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Abstract 

Simultaneous localization and mapping (SLAM) is a widely used technology in autonomous mobile robots, where 
sensors such as Lidar or cameras are typically used. Sensor fusion using multiple sensors has been employed to com-
pensate for the shortcomings of each sensor in SLAM. However, the sensor cost cannot be ignored when consider-
ing its practical usage. Therefore, this study aims at realizing a high-precision SLAM using a sensor switching system, 
combining multiple low-cost sensors. The sensor switching system consists of a low-cost Lidar SLAM and a monocular 
localization. Since a low-cost Lidar has a short laser range, degeneracy often occurs due to the fact that they cannot 
capture features while building maps. The proposed system uses localization data from monocular localization to 
ensure precision in regions where degeneracy occurs. The proposed system was evaluated through the simulation 
assuming the museum environment where the degeneracy occurred. The accuracy of the robot trajectory and the 
built map proved the effectiveness of the proposed system.
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Introduction
Autonomous mobile robots are used in various environ-
ments and applications, such as transport robots in facto-
ries and service robots in facilities. These robots can solve 
the labor shortage issue caused by the declining birth rate 
and aging population, save labor, and improve efficiency 
by automating tasks. In recent years, due to the COVID-
19 pandemic, the demand for autonomous mobile robots 
that can replace human labor is expected to increase. In 
addition, a more accurate movement of the robots and a 
reduction in the installation costs are expected.

A high-accuracy simultaneous localization and map-
ping (SLAM) system [1] is required for stable and accu-
rate autonomous movement in practical applications. 
Furthermore, low-cost sensors are desirable for SLAM. 
Typical sensors used in SLAM are Lidar and cameras.

Lidar can easily realize high-accuracy SLAM as they 
capture the distance to the surrounding environment by 

laser irradiation to acquire point cloud data of the sur-
rounding environment. However, Lidar with a wide range 
(hereinafter referred to as long-range Lidar) is expensive.

In contrast, low-cost cameras can acquire information 
over long distances because they identify the surround-
ing environment based on information available through 
images. However, a monocular camera cannot directly 
measure the distance to the surrounding environment; 
thus, it is necessary to calculate the distance, which con-
tributes to the inaccuracy of SLAM. RGB-D cameras 
can acquire depth information; however, the accuracy 
is lower than that of Lidar and is more expensive than 
monocular cameras.

Because each sensor has advantages and disadvan-
tages, sensor fusion has been used in SLAM. In par-
ticular, many studies performed sensor fusion between 
Lidar and cameras [2–14], classified as shown in Fig.  1 
[15]. Although there are some studies that used cameras 
other than monocular cameras [2–6], this paper presents 
related studies focused on sensor fusion using a Lidar 
and a monocular camera.
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Some studies improved the SLAM performance with a 
monocular camera (hereinafter referred to as monocular 
SLAM) using Lidar. For example, in [7–9] the problem 
of uncertain map scale in monocular SLAM was solved 
using lasers. In contrast, several studies improved the 
performance of Lidar SLAM using a monocular camera. 
For example, focusing on the fact that the monocular 
camera has a high environment recognition performance, 
there are some studies that utilized the visual informa-
tion of the camera for loop detection and scan matching 
in Lidar SLAM [10–13].

In addition, as an approach similar to the authors work 
described below, a study utilized the pose information 
from the monocular SLAM [14]. In reference [14], a 
calibration method that focuses on the robot trajectory 
is applied to the monocular SLAM, and therefore, could 
use the pose information of the monocular camera when 
Lidar SLAM is degraded. However, this method was 
based on the assumption that the map built by SLAM 
is accurate to a certain extent; this method can not be 
used in supplementing the poses in real time during 
SLAM. Therefore, when degeneracy occur during the 
map build, the accuracy of the map built by Lidar SLAM 
is degraded, which results in poor accuracy of the cali-
bration; the supplement by the pose information of the 
monocular camera will not function accurately. Never-
theless, an approach to actively use Lidar with a narrow 
range (hereinafter referred to as “short-range Lidar”) is 
quite practical in terms of reducing the cost.

This study proposes a low cost yet highly accurate Lidar 
SLAM under following two conditions: (1) Limited to 
extremely low-cost sensor configuration of short-range 
2D Lidar and monocular camera, (2) Assume an indoor 
space where monocular SLAM is basically well per-
formed but short-range Lidar SLAM degenerates in some 
areas.

Specifically, this is a method that maintains the accu-
racy of a short-range 2D Lidar SLAM operated as a 
base, by using the pose information from the monocu-
lar SLAM as the supplement in case the degeneracy is 

automatically detected. In this respect, the proposed 
method is a sensor switching method rather than a fusion 
in terms of localization.

Degeneracy refers to a situation in which scan-based 
pose estimation, such as scan matching [16], is not accu-
rately performed. Degeneracy is more likely to occur in 
short-range Lidar with a narrow scan range because it is 
difficult to capture the features needed for posing. When 
degeneracy occurs, the robot misunderstand that a scan 
was obtained at the same pose even if the robot is mov-
ing; thus, a map that is shrunk in the direction of trans-
lation compared to the real environment is obtained. 
Although it is possible to suppress degeneracy to certain 
extent by using odometry, the accuracy of odometry can-
not be ensured because of the cumulative error.

The structure of this paper is as follows. In “Localiza-
tion supplement system by monocular localization”, the 
authors propose a system that utilizes the pose informa-
tion of the monocular localization in case the degeneracy 
occurs to maintain the accuracy of mapping build of the 
short-range Lidar SLAM. In “Simulation”, the perfor-
mance of the proposed system is evaluated through sim-
ulations. Finally, in “Conclusion”, a summary of the study 
and future works are described.

Localization supplement system by monocular 
localization
System overview
Figure 2 shows the configuration of the proposed system. 
The goal of the system is to generate the accurate map 
based on the short-range Lidar SLAM which could be 
adequately used for autonomous navigation of the robot 

Fig. 1  Various approaches of implementing Laser-Visual SLAM [15]

Fig. 2  Proposed system
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afterwards, even in case the degeneracy occurs. Thus, in 
environments where degeneracy occurs in short-range 
Lidar SLAM, the system considers using the pose infor-
mation from monocular localization, after applying the 
coordinate system calibration method described below, 
instead of the pose information from Lidar SLAM. Fig-
ure  2 shows that the proposed system operates based 
on the short-range Lidar SLAM, and the calibrated pose 
from monocular localization is prepared as a substiture 
for Lidar pose in case the degeneracy occurs. It should 
be noted that this calibrated pose is automatically calicu-
lated in realtime during the SLAM. In this sense, the pro-
posed system could be categorized as the improved Lidar 
framework which improves the accuracy of Lidar SLAM 
owing to the use of camera in localization, as shown in 
Fig. 1. The details of the algorithm is as follows.

Algorithm
The algorithm of the proposed system is shown in Fig. 3. 
The proposed system can be divided into three units cor-
responding to Lidar SLAM, monocular localization, and 
calibration. Each unit is processed parallelly, and the pose 
information from the Lidar SLAM (Lidar pose), monocu-
lar localization (monocular pose), calibrated monocular 
localization (calibrated pose), and degeneracy detection 
information is transmitted and received between each 

unit. In the Lidar SLAM unit, scan and odometry are 
acquired, and scan matching is used to estimate the pose. 
In case degeneracy occurs, the calibrated pose is set to 
the Lidar pose (see Localization 1 of Figs. 2, 3) and used 
for map construction. On other hand, when degeneracy 
does not occur, the map is built based on the pose infor-
mation obtained by scan matching.

The degeneracy detection is performed by focusing on 
the fact that the displacement of the pose is under esti-
mated in the direction of translation or rotation when 
degeneracy occurs. In detail, the amount of displace-
ment of the Lidar pose and the calibrated pose from 
previous time step to the present time step is calcu-
lated respectively, and in case their difference is larger 
than a threshold value, the degeneracy is assumed to 
be detected. However, since the calibrated pose is set to 
the Lidar pose in case degeneracy occurs as mentioned 
above (see Localization 1 of Figs. 2, 3), the problem that 
raw Lidar pose can not be used for the degeneracy detec-
tion arise. To deal with this problem, the raw Lidar pose 
which is not overwritten in any case (see Localization 2 
of Figs. 2, 3) is also prepared and it was used for degen-
eracy detection.

Thus, the degeneracy detection based on the Lidar pose 
(of Localization 2) and the calibrated pose at the tim-
ing when the robot acquires the k th pose is expressed 

Fig. 3  Detailed system flowchart
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as follows. The translation distance is calculated by Eqs. 
(1) and (2), and the rotation distance is calculated by Eqs. 
(3) and (4), using (xlk , y

l
k , θ

l
k) and (xck , y

c
k , θ

c
k ) , respectively. 

Here, k − 1 represents the information from previous 
time step.

Then, the past n times average of the difference in travel 
distances between the Lidar pose and the calibrated pose 
is calculated, as shown in Eq. (5) and Eq. (6).

In case the estimated travel distance derived by the Lidar 
pose becomes smaller due to degeneracy, there will be a 
certain difference from that derived by calibrated pose. 
Therefore, when �rk in Eq. (5) or �φk in Eq. (6) becomes 
larger than a certain value, it indicates that degener-
acy has occurred. Note that we applied a quite simple 
degeneracy detection method in this study and, if neces-
sary, methods such as [17] and [18] could be applied to 
improve the performance.

In this paper, the pose of n times is required for the 
degeneracy detection, and there is a difference between 
the time when robot entered the degenerate environment 
and the time when the detection is made. This leads to 
using inaccurate pose while this n times delay. To solve 
this problem, the calibrated pose is always stored up to 
n time steps ago, and when the detection result switches 
from “non-degenerate” to “degenerate”, the Lidar pose is 
reset up to n time steps ago with these stored calibrated 
poses.

The monocular localization unit estimates the robot’s 
pose from the acquired image and transmits the monocu-
lar pose to the calibration unit. In this case, the monocu-
lar SLAM also prepares and executes the map in advance.

The calibration unit obtains the degeneracy detec-
tion information from the Lidar SLAM unit. If degen-
eracy does not occur, the estimated values of the 
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transformation parameters are updated using the Lidar 
pose obtained from the Lidar SLAM unit and monocu-
lar pose obtained from the monocular localization unit 
according to the coordinate calibration method described 
below. In contrast, if degeneracy occurs, the estimated 
values of the transformation parameters are not updated. 
Finally, the estimated transformation parameters are 
applied to the monocular pose to derive the calibrated 
pose, which is transmitted to the Lidar SLAM unit.

Coordinate calibration method
The coordinate systems of the map built by Lidar SLAM 
and monocular SLAM are different. A monocular camera 
cannot estimate the physical distance due to its structure 
and is processed as a dimensionless quantity. Moreover, 
the origin and direction of each axis of the coordinate 
systems depend on pose of the sensors with respect to 
the robot. Hence, calibration between the coordinate sys-
tems is required in order to convert the monocular pose 
into the Lidar pose.

In this study, an automatic calibration method that 
uses only the robot’s pose information is developed based 
on practicality. Although several coordinate calibration 
methods have been currently proposed [14, 15, 19–21], 
an automatic calibration method was developed referring 
to the method [21] and adding a scale estimation func-
tion to it.

A visualization of the automatic calibration is shown in 
Fig. 4. The coordinate systems of Lidar map and monocu-
lar map are represented as Ol and Om , and the position 
coordinates by (xl , yl) and (xm, ym) , respectively. The 
robot trajectory in each coordinate system was recorded 
to automatically estimate the transformation param-
eters between each coordinate system. The transforma-
tion parameters were estimated using the same pose 

Fig. 4  Conceptual image of automatic calibration utilizing robot 
trajectory in two coordinate systems
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coordinates of the robot obtained independently by Lidar 
SLAM and monocular localization.

Here, the calibration from the monocular map coordi-
nate system to the Lidar map coordinate system is con-
sidered. Using the monocular map coordinate system, the 
Lidar map coordinate system can be expressed as Eq. (7) 
with S as the scaling matrix, R as the rotation matrix, and 
T as the translation vector.

Therefore, in detail, the Lidar map coordinate system has 
a relation with the pose coordinates of the monocular 
map coordinate system as shouwn in Eq. (8).

where Slmx  and Slmy  represent the scaling in the x and y 
directions, respectively; θ lm represents the rotation direc-
tion; Tlm

x  and Tlm
y  represent the translation in the x and y 

directions, respectively. Here, the transformation param-
eters are estimated by the least-squares method shown 
in Eq. (9) [19], where (xlk , y

l
k) and (xmk , y

m
k ) represent the 

poses of the k robot in each coordinate system of Lidar 
map and monocular map, respectively.

If two or more pairs (n ≥ 2) of corresponding points are 
obtained from the previous robot trajectory, ∂ε2
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the transformation parameters can be estimated in prin-
ciple by solving this system of equations. However, this 
nonlinear system of equations cannot be solved analyti-
cally and can be computed iteratively using the Newton 
method. Therefore, the approximate solutions are 
obtained using Eq. (12), where the i-th approximate solu-
tion is Eq. (10) and the correction values is Eq. (11).

Here, the appropriate initial value is set to P0 = (Tlm
x,0 , 

Tlm
y,0 , Slmx,0 , S

lm
y,0 , θ

lm
0
) , and the correction value �P is cal-

culated by Eq. (13), which is derived from Newton’s 

(7)Ol = SROm + T

(8)

(

xl

yl

)

=

(

Slmx 0

0 Slmy

)(

cos θ lm − sin θ lm

sin θ lm cos θ lm

)(

xm

ym

)

+

(

Tlm
x

T lm
y

)

(9)

ε2 =

n
∑

k=1

{(xlk − Slmx xmk cos θ lm + Slmx ymk sin θ lm − Tlm
x )2

+ (ylk − Slmy xmk sin θ lm − Slmy ymk cos θ lm − Tlm
y )2}

(10)Pi =
(

Tlm
x,i T lm

y,i Slmx,i Slmy,i θ lmi

)T

(11)�P =

(

�Tlm
x �Tlm

y �Slmx �Slmy �θ lm
)T

(12)Pi+1 = Pi +�P

method. Y and X of Eq. (13) are calculated using Eq. (14) 
and (15), respectively.

The iteration is terminated when all of the element of 
correction value �P becomes sufficiently small. Finally, 
the approximate solution thus obtained is substituted 
into Eq. (8) in order to be used for calibration of the coor-
dinate system.

Simulation
Simulation setup
In this simulation, GMapping [22] for short-range Lidar 
SLAM and ORB-SLAM2 [23] for monocular SLAM was 
used. The PC used for the simulation had the following 
specifications. CPU: Intel Core i7-8700K @ 3.70GHz, 
memory: 64GB, OS: Ubuntu 18.04, and the system was 
built using a robot operating system (ROS) [24]. Gazebo 
[25] was used for evaluating the performance of the pro-
posed method.

The robot and sensors used in Gazebo are shown in 
Table 1 and Fig.  5. The robot used is a two-wheel drive 
with rear casters. The measurement distance of the 
short-range Lidar was set to 4 m, measurement range to 
270deg, resolution of the monocular camera to 640 480, 
and fps to 30.

The simulated environment in Fig.  6 is assuming the 
museum and the mobile robot is expected to be used as 
guide robot. The blue line in Fig. 6a shows the visualiza-
tion of the laser irradiation of Lidar. The environment in 
Fig. 6b represents the case the degeneracy occurs in the 
direction of translation, and that is Fig. 6c represents the 
case the degeneracy occurs in the direction of rotation. 
The robot was driven along the trajectory shown in black 
in Fig. 6b, c and the environmental map was built using 

(13)�P = Y−1(−X)

(14)Y =





















∂A
∂Tlm

x

∂A
∂Tlm

y

∂A
∂Slmx

∂A
∂Slmy

∂A
∂θ lm

∂B
∂Tlm

x

∂B
∂Tlm

y

∂B
∂Slmx

∂B
∂Slmy

∂B
∂θ lm

∂C
∂Tlm

x

∂C
∂Tlm

y

∂C
∂Slmx

∂C
∂Slmy

∂C
∂θ lm

∂D
∂Tlm

x

∂D
∂Tlm

y

∂D
∂Slmx

∂D
∂Slmy

∂D
∂θ lm

∂E
∂Tlm

x

∂E
∂Tlm

y

∂E
∂Slmx

∂E
∂Slmy

∂E
∂θ lm





















(15)X =

























∂ε2i
∂Tlm

x
∂ε2i
∂Tlm

y

∂ε2i
∂Slmx
∂ε2i
∂Slmy
∂ε2i
∂θ lm

























=











A
B
C
D
E













Page 6 of 12Nakamura et al. Robomech J            (2021) 8:23 

the long-range Lidar, short-range Lidar, and proposed 
method, respectively. Here, the measurement distance of 
the long-range Lidar was set to 30 m. Moreover, the map 
in Fig. 7a, b was prepared in advance for the monocular 
localization.

In the environment shown in Fig.  6b, the robot first 
drives through the non-degenerate environment where 

the degeneracy does not occur, and then drives through 
the degenerate environment where degeneracy occurs in 
the short-range Lidar SLAM in the direction of transla-
tion (the area in the red box in Fig. 6b). Then it took the 
path of driving through the non-degenerate environment 
again. In the environment shown in Fig.  6c, the robot 
first drives through the non-degenerate environment as 
in Fig. 6b, and then performs rotational motion at a loca-
tion where degeneracy occurs in the short-range Lidar 
SLAM in the direction of rotation (the area shown in the 
red frame in Fig.  6c). Then, it took the path of driving 
through the non-degenerate environment again.

In this simulation, n in Eq. (3) was set to 3, and degen-
eracy was considered to occur when �rk is 0.1m or higher 
and �phik is 3deg or higher, based on a preliminary 
simulation results. The estimation of the transforma-
tion parameters begins when 30 or more corresponding 
poses are obtained, and the iterative calculation is ter-
minated when all of the elements of the correction value 
�P = (�Tlm

x ,�Tlm
y ,�Slmx ,�Slmy ,�θ lm) is less than 0.01.

Simulation results and evaluation
Figure  8 shows the created map and trajectory of the 
Lidar pose during the driving. Figure  8a, b, and c show 
the results obtained by the long range Lidar only, short 
range Lidar only, and the proposed method, respectively, 
when driving in the environment of Fig.  6b. Figure  8d, 
e, and f show those results when driving in the environ-
ment of Fig. 6c. In the built map, the white area indicates 
no obstacle, the black area indicates an obstacle, and the 
gray area indicates that the area has not been searched 

Fig. 5  Robot and sensors

Table 1  The specifications of sensors used for simulation

Sensor parameters Value

(a) Specifications of Lidar

 Distance [m] 4

 Angle [deg] 270

(b) Specifications of monocular camera

 Resolution 640 × 480

 fps 30

Fig. 6  Simulation environment. a Robot view, b A top view of the environment for dealing with degeneracy in the direction of translation, c A top 
view of the environment for dealing with degeneracy in the direction of rotation
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yet. The Lidar pose is plotted in orange, and the true 
value of the robot pose is plotted in black.

First, the results of simulations conducted in the Fig. 6b 
environment were as follows. The map built by the long-
range Lidar SLAM, shown in Fig.  8a, was successful 
because the Lidar could measure the entire environment. 
However, the map built by the short-range Lidar SLAM 
did not match the wall on the right side, Fig. 8b. This is 
due to the degeneracy in the translation in the area in the 
red frame in Fig. 6b, resulting in a shrinking map. In con-
trast, Fig. 8c shows that the proposed method can main-
tain accuracy even in the degenerate environment. This 
is because degeneracy can be accurately predicted by the 
proposed system, and the pose supplemented by the cali-
brated pose prevents the map from shrinking.

The distance error between the Lidar pose and true 
value is shown in Table  2. Table  2 shows that the MAE 
(Mean Absolute Error) and RMSE (Root Mean Squared 
Error) values of the proposed method are smaller by 2.80 
m and 3.86 m, respectively, compared to the short-range 
Lidar method, which confirms the improved localization 
accuracy of Lidar SLAM. Moreover, the MAE and RMSE 
of the proposed method were larger than those of the 
long-range Lidar by only 0.20 m and 0.25 m, respectively. 
Although the accuracy of the proposed method was 
slightly worse than that of long-range Lidar SLAM, it is 
expected that the proposed method can reach the accu-
racy of long-range Lidar with further improvements.

Next, the results of simulations conducted in Fig.  6c 
environment were as follows. The map built by the long-
range Lidar SLAM, shown in Fig.  8d, was successful 
because the Lidar could measure the entire environment. 
However, the map built by the short-range Lidar SLAM 

is distorted as shown in Fig. 8e. This is due to the degen-
eracy in the direction of rotation in the area in the red 
frame in Fig. 6c, resulting in the reduced amount of rota-
tion. In contrast, Fig. 8f shows that the proposed method 
can maintain accuracy even in the degenerate environ-
ment. This is because degeneracy can be accurately 
detected by the proposed system, and the pose supple-
ment by the calibrated pose prevents the map from being 
distorted.

The distance error between the Lidar pose and true 
value is shown in Table  3. Table  3 shows that the MAE 
(Mean Absolute Error) and RMSE (Root Mean Squared 
Error) values of the proposed method are smaller by 1.50 
m and 3.40 m, respectively, compared to the short-range 
Lidar method, which confirms the improved localiza-
tion accuracy of Lidar SLAM. Moreover, compared with 
long-range Lidar, the MAE of the proposed method was 
smaller by 0.01 m, and the RMSE was equal to the pro-
posed method, indicating that the accuracy of the pro-
posed method is almost equivalent to that of long-range 
Lidar SLAM.

Finally, further analysis of the internal behavior was 
conducted as follows.

First, we start from the case of simulation in Fig.  6b 
environment. Figure 9 shows the overall landscape of the 
robot and the environment, sensor information (laser 
scans) from the short-range Lidar SLAM and the long-
range Lidar SLAM, and sensor information (images from 
the monocular camera) from the monocular localization 
at a few specific locations along the movement trajectory 
(indicated by in Fig. 9a). In particular, two locations are 

Fig. 7  Feature-based map from monocular SLAM. a The environment 
for dealing with degeneracy in the direction of translation, b The 
environment for dealing with degeneracy in the direction of rotation

Table 2  Simulation results for dealing with degeneracy in the 
direction of translation

Measurement 
distance 30m

Measurement 
distance 4m

Measurement distance 
4m (proposed method)

MAE[m] 0.13 3.13 0.33

RMSE[m] 0.14 4.25 0.39

MAX[m] 0.25 8.18 1.29

MIN[m] 0.03 0.09 0.01

Table 3  Simulation results for dealing with degeneracy in the 
direction of rotation

Measurement 
distance 30m

Measurement 
distance 4m

Measurement distance 
4m (proposed method)

MAE[m] 0.20 1.69 0.19

RMSE[m] 0.21 3.61 0.21

MAX[m] 0.33 13.92 0.54

MIN[m] 0.05 0.02 0.02
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Fig. 8  Environmental map and robot trajectory from Lidar SLAM. a, b, and c are the environment for dealing with degeneracy in the direction of 
translation; d, e, and f are the environment for dealing with degeneracy in the direction of rotation. a and d Measurement distance 30m, b and e 
Measurement distance 4m, c and f Measurement distance 4m (proposed method)
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Fig. 9  Overall landscape and sensor information in specific position along the robot trajectory in simulation environment dealing with degeneracy 
in the direction of translation. a Selected position, b, f, j, n, r Overall landscape of the robot and the environment, c, g, k, o, s Laser scans of 4m Lidar, 
d, h, l, p, t Laser scans of 30m Lidar, e, i, m, q, u Images from monocular camera
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selected from the area where degeneracy occurs in order 
to focus on the situation where degeneracy occurs.

Figure 10 shows the transition of the degeneracy detec-
tion index �rk and the transformation parameters. Fig-
ure 12a shows the results of degeneracy detection at each 
location along the trajectory. The location inside the red 
frame in Fig. 6b, which is considered as the environment 
where degeneracy occurs, correponds to the area in the 
red frame in Fig. 12a, indicating that degeneracy occurs 
over a long period of time. The detail situation where the 
degeneracy occurs could be seen in Fig. 9. From Fig. 9k, 
9o, it can be seen that the laser scan of the short-range 
Lidar has not changed in this area in terms of movement. 
This is a situation where pose translation cannot be esti-
mated from the laser scan, which is nothing but degen-
eracy. On the other hand, from Fig. 9l, 9p and Fig. 9m, 9q, 
the laser scan of the long-range Lidar and the image of 

the monocular camera change with movement indicates 
that no degeneracy is occuring even in this area.

Next is the case of simulation conducted in Fig.  6c 
environment. Figure  11 shows the transition of the 
degeneracy detection index �φk and the transformation 
parameters. Figure  12b shows the results of degeneracy 
detection at each location along the trajectory. The loca-
tion inside the red frame in Fig. 6c, which is considered 
as the degenerate environment, corresponds to the area 
in the red frame in Fig.  12b, indicating that degeneracy 
occurs at those points.

Therefore, the proposed method, which automatically 
detects degeneracy immediately and switches to the 
calibrated pose based on the pose information from the 
monocular localization with higher accuracy, is expected 
to work in these situations.

Fig. 10  Transition of the degeneracy detection index and transformation parameters in case of simulation dealing with degeneracy in the direction 
of translation. a degeneracy detection index, b, e Parameter transition of T lmx  and T lmy  , c, f Parameter transition of Slmx  and Slmy  , d, g Parameter 
transition of θ lm
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Conclusion
In this study, we proposed a short-range Lidar SLAM 
that utilizes localization data from the monocular local-
ization as a supplement, with the goal of realizing a 

high-accuracy SLAM with low-cost sensors in environ-
ments where degeneracy occurs. Then, the accuracy of 
the proposed short-range Lidar SLAM was evaluated via 
a simulation in an environment where degeneracy occurs. 

Fig. 11  Transition of the degeneracy detection index and transformation parameters in case of simulation dealing with degeneracy in the direction 
of rotation. a Degeneracy detection index, b, e Parameter transition of T lmx  and T lmy  , c, f Parameter transition of Slmx  and Slmy  , d, g Parameter transition 
of θ lm

Fig. 12  Result of degeneracy detection at each location a Result in the environment for dealing with degeneracy in the direction of translation, b 
Result in the environment for dealing with degeneracy in the direction of rotation
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The MAE and RSME of the distance error between Lidar 
position and true value was compared in three cases, that 
is, long-range Lidar (ideal case), short-range Lidar, and 
proposed method. The results showed that the MAE and 
RSME significantly decreased from that of normal short-
range Lidar SLAM and was close to the level of long-
range Lidar SLAM. Therefore, the effectiveness of the 
method was verified to certain extent.

As a future work, we would like to conduct experi-
ments in an actual environments using an actual robot.
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SLAM: Simultaneous localization and mapping; ROS: Robot operating system.
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