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Abstract 

Compared with more rigid objects, clothing items are inherently difficult for robots to recognize and manipulate. We 
propose a method for detecting how cloth is folded, to facilitate choosing a manipulative action that corresponds to 
a garment’s shape and position. The proposed method involves classifying the edges and corners of a garment by dis-
tinguishing between edges formed by folds and the hem or ragged edge of the cloth. Identifying the type of edges 
in a corner helps to determinate how the object is folded. This bottom-up approach, together with an active percep-
tion system, allows us to select strategies for robotic manipulation. We corroborate the method using a two-armed 
robot to manipulate towels of different shapes, textures, and sizes.
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Introduction
In recent years, robots have contributed to a significant 
increase in the automation of industrial tasks. How-
ever, the level of automation of household tasks has yet 
to become commonplace. The demand for robots capa-
ble of assisting with household tasks is likely to increase 
in parallel with aging global populations, a demographic 
phenomenon caused by improved life expectancies and 
dropping birth rates. One operation that is central to 
many household tasks, including laundry, assisted dress-
ing, and bed making, is the manipulation of cloth items. 
This skill, which is simple for most humans, is actu-
ally very difficult for robots to perform. The difficulty of 
cloth manipulation lies in the deformability, nonlinear-
ity, and low predictability of the behavior of the materi-
als. Because of their deformable nature, compared with 
rigid objects, cloth objects are also inherently difficult for 
robots to recognize. This is why it is often necessary to 
completely unfold cloth items prior to starting a task. An 
unfolded garment is easier to recognize and manipulate 

because a robot can then approximate the shape to a 
model or locate interest points like corners.

A common method of cloth unfolding is to lay the gar-
ment flat on a surface and unfold it, as in a pick-and-place 
problem [1–4]. In [3], similar to our method, the authors 
present an analysis of the types of corners in order to find 
strategies for unfolding. By contrast, our approach does 
not require a table or any flat surface, and involves simply 
grasping one point of the garment, lifting it into the air, 
and letting it hang from that point by the effect of gravity.

In this paper, we deal with a rectangular piece of cloth 
as a basic problem to investigate. Typical methods used 
to open such garments while hanging require locating 
predefined points and grasping them [5, 6]. However, 
because there are often hidden folds, we analyze the 
depth of the garment’s edges instead of searching for spe-
cific points, which allows us to extract information for 
forming a manipulation strategy. We distinguish between 
two types of edges: those that belong to the hem of the 
garment, which we call physical edges, and the remaining 
nonphysical edges, often formed by folds. Figure 1 shows 
an example of this edge classification. In the image on 
the right, the physical edges are marked in green and the 
nonphysical edges are marked in red. Locating physical 
edges is very useful for find grasping points and to better 
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understand the shape of the garment. Opening the gar-
ment requires locating two corners formed by physical 
edges, which we call physical corners. These two corners 
should be consecutive i.e., connected by the same physi-
cal edge. Once located, grasping each corner with one 
hand leads to unfold the garment.

The configuration of edge types in the whole garment 
reveals some patterns. However, the high dimensional-
ity of clothing items makes it very difficult to find global 
features that could identify an edge as physical or not. 
On the other hand, local features around edges tend to 
show slight differences between physical and nonphysical 
edges.

Therefore, to classify the edges, we propose a system 
that combines the results from two classifiers: a local one 
that selects a small patch around a pixel as an input and 
a global one whose input is the whole image. Finally, we 
present a categorization of the types of corners found in 
the image of the garment and use this categorization in 
an algorithm to actively choose the best robot action for 
opening the garment.

The main contributions of this work are the following:

•	 A combined local and global classifier capable of 
determining edge types.

•	 An algorithm that chooses the best course of action 
towards unfolding a garment according to its state, 
which is inferred from the types of edges. The algo-
rithm is capable of locating physical corners even 
when they are occluded.

We apply this algorithm to the case of unfolding differ-
ent towels and show how this skill can be applied to other 
garments.

In the “Related work” section, we present several 
related approaches to cloth manipulation. The “System 
overview” section describes the categorization of fold-
ing patterns for a cloth held in the air. In the “Cloth edge 
classification” section, we provide a detailed description 

of the edge type classifier. The “Action planning” sec-
tion describes the algorithm that chooses the best action 
according to each folding pattern. Finally, in the “Experi-
ments” section, we validate our system using different 
examples of rectangular cloth items.

Related work
Semantic edge detection
The use of learning techniques to detect edge informa-
tion allows to perform edge segmentation with respect 
to more subjective criteria than classical methods such 
as Canny [7]. In [8], they use random forests to learn a 
mid-level representation based on object contours called 
sketch tokens. Similarly, in [9], they use boosted decision 
trees to extract depth maps.

Semantic edge detection goes one step further by turn-
ing this binary classification into a multiclass problem. 
CASEnet [10] proposes a network that classifies each 
pixel in the edge to one or more semantic labels. They 
demonstrate the results using Semantic Boundaries Data-
set and Cityscapes datasets. The work in [11] improves 
the results of CASEnet by doing full deep supervision.

This paper expands on previous work [12], which was, 
to our knowledge, the first attempt to teach machines 
semantic edge segmentation for the perception of 
deformable objects. In [12], edge detection is successful 
in finding the corner to be grasped to unfold a towel. In 
cases where the corner is hidden, however, the unfold-
ing of the garment cannot be completed. In this work, 
we present a detection and manipulation technique that 
allows us to identify and grasp a corner that is hidden 
behind curled up cloth, and then bring the garment to a 
complete unfolded state.

Cloth manipulation
Feature detection is the approach most commonly used 
to locate a point to be grasped for unfolding. In [2] they 
detect the hem and propose grasping points that are later 
manually selected. If the garment lies on a surface and 
only presents some wrinkles as in [13], topology analy-
sis can be used to generate a strategy for flattening. Yuba 
et  al. [14] uses a “pinch and slide” action that involves 
locating a corner, grasping it, and then pinching the edge 
close to it before finally sliding toward the next corner.

With the advent of deep learning, several studies have 
tried to solve the cloth manipulation problem. Triantafyl-
lou et al. [15] uses horizontal edges and junctions found 
in the depth images as grasping points. This approach 
considers all of the depth edges without distinguishing 
whether they really belong to a physical edge or are pro-
duced by folds or noise. This can lead to selecting incor-
rect grasping points.

Fig. 1  Example of physical edges (green) and nonphysical edges 
(red)
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Doumanoglou et al. [5] uses random decision forests to 
learn to find specific points of garments (e.g., the shoul-
ders in a t-shirt or corners in a cloth). To solve a problem 
where the points are not visible, the authors use a proba-
bilistic action planner to acquire new views of the object 
by rotating it. However, soft garments, tend to wrinkle 
in a way that can hide big parts of the object, includ-
ing these specific points (see Fig.2). In those cases, such 
points cannot be found, even by rotating the garment 360 
degrees.

Similarly to Doumanoglou’s method, Corona et al. [16, 
17] detect specific points for each garment using deep 
convolutional neural networks to find the grasping points 
on a garment after a neural network identifies the gar-
ment type.

In the work by Hu et  al. [18], the authors hold the 
unknown garment to form one shape from a small set of 
limited shapes and match it with ones in a database pre-
pared in advance. For bringing the item to such a limited 
shape, they first grasp the garment by the lowest hang-
ing point and then by the farthest point from the vertical 
axis through the holding position, considering that the 
farthest point should be a characteristic point such as a 
shoulder. This second grasping strategy may not be appli-
cable to all kinds of garments especially in the case of soft 
garments.

System overview
Cloth shape observations
The main problem with working with deformable objects 
is that the number of configurations they can take is infi-
nite. In order to limit the possible configurations of the 
garment, we leverage a simple observation to grasp the 
garment by one of its corners. If the garment is grasped 

by any random point, then the lowest point of the gar-
ment from a frontal view corresponds to one of the cor-
ners (see Fig.  3). The same observation was used in [5, 
17].

Regrasping by that lowest points ensures that the gar-
ment is grasped by one of its corners. We thereafter 
assumed this to be the initial position for all of the exper-
iments. After grasping one corner, we gained insight by 
looking at how humans manipulate cloth before unfold-
ing it. We found that the first action is often to look for 
any other contiguous corner and grab it. If the corner is 
not visible, humans tend to grasp one of the edges and 
slide the hand towards the corner.

Analysis and categorization of cloth folding patterns
We present a categorization of the possible configura-
tions of a cloth item. Next, we use the result to reveal and 
grasp the hidden corner. To understand how the garment 
is folded, expanding on the work in [12], we focus on dis-
tinguishing between physical and nonphysical edges, as 
mentioned earlier in the “Introduction” section.

Based on the edge types, the type of corner made by 
the edges can be classified. In the method proposed in 
this paper, we focus on the lateral (leftmost and right-
most) corners of a cloth held in the air and identify its 
type, as shown in Fig.4.

With one physical corner being held, the bottom point 
always corresponds to the opposite corner. For the other 
two corners, there are three possible states: visible, curled 
forward, and curled backward. To evaluate the state of 
the corners of a garment, we observe the leftmost and 
rightmost corners of the perimeter as shown in Fig.  5. 
If two physical edges are coming out of that corner, it is 
a real corner (e.g., the right corner in Fig. 5a). If one or 
more edges are nonphysical, then it is a pseudo corner. In 
the case of two edges coming out of the corner, the real 
corner is folded backward (e.g., left corner in Fig. 5a–c). 

Fig. 2  Some methods that try to locate specific points like corners; 
however, cloth tends to curl over, which can hide these points. 
The green lines are the painted physical edges. Physical edges are 
detected in the RGB image using color segmentation and are used to 
generate labels. During training, we only use the depth image, and 
the neural network never receives this color information

Fig. 3  When grasping the garment from a random point, the lowest 
point from a frontal view corresponds to one of its corners
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If three edges are coming out of the corner, the real cor-
ner is folded forward (e.g., right corner in Fig. 5b–e). In 
the case of a corner folding forward, the actual physical 

corners are either visible (e.g., right corner in Fig. 5b) or 
hidden (e.g., right corner in Figures 5c–e). In cases where 
it is hidden, further manipulation is needed to reveal it 
before grasping. Figure  6 shows the process that needs 
to be followed to identify the pattern in the leftmost and 
rightmost corners.

From this observation, we can see that it is possible 
to obtain crucial information about how the garment is 
folded simply by identifying the types of edges leading to 
the corners in these two points.

Pipeline
Figure 7 shows the whole pipeline of the system. First, the 
robot takes the cloth to the initial position and then, from 
the depth image, the edges are extracted. Next, the left-
most and rightmost points are located and their folding 
pattern is classified according to the type and number of 
edges at each point. Finally, the robot executes an action 
according to the observation.

In the next sections, we explain the details of each 
stage.

Fig. 4  The three possible configurations of the leftmost and 
rightmost corners of the cloth depth image

Fig. 5  Synthetically generated examples of folding patterns: a has a backward fold on the left and a physical corner on the right; b has a backward 
fold on the left and a forward fold with a visible corner; c is the same as b but the corner is not visible; d has forward folds with non-visible corners 
on both sides; e has a backward fold on the left and forward fold on the right with a hidden corner; and f has backward folds on both sides
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Cloth edge classification
The vision system takes a depth image of a garment as 
input data and classifies its edges as physical or non-
physical. It consists of two detectors: a local one and a 
global one. The local one only considers small patches in 
the image, around the point that it classifies. This is use-
ful for the generalization of other garments, but it lacks 
the ability to consider the global structure in the current 
item. For this purpose, we introduce a global detector 
that takes into account the whole image as it classifies the 
pixels.

Training a neural network requires large quantities 
of labeled data. Manually labeling the physical edges in 
thousands of images is not feasible owing to time con-
straints. To overcome this, we use a semi-automatic 
dataset generation method. We paint the physical edges 
of a cloth item (as seen in Fig.2) and then with an RGB 
camera, we detect and automatically label these edges. 
It should be noted that we use the RGB images only to 

generate the labels; this color information is never seen 
by the neural network, as it only uses depth informa-
tion. Using this method, we are able to obtain hundreds 
of labeled images with minimal human intervention. The 
garment is hung from the robot end effector and rotated 
while the images are captured. After a full rotation of 
the garment, the shape of the garment is modified and 
another round of images is captured.

Image acquisition and preprocessing
We use a Kinect One sensor placed as shown in Fig.  8. 
The sensor provides an RGB image matrix I(p) and a 
depth image matrix D(p). Both cameras are calibrated so 
that each pixel p = (x, y) in the images corresponds to 
the same location in the real scenario. The camera is also 

Fig. 6  Categorization of folding states

Fig. 7  Sequence of processes for unfolding. First, the edges are extracted from a depth image. Then leftmost and rightmost points are located and 
classified. According to the type of folding pattern, an action is selected and executed by the robot

Fig. 8  The robot holds the cloth by one of the corners placing it 
between the camera and the robot itself
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calibrated with the robot so that its position relative to 
the robot is known.

To remove the pixels that do not correspond to the 
cloth, we filter by depth, keeping only the pixels that are 
at a distance ZEE ± γ near the end effector (as shown in 
Fig. 8). Next, we extract the edges from the filtered image 
using the Canny algorithm [7]. We denote Vd as the set of 
pixels in the resulting binary image.

The RGB image is only used during training to gener-
ate label images {Ŷ (p)0...Ŷ (p)N } . When we train using 
a cloth with painted edges, we segment each image by 
color to extract a binary image label in which Ŷ (p) = 1 
if the pixel p corresponds to a physical edge. Otherwise, 
it is zero.

Local detector
As a local detector, we use the same structure as we did in 
our previous work [12]. Figure 9 shows the way the inputs 
and outputs to the network are arranged. For each pixel 
in Vd , a patch h(p) of size 50 × 50 is extracted around that 
point from D(p). The patch size was determined empiri-
cally by visually analyzing the images. It corresponds to a 
size that is big enough to contain some context surround-
ing the point and small enough to avoid capturing other 
nearby edges that could affect the classification. Batches 
of patches are fed into the neural network. After the 
input layer, we set a convolutional layer (Fig. 9a) with 32 
convolutional kernels of size 3 × 3 and stride 1. The next 
layer (Fig. 9b) is a batch normalization layer followed by a 
max pool layer of size 2 and rectifying linear unit (ReLU). 
This structure is repeated in the subsequent layers (see 
Fig. 9c–d), with a 64-kernel convolution of the same size. 
The last set of convolution layers (Fig.  9e–f) consists of 
128 kernels of the same size as the previous ones. The 

output of (f ) is linearly rearranged, forming a vector of 
length 2048 (g), which is then passed to a fully connected 
layer of 500 neurons (h). Finally, the output layer (i) has 
two neurons that activate, indicating the probability of 
the pixel belonging to a physical or nonphysical edge.

For each batch of N samples X = {h(p0), ..., h(pN )} 
(with p from the set Vd ), the neural network returns 
{y(p0), ...y(pN )} with y(p) being the probability of pixel p 
belonging to a physical edge. We then evaluate the binary 
cross entropy loss:

Global detector
Since the local detector classifies pixels individually with-
out taking into account the full cloth, it is susceptible of 
presenting discontinuities in an edge. To compensate this 
effect, we use a global detector that takes into account 
the whole image and classifies every pixel in the image by 
using a fully convolutional neural network.

Figure  10 shows the structure of the network. The 
orange boxes represent the feature maps at each convolu-
tion layer. The yellow boxes are the feature maps at each 
deconvolution layer merged with the features from early 
stages of the neural network (represented by the gray 
arrows). Each box follows the ResNet architecture [19] 
and is followed by a batch normalization layer and ReLU 
activation.

In this case, we formulate the problem as a multi-label 
problem. Each of the N-label images Ȳ (k)

N  contains K 
binary images, one for each of the K categories. We use 

(1)
BCEloss =

1

N

N∑

p=0

−Ŷ (p) log y(p)

− (1− Ŷ (p) log (1− y(p)))

Fig. 9  The Local Detector consists of a convolutional layer a of size (32 × 3 × 3) followed by a batch normalization layer, a max pool of size 2 and 
ReLU activation. The same structure is repeated through c–d and e–f with convolutions of sizes (64 × 3 × 3) and (128 × 3 × 3) respectively. Then 
the output of (f ) is rearranged as a vector of size 2048 in g) and followed by two fully connected layers of sizes 500 and 2
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K = 3 with one category corresponding to the physical 
edges ( ̂Y  ), one for the nonphysical edges (Vd − Ŷ ) , and 
the rest of the pixels corresponding to the background.

The multi-label loss ( MLloss)is defined as

To compensate for the skewness in the dataset, we use ǫ 
and (1− ǫ) , which represent the percentage of non-edge 
and edge pixels respectively.

Similar to other works [10, 11] we perform supervision 
at each stage. Supervision layers (represented by blue 
lines in Fig.  10) extract feature layers at each stage. We 
denote the weights as W = {w0, ...,wn} for each of the n 
= 9 layers. The supervised loss is evaluated as the sum of 
the multi-label loss of each of the individual layers:

The final loss L consists of the loss at the output layer and 
the supervision loss:

where � is a parameter between 0 and 1 that defines the 
weight of the supervision in the final loss.

(2)
MLloss =

3∑

k=0

∑

p

−ǫȲ (p)(k) log Y (p)(k)

− (1− ǫ)(1− ¯Y (p)) log (1− Y (p)(k))

(3)Lsupervision(W ) =

n∑

i=0

MLloss(Ywi)

(4)L = MLloss(Yout)+ �Lsupervision

Output
For each pixel, we have two classification results, one 
coming from the local detector and the other from the 
global one. We can ponder the outputs to give more 
importance to generalization or global structure by tun-
ning β.

Action planning
We introduce five actions the robot can take to accom-
plish the goal of unfolding the garment: Grasp, Rotate, 
Shake, Follow-Edge, and Unfold. The action Unfold, is 
the last action (as shown in Fig.  11g) and after that the 
garment should be in an unfolded state. Otherwise, the 
process starts again from the beginning. The Rotate 
action performs a rotation of the garment around the 
vertical axis by rotating the end effector of the robot arm 
that holds the cloth. The Grasp action is performed with 
the free hand by grasping a point on the garment, usu-
ally a corner. In the Shake action, the arm that is holding 
the garment allows it to spread vertically by the effect of 
gravity. Finally, Follow-Edge, moves the right hand’s end 
effector along one of the physical edges.

The algorithm starts from the initial position i.e., the 
robot holding one of the garment’s corners (Fig. 11a). We 
assume this position can be reached following the obser-
vation in the “Cloth edge classification” section. In other 
words, the robot first grabs the garment by any point and 

(5)Y = βYlocal + (1− β)Yglobal

Fig. 10  The global detector is a fully convolutional neural network with deep supervision. The orange boxes represent the feature maps at each 
convolution layer. The yellow boxes are the feature maps at each deconvolution layer merged with the transferred features from early stages (grey 
arrows). The blue arrows represent the feature extraction for deep supervision at each layer
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then, with the other arm, grasps the lowest point, which 
corresponds to a corner.

Next, the farthest horizontal point is examined 
(Fig.  11b). A hanging garment will typically take the 
shape of a rough triangle, with its hypotenuse along the 
vertical axis. We showed in the “Analysis and categoriza-
tion of cloth folding patterns” subsection that this outer 
corner is crucial to understanding how the garment is 
shaped.

We then analyze the edges that are connected to the 
farthest corner. If there are two physical edges (Fig. 11c), 
the corner in question is a real corner and we can pro-
ceed to grasp and then unfold it by extending it.

If it is a pseudo corner, we look more closely at the edge 
types and determine the type of folding, as shown in the 
“Analysis and categorization of cloth folding patterns” 
subsection. If the edge folds backward (Fig. 11d), the cor-
ner is probably behind the garment and the appropriate 
action is to rotate the garment to reveal the corner.

If it folds forward (Fig.  11e), we will move the end 
effector of the free arm along the trajectory defined by 
the physical edge to reveal the corner, grasp it, and then 
unfold the garment.

If the detected edges do not correspond to any of the 
defined categories, we will perform an action to shake the 
garment to loosen any folds and extend it by the effect of 
gravity. Then, we start the process again.

Experiments
Experimental setup
In all of the experiments, we use a Baxter robot with a 
Kinect One camera facing each oher, as seen in Fig.  8. 
The neural networks are implemented using the open 
software Pytorch [20]. The GPU is an NVIDIA GTX1080 
with 8 GB of memory, and the CUDA edition is 10.0. In 
all of the experiments, unless stated otherwise, � = 1 in 
Eq.4 and β = 0.6 in Eq. 5. Training was done with a gar-
ment with painted edges (see Figs. 2 and 3), from which 

we extract more than 1600 images. This amounted to 
more than 3.2 million patches.

Each experiment begins with the robot holding a cloth 
with its right arm as an initial state, then taking actions 
to unfold it with the left arm (Fig.  13). The camera is 
calibrated and its position with respect to the robot is 
known. We conducted three types of experiments. First 
we analyzed the robot’s performance in edge classifica-
tion and grasping for 20 attempts using the same gar-
ment (see Figs. 2 and 3). Then we validated the results of 
our method by having the robot unfold several previously 
unseen garments. Finally, to demonstrate the effective-
ness of the global detector, we show an ablation study 
comparing the local + global detector with the local only 
detector from previous work [17].

Training
The training progress is shown in Fig.  12. The top row 
shows the loss and accuracy during training and valida-
tion. We train for 15 epochs, stopping before any signs 

Fig. 11  Unfolding algorithm

Fig. 12  Top left: training and validation loss. Top right: training 
and validation accuracy. Bottom left: loss for different dataset sizes. 
Bottom right: accuracy for different dataset sizes
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of overfitting. To demonstrate that the amount of data 
gathered is enough, we trained the system with increas-
ing amounts of samples in the dataset. The left graph 
in the bottom row of Fig. 12 shows that the loss quickly 
decreases as we increase the size of the dataset. After 
around 750 samples, the change in the loss relative to the 
dataset size decreases more slowly, indicating less sig-
nificance of adding more data. The graph on the bottom 
right shows the accuracy, which inversely grows at a simi-
lar rate.

Classification and grasping
In order to show the effectiveness of the method and 
determine the stage at which possible errors might 
occur, we performed 20 attempts to unfold a single gar-
ment (seen in Figs. 2 and 3). We studied these attempts 
to ascertain whether the edge classification had been pro-
duced correctly and the grasping and unfolding were suc-
cessful. The results are summarized in Table 1. Figure 13 
shows an example of unfolding when the inner corner is 
hidden. The robot followed the trajectory of the physical 

edge to reveal the corner, grasp it, and successfully unfold 
the cloth.  The video in Additional file  1 contains exam-
ples of robot cloth unfolding.

Table 1 shows the four possible outcome cases depend-
ing on the success or failure in corner classification and 
unfolding. A circle in corner classification column indi-
cates that the corners were correctly classified in all the 
steps. The first row indicates that 75% of the times the 
unfolding was successful with correct corner classifica-
tion in every step. The second row indicates that in the 
10% of the cases in which the Edge classification was not 
successful, the Grasping was. This result is produced in 
cases where, somewhere in the process, there are errors 
in the classification, but after some action (like Rotate) 
the next step led to a correct classification and grasp-
ing. In this case, the corner classification was correct in 
85.72% of the steps

Note that we do not differentiate between success in 
grasping and success in unfolding because a successful 
grasp led to successful unfolding in every attempt.

Generalization
We tested the results of the system through experiments 
using four cloths of different sizes and textures that were 
not seen during training (shown in Fig.  14). The robot 
attempts to grasp each garment 20 times and the suc-
cess rate of edge classification and unfolding are shown 
in Table  2. For each attempt, we consider that the cor-
ner classification is successful if it was correct in all the 
steps, and the unfolding is considered successful if the 
physical edges form a square. The success rate represents 
the percentage of success in the 20 attempts. The cloth 
A (seen in Fig. 14) reaches 100% in corner-type classifi-
cation. This garment is, in fact, the most similar to the 
one used during training. Cloths B and D are smaller and 
have different folding patterns. Cloth B is the most differ-
ent in terms of color texture and it has the lowest classi-
fication accuracy. That said, the cause of the lower corner 
classification success ratio is not the color texture, but the 
tendency of this cloth to curl up and hide its edges more 
often than others. Images with a physical edge present 
are correctly classified most of the time regardless of the 

Fig. 13  Sequence of the robot unfolding a hidden corner folded 
forwards. By moving the robot’s gripper through a trajectory defined 
by the physical edge (the points from A to B) we can reveal the 
hidden corner

Table 1  Outcomes of 20 grasping attempts

(1) Corner classification was correct in 85.72% of the steps

An “X” in a cell means the operation in that column was not successful, whereas 
a circle indicates success. The ratio indicates the percentage of attempts with 
that particular corner classification and unfolding outcome

Corner classif. Grasping unfold Ratio

O O 75%

X(1) O 10%

O X 15%

X X 0%

Table 2  Success ratios for different unseen cloths during 
training

The middle column shows the success ratio in edge classification, and the right 
column the success ratio in grasping and unfolding

Cloths Corner Classif. Unfolding

Cloth A 100% 85%

Cloth B 85% 80%

Cloth C 95% 95%

Cloth D 95% 85%
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cloth’s texture. Error cases tend to appear in cases with 
hidden edges. These are more difficult to classify, and an 
increased tendency of a cloth to curl is the main factor 
affecting the classification success ratios.

Ablation study
To show the benefits of using both global and local clas-
sifiers, we compare the percentage of correctly classified 
pixels in the edges when taking into account both local 
and global classifiers with the ablated version using only 
the local classifier as in [12]. For this experiment, not only 
the classification of the edges in the corner is considered, 
but the classification of all the edges in the image. The 
success ratio represents the ratio of pixels in the image’s 
edges that are correctly classified to the total number of 
pixels in the image’s edges. Table 3 shows the results for 
each cloth. Again, cloths A and C, which are the biggest 
in shape (the length is similar and they are rectangular) 
and more similar to the one used during training in terms 
of cloth texture, are the ones with the best accuracy. The 
global detector does not add a big increase in the accu-
racy, since the results of the local detector are already 

high. Cloths B and D are shorter and more squared ben-
efit from knowing the whole structure of the garment 
and significantly improve their results when taking into 
account the global classifier.

Failure cases
Figure  15 shows the most common example of failure 
in edge detection. Because we are exclusively using the 
depth image to detect the edges, having the edges very 
close to another layer of cloth can lead to failure in their 
detection. This kind of error, however, only tends to hap-
pen around the center of the cloth. The proposed method 
for analyzing the leftmost and rightmost corners gener-
ally avoids this kind of error because there is usually a 
background behind those points and not another layer 
of the cloth. There are two main possibilities to increase 
the accuracy in pixel detection. First, by improving the 
inputs, that is improving the resolution of the sensor or 
adding more channels (color RGB). The other possibility 

Fig. 14  Examples of edge detection in unseen garments (Cloths a to d respectively)

Table 3  Success ratios for different unseen cloths during 
training

The middle column shows the percentage of correctly classified pixels using 
only the local classifier and the right column shows the result after the 
refinement with the global classifier

Cloths Local Global + 
Local

Cloth A 81% 88%

Cloth B 78% 86%

Cloth C 83% 89%

Cloth D 74% 89%

Fig. 15  When the edges are very close to another layer of cloth, this 
can lead to errors in the edge detection
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is to focus in the design and optimization of a new model 
of neural network.

The most common cause of failure in manipulation 
and, also the main general cause of failure, is the incapa-
bility of finding a solution in the inverse kinematics for 
the grasping point. This is more common when trying 
to reveal a hidden corner. To solve this we relaxed the 
tolerance of the goal position and orientation, and tried 
to find other configurations within a short distance and 
angle from the desired configuration. We also use an 
L-shaped gripper to grasp the edge at an angle, making 
it easier to find a solution for the inverse kinematics. In 
order to further improve the results, a more task-specific 
robot could be designed to better satisfy the task. How-
ever, we chose to use a two-arm robot with 7 degrees of 
freedom in each arm which is a common design.

Discussion
We presented a comparison with our previous method 
that shows an increase in the accuracy of pixel classifica-
tion, and most importantly solves a previously unsolved 
problem: revealing a hidden corner. The method in [5] is 
similar to ours in that it unfolds the garment while hang-
ing. However, when the corner or feature to grasp is hid-
den and not found after a full rotation, they restart the 
whole process by regrasping the garment. We chose to 
take a different approach to find a strategy to reveal the 
hidden corner. Other methods like [15, 21] use a table 
to assist in the unfolding operation and are not directly 
comparable to ours.

Conclusions
We have presented a method for manipulating cloth 
items that is based on reliable identification of the types 
of edges in a depth image. Using only depth information 
makes the algorithm robust to changes in color and tex-
ture. This also makes it possible to use the color informa-
tion to generate a large number of labeled examples for 
further network training.

Our method recognizes how a cloth is folded by ana-
lyzing the types of edges connecting to the leftmost and 
rightmost corners in the depth image, which facilitates 
choosing the next appropriate action.

We employed both local and global classifiers to benefit 
from generalization of the former and the ability of the 
latter to take into account the whole structure.

The experiments demonstrated that, with a high suc-
cess ratio (85%), the robot was able to grasp a corner of 
the cloth in order to unfold it even when the corner was 
not visible in the image. We also showed how the method 
can be expanded to include other types of cloth not seen 
during the training.

Contrary to methods that try to model the whole cloth 
item in order to manipulate it, we showed that finding 
and analyzing the edges is a promising way to understand 
how to manipulate an object with a robot. With further 
research, this method could be extended to other types 
of garments.

The main limitation is the restriction to rectangular 
cloths. Future work can solve this limitation by studying 
other common patterns found in the edges of other types 
of folded cloth. For example, a t-shirt often presents simi-
lar patterns, but more analysis and strategies are needed 
to deal with the sleeves.
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