EKF. Static validations are 
performed to show the DNN can infer the gravity direction. Dynamic validations are performed to show the DNN can 
be used in real-time estimation. Some conventional methods are implemented for comparison.
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Introduction
Estimating the attitude of a robot is one of the classic 
problems in mobile robotics. In particular, real-time esti-
mation is required for real-time attitude control. The atti-
tude is generally estimated with inertial sensors such as 
accelerometers and gyroscopes. However, mobile robots 
have their own acceleration. Moreover, on-road robots 
also receive pulses from the ground, and UAVs suffer 
from vibration of their multi-rotor. These need to be fil-
tered out from the accelerometer. On the other hand, 
integration of gyroscopic angular rate has problems of 
drift and bias. These disturbances worsen the accuracy 
of the estimation. To complement each other, these iner-
tial data are fused, generally [1]. Nevertheless, dealing 
with the disturbances with only inertial sensors is quite 
difficult.

To reduce the influence of these disturbances, many 
kinds of LiDAR odometry, VO (visual odometry) and 
SLAM (simultaneous localization and mapping) [2] have 

been proposed. LiDAR-based methods register point 
clouds by ICP [3], NDT [4], and so on. Visual methods 
often track features in image sequences [5, 6]. However, 
these odometry methods and SLAMs often contain accu-
mulative error since relative pose changes with error are 
summed up. In order to correct the accumulative error, 
prior information such as 3D maps is often used [7]. 
These methods correct the error by matching the prior 
information against the sensor data. However, they work 
only in environments where maps are available. Moreo-
ver, creating a map is time-consuming, and updating is 
also required. Some methods [8–10] estimate the atti-
tude under Manhattan world assumption. They assume 
that planes or edges in the environment are orthogonal to 
each other. It helps achieving drift-free estimation. How-
ever, it is difficult for this kind of method to avoid being 
affected by objects which do not satisfy the assumption. 
We presented a method in [11] using looser restraints 
than Manhattan world assumption. It exploited a regu-
larity which most buildings are built vertically. Therefore, 
the method can be applied not only to Manhattan world, 
but also to environments where planes are not orthogo-
nal to each other. Vertical planes are extracted from 
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LiDAR point cloud, and the gravity direction is estimated 
based on normals of the planes. However, the method 
misses many features even though there are more regu-
larities in environments, since it uses only completely flat 
planes. Besides, it requires tuning many hyperparameters 
such as the searching radius for PCA (principal compo-
nent analysis), and the threshold for the number of the 
normals, and the threshold for the clustering angle. In 
addition, the processing of the 3D point clouds takes 
much time.

Deep learning has been used for attitude estimation in 
recent years. In [12], IMU-based odometry by end-to-
end learning has been proposed. In [13], a deep neural 
network identifies the measurement noise characteris-
tics of IMU. In [14], a neural network estimates angular 
rates from sequential images. It was trained with syn-
thetic and real images. The large synthetic dataset was 
collected in AirSim [15] which offers visually realistic 
graphics. In [16], a gravity vector is directly estimated 
from a single shot image. The method can infer the orien-
tation at which a picture was taken simply by looking at 
the picture, like a human. It implies there are regularities 
between the gravity direction and landscapes. Since the 
method is a camera-based one, it is cost effective, but it 
does not work well in nighttime.

To address these issues above, we present an EKF-
based self-attitude estimation method with a LiDAR 
DNN learning the landscape regularities. By using a 
LiDAR, the method can estimate the attitude regardless 
of day or night. Moreover, problems of rule-based meth-
ods such as [11] described above can be solved by using 
deep learning. The main contributions of this paper are 
summarized below:

•	 A LiDAR-based DNN which infers an absolute grav-
ity direction which does not contain the robot’s own 
acceleration nor vibration is proposed. Unlike cam-
era-based methods, the DNN can estimate it regard-
less of day or night.

•	 The DNN inference is integrated with a gyroscope 
for real-time estimation.

•	 A data transformation and augmentation method for 
the LiDAR and IMU data is proposed. Converting 
the 3D point cloud into a 2D depth image reduces the 
computation time in the DNN.

•	 Pre-training the DNN with large synthetic data 
before fine-tuning it with real data makes the learn-
ing efficient, while the related work [16] uses only 
real one.

The datasets and the source code used in this paper have 
been released in open repositories (see ‘Availability of 
data and materials’).

DNN estimating gravity vector
The proposed method makes the DNN learn landscape 
regularities for estimating the gravity vector.

Coordinate definition
A world frame is defined as a standard right-handed 
coordinate system. A robot frame is defined as a right-
handed coordinate system which is fixed on the robot 
pose. Its x axis is on the robot’s heading direction. They 
are shown in Fig. 1.

Dataset collection
Both synthetic and real data are collected in this study. 
The synthetic datasets are used for pre-training, and the 
real ones are used for fine-tuning. The datasets consist 
of LiDAR data and corresponded gravity vectors g in the 
robot frame. Technically, lidar data represents 2D depth 
images transformed from 3D point clouds. The details 
about the transformation are described in the next sec-
tion. Fig. 2 shows examples of the datasets. 

The synthetic data is collected in AirSim [15]. AirSim 
is a simulator for drones, cars and more, built on Unreal 
Engine, which provides visually realistic graphics. An 
IMU and a LiDAR which has 32 layers are installed to 
a drone in the simulator. The robot pose and weather 
parameters are randomized, and the LiDAR data and a 
gravity vector are recorded at each pose. The range of the 
random Z is limited as [2 m, 3 m] in this work. The ranges 
of the random roll φ and pitch θ are limited as [−30 deg, 
30 deg], respectively. The reason for limiting Z , φ and θ is 
that this study mainly focuses on on-road robots that tilt 
their bodies on which a LiDAR can be installed.

Fig. 1  Screenshot of AirSim with coordinate description. An IMU and 
a LiDAR are equipped to the drone in the simulator. The purpose of 
the proposed DNN is estimating a gravity vector in the robot frame 
from LiDAR data
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The real datasets are collected with an IMU (Xsens 
MTi-30) and a LiDAR (Velodyne VLP-32) installed 
on a top of a stick (Fig.  3). The stick is hand-carried, 
and point clouds and linear acceleration vectors are 
recorded. They are saved only when the stick is shaking 
less than 0.001 m and 0.1 deg in 0.5 s, and when it is at 
least 5 deg away from the last saved pose. The IMU is 
regarded as ground truth because it has enough accu-
racy (within 0.2 deg) in static according to the specifi-
cation. Learning the static IMU is valuable because the 
DNN can reproduce it even in dynamic.

Data preprocessing
Each input and label data are transformed, and are aug-
mented in each epoch of training. Data augmentation 

is especially important for real data because collecting 
real data is time-consuming. Figure 4 shows an example 
of data transformation.

LiDAR data transformation
The point clouds obtained with the LiDAR are trans-
formed to depth images as follows.

Fig. 2  Examples of datasets. The datasets consist of depth images and corresponded gravity vectors g[m∕s2] in the robot frame

Fig. 3  Sensors installed on stick. Point clouds and acceleration are 
recorded with this stick when it is still. The judge whether it is static is 
processed by programing

Fig. 4  Preprocessing scheme. Each 3D point cloud is transformed 
to a 2D depth image. The depth image is randomly flipped and slid. 
Flipping, rotation, and L2 normalization are also applied to the gravity 
vector. In this example, the virtual yaw variant is �ψ = 90 deg
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where pixel[row, col] denotes a pixel value at [row, col] of 
the depth image, pi denotes a point in the cloud, FOV 
denotes the vertical field-of-view of the LiDAR, resv and 
resh denote the angle resolution of the LiDAR, and #row , 
#col denote the numbers of the pixels in each row and 
col, respectively.

Each generated depth image is flipped in 50% of prob-
ability for augmenting the data. After the flipping process, 
the pixels of each depth image are randomly slid horizon-
tally. The virtual yaw variant �ψ is computed as below.

where Δcol denotes the number of the slid pixels.

IMU data transformation
The gravity vector is also flipped and rotated according to 
�ψ . Since the network does not need to learn the norm 
of the gravity, L2 normalization is applied to the vector in 
order to make the training efficient.
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Network
The proposed DNN is shown in Fig. 5. It consists of CNN 
(convolutional neural network) layers and FC (fully con-
nected) layers. The input to the network is the depth 
image, and the output is a gravity vector � . Technically, 
the output of the FC layers is normalized. The CNN lay-
ers are expected to learn extracting features such as edges 
and planes. The FC layers are expected to learn the regu-
larities between the features and the gravity direction.

It is expected that the CNN layers learn extracting fea-
tures such as edges and planes, and the FC layers learn 
landscape regularities. All layers, except the final output 
layer, use the ReLU function [17] as an activation func-
tion. All FC layers, except the final output layer, use the 
10% Dropout [18] to avoid the over-fitting problem.

Loss function
The MSE (mean square error) between the outputs and 
labels is used as a loss function of this model.

where � denotes the parameters of the network, and #D 
denotes the number of samples. The network minimizes 
the loss by updating �.

Optimization
Adam (adaptive moment estimation) [19] is used to 
optimize the parameters. For the training with the syn-
thetic data, the learning rates are set as lrCNN = 0.00001 , 
lrFC = 0.0001 , where lrCNN is a value for the CNN lay-
ers, lrFC is a value for the FC layers. For the fine-tuning 
with real data, they are set smaller as lrCNN = 0.000001 , 
lrFC = 0.00001.
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Fig. 5  Proposed network architecture. It consists of CNN layers and FC layers. The MSE between the outputs and the labels is used as a loss function 
of this model



Page 5 of 12Ozaki et al. ROBOMECH Journal            (2021) 8:26 	

EKF‑based real‑time estimation
The outputs from the DNN are integrated with gyro-
scopic angular rate in an EKF. The proposed EKF archi-
tecture is shown in Fig.  6. It is based on [16] which 
simplifies the attitude estimator in [20]. The state vec-
tor x of the proposed Kalman filter consists of the roll φ 
and pitch θ of the robot pose.

Both of the vector x and the covariance matrix P are 
computed in a prediction process and an update process. 
The prediction process is computed by integrating angu-
lar velocity from a gyroscope. The update process is com-
puted by observing the outputs of the DNN. Note that 
the covariance matrices for the prediction and obser-
vation are determined experimentally. Here, t denotes 
the time step, S� , C� , T� are short for sin� , cos� , tan� , 
respectively in the following sections.

Prediction process
The state vector x and the covariance matrix P are 
respectively computed as follows.

where f  is a state transition model, u denotes a control 
vector, � denotes the angular velocity measured with a 
gyroscope, and Rotrpy denotes a rotation matrix for angu-
lar velocities.
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where Jf  denotes f  Jacobean, and Q denotes a covariance 
matrix of the process noise.

Update process
The observation vector is z as below.

where �̂ denotes a gravity which is output from the DNN. 
The observation model is h.

where g
�����

 denotes a gravity vector in the world frame 
i.e. gworld ≒ 9.8 m∕s2 , Rotxyz denotes a rotation matrix for 
vectors. The state vector x and the covariance matrix P 
are respectively computed as follows.

where Jh denotes h Jacobean, K  denotes a gain matrix, R 
denotes the covariance matrix of the process noise, and I 
denotes an identity matrix.

Validation
Static and dynamic experiments were performed on 
both synthetic and real data.

Static validation of DNN
The proposed DNN was trained with training datasets, 
and was evaluated with test datasets.
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Fig. 6  Proposed EKF architecture. Gyroscopic angular rates are integrated in the prediction process in the EKF. The DNN outputs are integrated in 
the update process in the EKF
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Method list
Definitions of methods which were used in this valida-
tion are summarized here.

•	 LiDAR DNN (ours): ‘LiDAR DNN (ours)’ denotes the 
proposed method described in the section above.

•	 Camera DNN: ‘Camera DNN’ denotes a DNN where 
the input to it is a color image, and the output is a 
gravity vector. Its CNN module is the same feature 
module as VGG16 [21], which means this network is 
almost the same as the related work [16].

•	 Statistics: ‘Statistics’ denotes a method using the 
average of the label vectors as outputs for all samples, 
which means 

∑#D
ι=0 g ι is used for estimating attitudes 

of all samples. Computing the error of this method 
is equivalent to calculating the standard deviation of 
the dataset. This method is regarded as the baseline 
in this study.

Training
The datasets used in this validation are listed in Table 1. 
The DNN was trained with 10000 synthetic samples 
(Dataset#1) with a batch size of 200 samples for 200 
epochs. Another 1000 samples (Dataset#2) were used for 
test. They were collected in ‘Neighborhood’ of AirSim. 
The training dataset and the test dataset were not mixed. 
A computer which has W-2133 CPU and Quadro GV100 
GPU with 32 GB memory was used for the training. The 
training took about 1.1 h with the computer. 

The loss values during the training are plotted in 
Fig. 7(a). Table 2 shows the loss values after 200 epochs 
of training.

Fine‑tuning
Fine-tuning with the real data was done after the training 
with the synthetic data. The DNN was tuned with 1941 
real data samples (Dataset#3) with a batch size of 200 
samples for 200 epochs. Another 1217 samples (Data-
set#4–6) were used for test. Dataset#3–5 were collected 
in the same campus of Meiji University, but not in the 
same area. Dataset#6 was collected on a slope without 
surrounding buildings. Figure  8 shows pictures of one 
part of each environment. 

The loss values during the fine-tuning are plotted in 
Fig. 7(b). Table 3 shows the loss values after 200 epochs of 
the fine-tuning. The loss value on the real dataset became 
smaller by the fine-tuning. However the loss value on the 
test dataset is larger than one on the training dataset. To 
reduce the difference of the results between the train-
ing data and the test data, a wider variety of datasets are 
needed for training.

Attitude estimation
The MAE (mean absolute error) and the variance of the 
static estimation are computed as below.

Table 1  Dataset list

id# Environment #Samples Usage

1 Sim. AirSim’s 10000 Training

2 ---"---  ‘Neighborhood’ 1000 Test

3 Real Area-I 1941 Fine-tuning

4 ---"---  Area-II (daytime) 443 Test

5 ---"---  Area-II (nighttime) 447 Test

6 ---"---  Slope 327 Test

Table 2  Loss after 200 epochs of training

MSE [ m2∕s4] Training (#1) Test (#2)

LiDAR DNN (ours) 0.0028 0.0015
Camera DNN 0.0014 0.0033

Fig. 7  Loss plotting. The DNNs converged the loss values by deep learning. The fine-tuning made the loss values on the real data smaller
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The MAE and the variance of the estimation on the syn-
thetic datasets is shown in Table  4. Those on the real 

(12)
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datasets are shown in Table  5. Both of ‘LiDAR DNN 
(ours)’ and ‘Camera DNN’ inferred the attitude with 
small errors, except with Dataset#6. The DNNs did not 
work well on Dataset#6. The distribution of error in 
Fig.  9(a) implies that the LiDAR DNN before fine-tun-
ing underfit the dataset. On the other hand, Fig.  9(b) 
implies that the inferences given by LiDAR DNN after 
fine-tuning are biased. We consider it had an illusion 
that the slope is horizontal because the training data-
sets do not contain many samples of slopes. It might 
also have an illusion that the wall (in Fig.  8(c)) is verti-
cal. Therefore, it should be noted that the DNNs do 
not perform well in  situations which are not contained 
in the datasets. At the point in Fig.  8(c), the ground 
truth is �gt = 9.23 deg, �gt = −11.51 deg , and the 
inference given by LiDAR DNN after fine-tuning is 
�est = 3.83 deg, �est = 1.50 deg . According to this result, 
establishing a way to collect more data including slopes is 

our future work. On the other hand, the DNNs perform 
well even in unknown environments when regularities 
such as vertical buildings exist. 

Focusing on the data collected in the nighttime (data-
set #5), ‘Camera DNN’ showed a good result thanks to 
streetlights, but it had larger error than in the daytime. 
The variance is also much larger. On the other hand, 
‘LiDAR DNN’ is not affected by the light condition.

Fig. 8  Environments for collecting datasets. Dataset#3 was collected in (a). Dataset#4, 5 were collected in (b). Dataset#6 was collected in (c)

Table 3  Loss after 200 epochs of fine-tuning

Bold value represents the best result in each experiment/validation

MSE [ m2∕s4] Training Test

(#3) (#4+#5) (#6)

LiDAR DNN (ours) 0.0040 0.0041 0.0337

Camera DNN 0.0023 0.0095 0.0239

Table 4  MAE and variance of static estimation on synthetic data

Bold value represents the best result in each experiment/validation

MAE [deg] {Var. [ deg2]} Dataset#

1 2

LiDAR DNN (ours) 1.82 {9.87} 1.86 {11.41}

Camera DNN 3.57 {24.98} 3.18 {19.83}

Statistics 22.91 {71.54} 22.82 {71.74}

Table 5  MAE and variance of static estimation on real data

Bold value represents the best result in each experiment/validation

MAE [deg] {Var. [ deg2]} Dataset#

3 4 5 6

Before fine-tuning LiDAR DNN (ours) 11.68 {108.84} 13.71 {105.20} 11.29 {77.18} 24.31 {157.94}

---"--- Camera DNN 6.67 {25.92} 6.42 {22.90} 8.72 {83.84} 14.95 {38.24}

After fine-tuning LiDAR DNN (ours) 4.08 {6.88} 5.27 {8.65} 5.72 {11.80} 16.60 {61.97}

---"--- Camera DNN 4.82 {18.13} 4.83 {16.03} 5.83 {55.13} 14.28 {33.51}

Statistics 23.61 {96.13} 22.28 {98.97} 27.33 {86.82} 15.91 {85.83}
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Comparing ‘before fine-tuning’ and ‘after fine-tun-
ing’, the fine-tuning with the real datasets makes the 
error smaller. The number of the samples for the fine-
tuning is not large, but it worked enough. It implies the 
pre-training with the large synthetic dataset is valid. 
Before the fine-tuning, the error of ‘LiDAR DNN’ is 
large. It is considered to be because the LiDAR in the 
simulator does not fully reproduce specifications of the 
real one, such as non-linear spacing of FOV (Fig. 10). 
This problem is solved by the fine-tuning.

Validation of real‑time estimation in simulator
The proposed EKF-based real-time estimation was vali-
dated on synthetic flight data of a drone since ground 
truth is available in the simulator. Videos of the experi-
ments have been released in public (see ‘Availability of 
data and materials’).

Method list
Definitions of methods which were used in this valida-
tion are summarized here.

•	 Gyro: ‘Gyro’ denotes an estimation method integrat-
ing angular velocity from a gyroscope.

•	 Gyro+Acc: ‘Gyro+Acc’ denotes an EKF-based esti-
mation method integrating angular velocity and lin-
ear acceleration from an IMU.

•	 Gyro+NDT: ‘Gyro+NDT’ denotes NDT SLAM [4] 
using 32 layers of LiDAR. Angular velocity from a 
gyroscope, linear velocity of ground truth, and the 
NDT output are integrated in an EKF. Note that lin-
ear velocity of the ground truth is available because 
the environment is a simulator.

•	 Gyro+DGSphere [11]: ‘Gyro+DGSphere’ denotes 
a method described in [11]. Vertical planes are 
extracted from the LiDAR point cloud, and the 
cross product of the planes’ normals is used as an 
estimated gravity direction. ‘DGSphere’ is short for 
‘depth-Gaussian sphere’.

•	 DNN: ‘DNN’ denotes a method using the proposed 
DNN directly without EKF.

•	 Gyro+DNN (ours): ‘Gyro+DNN (ours)’ denotes the 
proposed method described in the section above.

Experimental conditions
Flight data of a drone was recorded in ‘Neighborhood’ 
of AirSim. The sampling frequency of the IMU and the 
LiDAR are approximately 100 Hz, 20 Hz, respectively. 

Fig. 9  Distribution of inference error

Fig. 10  LiDAR FOV. The LiDAR in the simulator does not reproduce 
non-linear spacing of FOV which the real sensor has

Fig. 11  Driving courses. The AirSim’s drone flew for about 9 min in 
(a). The sensors were carried for about 5 min in (b)
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Virtual noise was added to the IMU’s 6-axis data. It was 
randomly added following a normal distribution with a 
mean of 0 rad∕s , 0 m∕s2 and a standard deviation of 0.5 
rad∕s , 0.5 m∕s2 , respectively. Note that the simulator 
does not reproduce the motion distortion of the LiDAR 
data. The flight course is shown in Fig.  11. A computer 
which has i7-6700 CPU and GTX1080 GPU with 16 GB 
memory was used for the estimation. The DNN inference 
computation takes around 0.005 s with the computer, 
while ‘DGSphere’ takes around 0.4 s every step.

Experimental results
The estimated attitudes in ‘Neighborhood’ are plot-
ted in Fig. 12. Table 6 shows the MAE of the estimated 

attitude. The MAE of ‘Gyro+DNN (ours)’ is smaller 
than ones of the other methods. ‘Gyro’ had large accu-
mulative error. That is natural because noise was added 
and the method does not have any other observation. 
‘Gyro+Acc’ did not have accumulative error. However 
it had error constantly, since the acceleration values 
of the sensor contained own acceleration of the robot 
and noise. On the other hand, the proposed method 
can observe the gravity vector which does not contain 
them. ‘Gyro+NDT’ accumulated error slower than 
‘Gyro’ did by using the LiDAR, but it could not remove 
the accumulation. ‘Gyro+DGSphere’ and ‘Gyro+DNN’ 
corrected the accumulative error by observing the esti-
mated gravity. Comparing their MAE, the deep learning 
surpasses the rule-based method. Moreover, the DNN 

Fig. 12  Real-time plotting in ‘Neighborhood’. ‘Gyro+DNN (ours)’ suppressed accumulative error by observing the DNN outputs

Table 6  MAE of dynamic estimation in simulator

Bold value represents the best result in each experiment/validation

Roll [deg] Pitch [deg]

Gyro 36.786 28.473

Gyro+Acc 6.451 5.387

Gyro+NDT 32.514 23.995

Gyro+DGSphere [11] 9.272 7.534

DNN 3.148 1.748

Gyro+DNN (ours) 2.865 1.973

Table 7  MAE of dynamic estimation in mocap area

Bold value represents the best result in each experiment/validation

Roll [deg] Pitch [deg]

Gyro 6.012 5.100

Gyro+Acc 2.509 1.648
Gyro+DGSphere 4.272 3.147

DNN 6.153 3.494

Gyro+DNN (ours) 2.506 1.854
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outputs the estimation much faster than ‘DGSphere’ 
which processes 3D point clouds.

Validation of real‑time estimation in real world
To see the fine-tuned DNN can work in real world, two 
types of experiments with the real sensors (Fig. 3) were 
performed.

Indoor experiment with motion capture
The sensors were hand-carried in an indoor environment 
of 4.5 m × 6 m for about 23 min. Motion capture cameras 
(Vicon Vero v1.3X) were used for measuring the ground 
truth. Note that the DNN was not trained in this area.

Table 7 shows the MAE of the estimated attitude. The 
proposed method suppressed accumulation of error also 
in the real world. In the flat indoor environment, the 
MAE given by the proposed method is almost the same 
as that of ‘Gyro+Acc’. The acceleration measured with 
the IMU is not integrated in the proposed EKF in this 
paper just for making the validation simple, but it actually 
can be integrated, and it would be a more stable estima-
tion. For reference, the error given by ‘Gyro+Acc+DNN’ 
was �error = 2.503 deg, �error = 1.637 deg. ‘DNN’ with-
out EKF showed worse performance compared with 
‘Gyro+DNN (ours)’ although they performed similarly 
in the simulator. One of the reasons may be because the 
sensors moved more intensely in this real experiment. In 
order to see this, Fig. 13 plots the sensor attitude during 

the experiment. The DNN had larger error when the sen-
sors moved rapidly. Motion distortion of the LiDAR data 
might affect the DNN in the real world, while the simu-
lator does not reproduce the distortion. Another reason 
may be because ‘DNN’ does not interpolate the state 
between inferences unlike ’Gyro+DNN (ours)’ .

Outdoor experiment
The motion capture cameras measure the attitude accu-
rately, but the captured area is limited. To complement 
that, a long distance experiment was also performed. 
Detailed quantitative evaluation of the accuracy was done 
in the previous section, thus this section is just for seeing 
that the proposed method also be able to work outdoors.

The sensors were hand-carried for around 5 min in 
Area-II (Fig.  11(b)) where the DNN was not trained. 
Since the ground truth is not available while the sen-
sors are being carried, the estimated attitude at the end 

Fig. 13  Real-time plotting in indoor experiment. The DNN had larger error when the sensors moved intensely

Fig. 14  Dynamic experiment. The ground truth on the flat floor is 
assumed to be �gt = 0 deg, �gt = 0 deg
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of carrying was evaluated to see error accumulation. 
The sensors were placed on a flat floor at the start and 
end of the experiment as Fig. 14, and the ground truth 
was assumed as �gt = 0 deg, �gt = 0 deg . This evalua-
tion method is based on the related study [16]. 

Table 8 shows the error of the estimation at the last 
pose. The proposed method suppressed accumulation 
of error during the driving outdoor. ‘Gyro+Acc’ had 
very small error at the final pose because the sensor 
was still. The intermediate estimation results are also 
shown in Fig. 15 as reference.

Conclusions and future work
The proposed method integrates a gyroscope and the 
DNN for estimating self-attitude in real-time. The pro-
posed network estimates the gravity direction from 
LiDAR data. It was trained with synthetic data, and was 

fine-tuned with real data. Pre-training with the large 
synthetic data and augmenting the data help making 
the learning efficient. The static experiment showed the 
DNN can infer the gravity direction from only single shot 
LiDAR data. It showed good results regardless of day or 
night. For dynamic estimation, angular rates from a gyro-
scope and the DNN’s outputs are integrated in the EKF. 
The dynamic experiments showed the proposed method 
can be used for real-time estimation.

However, it should be noted that the proposed DNN 
did not perform well in the situations which are not 
contained in the training datasets, especially without 
buildings. A way to collect more variety of data or judg-
ing the difficulty of inferences is necessary in our future 
work. Besides, the proposed method does not cope with 
the distortion of the LiDAR data in this paper. It worked 
well in the experiments, but the distortion may affect 
the inference when the LiDAR moves much faster. Test-
ing the effects and coping with it are our future work. As 
our other future work, adopting the invariant extended 
Kalman filter (IEKF) [22] as the estimator instead of the 
EKF should be considered. Combining the camera DNN 
and the LiDAR DNN, or using other sensors for estimat-
ing the attitude is another future work.

Table 8  Error of estimated attitude at last pose in outdoor 
experiment

Roll [deg] Pitch [deg]

Gyro +5.268 −5.047

Gyro+Acc −0.269 +0.303

Gyro+DNN (ours) −1.347 −0.654

Fig. 15  Real-time plotting in outdoor experiment. Note that the ground truth while the sensors were being carried is not available in the outdoor 
environments
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